20
20
import warnings
21
21
from textwrap import dedent
22
22
23
- from numpy import nan as NA
24
23
import numpy as np
25
24
import numpy .ma as ma
26
25
@@ -436,7 +435,7 @@ def _init_dict(self, data, index, columns, dtype=None):
436
435
else :
437
436
v = np .empty (len (index ), dtype = dtype )
438
437
439
- v .fill (NA )
438
+ v .fill (np . nan )
440
439
else :
441
440
v = data [k ]
442
441
data_names .append (k )
@@ -2781,7 +2780,7 @@ def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value,
2781
2780
2782
2781
return frame
2783
2782
2784
- def _reindex_index (self , new_index , method , copy , level , fill_value = NA ,
2783
+ def _reindex_index (self , new_index , method , copy , level , fill_value = np . nan ,
2785
2784
limit = None , tolerance = None ):
2786
2785
new_index , indexer = self .index .reindex (new_index , method = method ,
2787
2786
level = level , limit = limit ,
@@ -2790,8 +2789,8 @@ def _reindex_index(self, new_index, method, copy, level, fill_value=NA,
2790
2789
copy = copy , fill_value = fill_value ,
2791
2790
allow_dups = False )
2792
2791
2793
- def _reindex_columns (self , new_columns , method , copy , level , fill_value = NA ,
2794
- limit = None , tolerance = None ):
2792
+ def _reindex_columns (self , new_columns , method , copy , level ,
2793
+ fill_value = np . nan , limit = None , tolerance = None ):
2795
2794
new_columns , indexer = self .columns .reindex (new_columns , method = method ,
2796
2795
level = level , limit = limit ,
2797
2796
tolerance = tolerance )
@@ -3770,7 +3769,7 @@ def _combine_series(self, other, func, fill_value=None, axis=None,
3770
3769
def _combine_series_infer (self , other , func , level = None ,
3771
3770
fill_value = None , try_cast = True ):
3772
3771
if len (other ) == 0 :
3773
- return self * NA
3772
+ return self * np . nan
3774
3773
3775
3774
if len (self ) == 0 :
3776
3775
# Ambiguous case, use _series so works with DataFrame
@@ -3924,7 +3923,7 @@ def combine(self, other, func, fill_value=None, overwrite=True):
3924
3923
3925
3924
if do_fill :
3926
3925
arr = _ensure_float (arr )
3927
- arr [this_mask & other_mask ] = NA
3926
+ arr [this_mask & other_mask ] = np . nan
3928
3927
3929
3928
# try to downcast back to the original dtype
3930
3929
if needs_i8_conversion_i :
@@ -4543,7 +4542,7 @@ def _apply_empty_result(self, func, axis, reduce, *args, **kwds):
4543
4542
pass
4544
4543
4545
4544
if reduce :
4546
- return Series (NA , index = self ._get_agg_axis (axis ))
4545
+ return Series (np . nan , index = self ._get_agg_axis (axis ))
4547
4546
else :
4548
4547
return self .copy ()
4549
4548
@@ -5161,7 +5160,7 @@ def corr(self, method='pearson', min_periods=1):
5161
5160
5162
5161
valid = mask [i ] & mask [j ]
5163
5162
if valid .sum () < min_periods :
5164
- c = NA
5163
+ c = np . nan
5165
5164
elif i == j :
5166
5165
c = 1.
5167
5166
elif not valid .all ():
@@ -5485,7 +5484,7 @@ def idxmin(self, axis=0, skipna=True):
5485
5484
axis = self ._get_axis_number (axis )
5486
5485
indices = nanops .nanargmin (self .values , axis = axis , skipna = skipna )
5487
5486
index = self ._get_axis (axis )
5488
- result = [index [i ] if i >= 0 else NA for i in indices ]
5487
+ result = [index [i ] if i >= 0 else np . nan for i in indices ]
5489
5488
return Series (result , index = self ._get_agg_axis (axis ))
5490
5489
5491
5490
def idxmax (self , axis = 0 , skipna = True ):
@@ -5516,7 +5515,7 @@ def idxmax(self, axis=0, skipna=True):
5516
5515
axis = self ._get_axis_number (axis )
5517
5516
indices = nanops .nanargmax (self .values , axis = axis , skipna = skipna )
5518
5517
index = self ._get_axis (axis )
5519
- result = [index [i ] if i >= 0 else NA for i in indices ]
5518
+ result = [index [i ] if i >= 0 else np . nan for i in indices ]
5520
5519
return Series (result , index = self ._get_agg_axis (axis ))
5521
5520
5522
5521
def _get_agg_axis (self , axis_num ):
@@ -5754,9 +5753,8 @@ def isin(self, values):
5754
5753
2 True True
5755
5754
"""
5756
5755
if isinstance (values , dict ):
5757
- from collections import defaultdict
5758
5756
from pandas .core .reshape .concat import concat
5759
- values = defaultdict (list , values )
5757
+ values = collections . defaultdict (list , values )
5760
5758
return concat ((self .iloc [:, [i ]].isin (values [col ])
5761
5759
for i , col in enumerate (self .columns )), axis = 1 )
5762
5760
elif isinstance (values , Series ):
@@ -6119,7 +6117,7 @@ def _homogenize(data, index, dtype=None):
6119
6117
v = _dict_compat (v )
6120
6118
else :
6121
6119
v = dict (v )
6122
- v = lib .fast_multiget (v , oindex .values , default = NA )
6120
+ v = lib .fast_multiget (v , oindex .values , default = np . nan )
6123
6121
v = _sanitize_array (v , index , dtype = dtype , copy = False ,
6124
6122
raise_cast_failure = False )
6125
6123
0 commit comments