|
| 1 | +from dash.dependencies import Input, Output |
| 2 | +import dash_core_components as dcc |
| 3 | +import dash_html_components as html |
| 4 | +import pandas as pd |
| 5 | +from textwrap import dedent |
| 6 | + |
| 7 | +import dash_table |
| 8 | +from index import app |
| 9 | + |
| 10 | +ID_PREFIX = "app_dataframe_updating_graph" |
| 11 | +IDS = {"table": ID_PREFIX, "container": "{}-container".format(ID_PREFIX)} |
| 12 | +df = pd.read_csv("./datasets/gapminder.csv") |
| 13 | +df = df[df["year"] == 2007] |
| 14 | + |
| 15 | + |
| 16 | +def layout(): |
| 17 | + return html.Div( |
| 18 | + [ |
| 19 | + html.Div( |
| 20 | + dash_table.Table( |
| 21 | + id=IDS["table"], |
| 22 | + columns=[ |
| 23 | + {"name": i, "id": i, "deletable": True} for i in df.columns |
| 24 | + ], |
| 25 | + dataframe=df.to_dict("rows"), |
| 26 | + editable=True, |
| 27 | + filtering=True, |
| 28 | + sorting=True, |
| 29 | + sorting_type="multi", |
| 30 | + row_selectable="multi", |
| 31 | + row_deletable=True, |
| 32 | + selected_rows=[], |
| 33 | + derived_viewport_indices=[], |
| 34 | + n_fixed_rows=1, |
| 35 | + ), |
| 36 | + style={"height": 300, "overflowY": "scroll"}, |
| 37 | + ), |
| 38 | + html.Div(id=IDS["container"]), |
| 39 | + dcc.Markdown( |
| 40 | + dedent( |
| 41 | + """ |
| 42 | + *** |
| 43 | +
|
| 44 | + `Table` includes several features for modifying and transforming the |
| 45 | + view of the data. These include: |
| 46 | +
|
| 47 | + - Sorting by column (`sorting=True`) |
| 48 | + - Filtering by column (`filtering=True`) |
| 49 | + - Editing the cells (`editable=True`) |
| 50 | + - Deleting rows (`row_deletable=True`) |
| 51 | + - Deleting columns (`columns[i].deletable=True`) |
| 52 | + - Selecting rows (`row_selectable='single' | 'multi'`) |
| 53 | +
|
| 54 | + > A quick note on filtering. We have defined our own |
| 55 | + > syntax for performing filtering operations. Here are some |
| 56 | + > examples for this particular dataset: |
| 57 | + > - `lt num(50)` in the `lifeExp` column |
| 58 | + > - `eq "Canada"` in the `country` column |
| 59 | +
|
| 60 | + By default, these transformations are done clientside. |
| 61 | + Your Dash callbacks can respond to these modifications |
| 62 | + by listening to the `dataframe` property as an `Input`. |
| 63 | +
|
| 64 | + Note that if `dataframe` is an `Input` then the entire |
| 65 | + `dataframe` will be passed over the network: if your dataframe is |
| 66 | + large, then this will become slow. For large dataframes, you have |
| 67 | + two options: |
| 68 | + - Use `dataframe_indicies` instead |
| 69 | + - Perform the sorting or filtering in Python instead |
| 70 | +
|
| 71 | + Issues with this example: |
| 72 | + - Row selection callbacks don't work yet: `derived_viewport_indices` |
| 73 | + isn't getting updated on row selection and `selected_rows` doesn't |
| 74 | + track the underlying data (e.g. it will always be [1, 3] even after sorting or filtering) |
| 75 | + """ |
| 76 | + ) |
| 77 | + ), |
| 78 | + ] |
| 79 | + ) |
| 80 | + |
| 81 | + |
| 82 | +@app.callback( |
| 83 | + Output(IDS["container"], "children"), |
| 84 | + [ |
| 85 | + Input(IDS["table"], "derived_virtual_dataframe"), |
| 86 | + Input(IDS["table"], "selected_rows"), |
| 87 | + ], |
| 88 | +) |
| 89 | +def update_graph(rows, selected_rows): |
| 90 | + # When the table is first rendered, `derived_virtual_dataframe` |
| 91 | + # will be `None`. This is due to an idiosyncracy in Dash |
| 92 | + # (unsupplied properties are always None and Dash calls the dependent |
| 93 | + # callbacks when the component is first rendered). |
| 94 | + # So, if `selected_rows` is `None`, then the component was just rendered |
| 95 | + # and its value will be the same as the component's dataframe. |
| 96 | + # Instead of setting `None` in here, you could also set |
| 97 | + # `derived_virtual_dataframe=df.to_rows('dict')` when you initialize |
| 98 | + # the component. |
| 99 | + if rows is None: |
| 100 | + dff = df |
| 101 | + else: |
| 102 | + dff = pd.DataFrame(rows) |
| 103 | + |
| 104 | + colors = [] |
| 105 | + for i in range(len(dff)): |
| 106 | + if i in selected_rows: |
| 107 | + colors.append("#7FDBFF") |
| 108 | + else: |
| 109 | + colors.append("#0074D9") |
| 110 | + |
| 111 | + return html.Div( |
| 112 | + [ |
| 113 | + dcc.Graph( |
| 114 | + id=column, |
| 115 | + figure={ |
| 116 | + "data": [ |
| 117 | + { |
| 118 | + "x": dff["country"], |
| 119 | + # check if column exists - user may have deleted it |
| 120 | + # If `column.deletable=False`, then you don't |
| 121 | + # need to do this check. |
| 122 | + "y": dff[column] if column in dff else [], |
| 123 | + "type": "bar", |
| 124 | + "marker": {"color": colors}, |
| 125 | + } |
| 126 | + ], |
| 127 | + "layout": { |
| 128 | + "xaxis": {"automargin": True}, |
| 129 | + "yaxis": {"automargin": True}, |
| 130 | + "height": 250, |
| 131 | + "margin": {"t": 10, "l": 10, "r": 10}, |
| 132 | + }, |
| 133 | + }, |
| 134 | + ) |
| 135 | + for column in ["pop", "lifeExp", "gdpPercap"] |
| 136 | + ] |
| 137 | + ) |
0 commit comments