jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Cufflinks is a third-party wrapper library around Plotly, maintained by Santos Jorge.
When you import cufflinks, all Pandas data frames and series objects have a new method attached to them called .iplot()
which has a similar API to Pandas' built-in .plot()
method.
By passing the asFigure=True
argument to .iplot()
, Cufflinks works similarly to Plotly Express, by returning customizable go.Figure
objects which are compatible with Dash's dcc.Graph
component. Cufflinks also adds a .figure()
method which has the same signature as .iplot()
except that it has asFigure=True
set as the default.
This page shows some high-level examples of how to use Cufflinks, and more examples and documentation are available in the Cufflinks Github repository.
Issues and questions regarding Cufflinks should be raised in the Cufflinks repository.
import cufflinks as cf
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(1000, 2), columns=['A', 'B']).cumsum()
fig = df.iplot(asFigure=True, xTitle="The X Axis",
yTitle="The Y Axis", title="The Figure Title")
fig.show()
Cufflinks has a datagen
module for generating demo data.
import cufflinks as cf
df = cf.datagen.lines()
fig = df.iplot(asFigure=True)
fig.show()
df.head()
import cufflinks as cf
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(1000, 2), columns=['A', 'B']).cumsum()
fig = df.iplot(asFigure=True, x='A', y='B', mode='markers')
fig.show()
import cufflinks as cf
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 4), columns=['A', 'B', 'C', 'D'])
fig = df.iplot(asFigure=True, kind="bar")
fig.show()
import cufflinks as cf
import pandas as pd
df = pd.DataFrame({'a': np.random.randn(1000) + 1,
'b': np.random.randn(1000),
'c': np.random.randn(1000) - 1})
fig = df.iplot(asFigure=True, kind="histogram")
fig.show()
import cufflinks as cf
import pandas as pd
df = pd.DataFrame({'a': np.random.randn(1000) + 1,
'b': np.random.randn(1000),
'c': np.random.randn(1000) - 1})
fig = df.iplot(asFigure=True, kind="box")
fig.show()
import cufflinks as cf
df=cf.datagen.lines(4)
fig = df.iplot(asFigure=True, subplots=True, shape=(4,1), shared_xaxes=True, fill=True)
fig.show()
import cufflinks as cf
df=cf.datagen.lines(4)
fig = df.iplot(asFigure=True, subplots=True, subplot_titles=True, legend=False)
fig.show()
import cufflinks as cf
df=cf.datagen.lines(4)
fig = df.iplot(asFigure=True, hline=[2,4], vline=['2015-02-10'])
fig.show()
import cufflinks as cf
df=cf.datagen.lines(4)
fig = df.iplot(asFigure=True, hspan=[(-1,1),(2,5)])
fig.show()
import cufflinks as cf
df=cf.datagen.lines(4)
fig = df.iplot(asFigure=True,
vspan={'x0':'2015-02-15','x1':'2015-03-15',
'color':'rgba(30,30,30,0.3)','fill':True,'opacity':.4})
fig.show()
More documentation and examples for Cufflinks can be found in its Github repository.