-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
BUG: Index[timestamp[pyarrow]].union with itself return object type #58421
Open
2 of 3 tasks
Comments
Thanks for the report. I've trace the issue to this operation: In [3]: import pyarrow as pa, pandas as pd
In [4]: pd.Index(["2020-01-01"], dtype=pd.ArrowDtype(pa.timestamp("s"))).union(pd.Index(["2020-01-02"], dtype=pd.ArrowDtype(pa.timestamp("s"))))
Out[4]: Index([2020-01-01 00:00:00, 2020-01-02 00:00:00], dtype='object') |
pd.concat
does not maintain timestamp[s][pyarrow]
index type. (MultiIndex
)
take |
afonso-antunes
added a commit
to afonso-antunes/pandas
that referenced
this issue
Mar 28, 2025
afonso-antunes
added a commit
to afonso-antunes/pandas
that referenced
this issue
Apr 1, 2025
…urn object type
afonso-antunes
added a commit
to afonso-antunes/pandas
that referenced
this issue
Apr 1, 2025
…urn object type
afonso-antunes
added a commit
to afonso-antunes/pandas
that referenced
this issue
Apr 1, 2025
afonso-antunes
added a commit
to afonso-antunes/pandas
that referenced
this issue
Apr 1, 2025
This was referenced Apr 1, 2025
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
The time index type gets coerced to
object
.Expected Behavior
concat
should maintain the dtype, since all concatenated tables have the same schema.Installed Versions
INSTALLED VERSIONS
commit : d9cdd2e
python : 3.11.7.final.0
python-bits : 64
OS : Linux
OS-release : 6.5.0-28-generic
Version : #29~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Apr 4 14:39:20 UTC 2
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.2
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : 69.5.1
pip : 24.0
Cython : None
pytest : 8.1.1
hypothesis : 6.100.1
sphinx : 7.3.7
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.3
IPython : 8.23.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.3.1
gcsfs : None
matplotlib : 3.8.4
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 16.0.0
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.13.0
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: