You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
For some reason pd.DataFrame.map() function does not work with PyArrow timestamp[ns][pyarrow] type and does not map values.
Expected Behavior
Here is an expected behavior that works with the default pandas type datetime64[ns]:
df = pd.DataFrame({"a": pd.date_range("2018-01-01 00:00:00", "2018-01-07 00:00:00")})
date2pos = {date: i for i, date in enumerate(df['a'])}
df["a"].map(date2pos)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
Name: a, dtype: int64
Installed Versions
INSTALLED VERSIONS
------------------
commit : 0691c5c
python : 3.11.7
python-bits : 64
OS : Linux
OS-release : 5.15.167.4-microsoft-standard-WSL2
Version : #1 SMP Tue Nov 5 00:21:55 UTC 2024
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
For some reason
pd.DataFrame.map()
function does not work with PyArrowtimestamp[ns][pyarrow]
type and does not map values.Expected Behavior
Here is an expected behavior that works with the default pandas type
datetime64[ns]
:Installed Versions
pandas : 2.2.3
numpy : 1.26.3
pytz : 2025.1
dateutil : 2.8.2
pip : 23.2.1
Cython : None
sphinx : None
IPython : 8.20.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2023.12.2
html5lib : None
hypothesis : None
gcsfs : 2023.12.2post1
jinja2 : 3.1.3
lxml.etree : None
matplotlib : 3.8.2
numba : 0.60.0
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 14.0.2
pyreadstat : None
pytest : 7.4.4
python-calamine : None
pyxlsb : None
s3fs : 2023.12.2
scipy : 1.12.0
sqlalchemy : 2.0.29
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2023.4
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: