-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolynomial.py
47 lines (38 loc) · 1.12 KB
/
polynomial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
def padded_size(L):
return 2**int(np.ceil(np.log2(L)))
def convolve(a, b):
"""Equivalent to scipy.signal.fftconvolve"""
L = len(a) + len(b) - 1
N = padded_size(L)
return np.fft.ifft(np.fft.fft(a, N)*np.fft.fft(b, N))[:L]
multiply = convolve
def power(p, k):
"""Calculate coefficients for p(x)**k"""
L = k*len(p)-k+1
N = padded_size(L)
return np.fft.ifft(np.fft.fft(p, N)**k)[:L]
def xpower(p, k):
"""Calculate coefficients for p(x**k)"""
L = k*len(p)-k+1
p_xk = np.zeros(L, dtype='int')
p_xk[::k] = p
return p_xk
def from_terms(l):
m = max(l)
p = np.zeros(m+1, dtype='int')
for i in l:
p[i] += 1
return p
def threeSumDuplicate(l):
p = from_terms(l)
return power(p, 3).real.round().astype('int')
def threeSumUnique(l):
p = from_terms(l)
p_x2 = xpower(p, 2)
p_x3 = xpower(p, 3)
ans = power(p, 3) - 3*multiply(p_x2, p) + 2*p_x3
return ans.real.round().astype('int')//6
if __name__ == "__main__":
print(threeSumDuplicate([1,3,4,2,3,1,6,4,8,7,6,8,8]))
print(threeSumUnique([1,3,4,2,3,1,6,4,8,7,6,8,8]))