diff --git a/doc/python/2D-Histogram.md b/doc/python/2D-Histogram.md
index ecaf3ae26d3..864ddd85c65 100644
--- a/doc/python/2D-Histogram.md
+++ b/doc/python/2D-Histogram.md
@@ -71,7 +71,7 @@ fig = go.Figure(go.Histogram2d(x=x, y=y, histnorm='probability',
fig.show()
```
### Sharing bin settings between 2D Histograms
-This example shows how to use [bingroup](https://plot.ly/python/reference/#histogram-bingroup) attribute to have a compatible bin settings for both histograms. To define `start`, `end` and `size` value of x-axis and y-axis seperatly, set [ybins](https://plot.ly/python/reference/#histogram2dcontour-ybins) and `xbins`.
+This example shows how to use [bingroup](https://plotly.com/python/reference/#histogram-bingroup) attribute to have a compatible bin settings for both histograms. To define `start`, `end` and `size` value of x-axis and y-axis seperatly, set [ybins](https://plotly.com/python/reference/#histogram2dcontour-ybins) and `xbins`.
```python
import plotly.graph_objects as go
@@ -170,4 +170,4 @@ fig.show()
```
#### Reference
-See https://plot.ly/python/reference/#histogram2d for more information and chart attribute options!
+See https://plotly.com/python/reference/#histogram2d for more information and chart attribute options!
diff --git a/doc/python/2d-histogram-contour.md b/doc/python/2d-histogram-contour.md
index 395e134c958..e159ab33597 100644
--- a/doc/python/2d-histogram-contour.md
+++ b/doc/python/2d-histogram-contour.md
@@ -185,4 +185,4 @@ fig.show()
```
#### Reference
-See https://plot.ly/python/reference/#histogram2dcontour for more information and chart attribute options!
+See https://plotly.com/python/reference/#histogram2dcontour for more information and chart attribute options!
diff --git a/doc/python/3d-axes.md b/doc/python/3d-axes.md
index eb23c01f65c..ee8aa79f7b9 100644
--- a/doc/python/3d-axes.md
+++ b/doc/python/3d-axes.md
@@ -39,7 +39,7 @@ jupyter:
attributes such as `xaxis`, `yaxis` and `zaxis` parameters, in order to
set the range, title, ticks, color etc. of the axes.
-For creating 3D charts, see [this page](https://plot.ly/python/3d-charts/).
+For creating 3D charts, see [this page](https://plotly.com/python/3d-charts/).
```python
import plotly.graph_objects as go
diff --git a/doc/python/3d-bubble-charts.md b/doc/python/3d-bubble-charts.md
index 861551a9e1a..f0848562980 100644
--- a/doc/python/3d-bubble-charts.md
+++ b/doc/python/3d-bubble-charts.md
@@ -108,7 +108,7 @@ fig = go.Figure(data=go.Scatter3d(
mode = 'markers',
marker = dict(
sizemode = 'diameter',
- sizeref = 750, # info on sizeref: https://plot.ly/python/reference/#scatter-marker-sizeref
+ sizeref = 750, # info on sizeref: https://plotly.com/python/reference/#scatter-marker-sizeref
size = planet_diameter,
color = planet_colors,
)
@@ -147,7 +147,7 @@ fig = go.Figure(go.Scatter3d(
mode = 'markers',
marker = dict(
sizemode = 'diameter',
- sizeref = 750, # info on sizeref: https://plot.ly/python/reference/#scatter-marker-sizeref
+ sizeref = 750, # info on sizeref: https://plotly.com/python/reference/#scatter-marker-sizeref
size = planet_diameter,
color = temperatures,
colorbar_title = 'Mean
Temperature',
@@ -167,4 +167,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#scatter3d and https://plot.ly/python/reference/#scatter-marker-sizeref
for more information and chart attribute options!
+See https://plotly.com/python/reference/#scatter3d and https://plotly.com/python/reference/#scatter-marker-sizeref
for more information and chart attribute options!
diff --git a/doc/python/3d-camera-controls.md b/doc/python/3d-camera-controls.md
index e847361a6d4..2bba80fa814 100644
--- a/doc/python/3d-camera-controls.md
+++ b/doc/python/3d-camera-controls.md
@@ -290,4 +290,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#layout-scene-camera for more information and chart attribute options!
+See https://plotly.com/python/reference/#layout-scene-camera for more information and chart attribute options!
diff --git a/doc/python/3d-isosurface-plots.md b/doc/python/3d-isosurface-plots.md
index 87cdc446951..2b444353f2e 100644
--- a/doc/python/3d-isosurface-plots.md
+++ b/doc/python/3d-isosurface-plots.md
@@ -235,5 +235,5 @@ fig.show()
```
#### Reference
-See https://plot.ly/python/reference/#isosurface for more information and chart attribute options!
+See https://plotly.com/python/reference/#isosurface for more information and chart attribute options!
diff --git a/doc/python/3d-line-plots.md b/doc/python/3d-line-plots.md
index 0861b9760a4..f49992f785a 100644
--- a/doc/python/3d-line-plots.md
+++ b/doc/python/3d-line-plots.md
@@ -120,4 +120,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#scatter3d-marker-line for more information and chart attribute options!
+See https://plotly.com/python/reference/#scatter3d-marker-line for more information and chart attribute options!
diff --git a/doc/python/3d-mesh.md b/doc/python/3d-mesh.md
index 24ce40317d4..d180df26fe6 100644
--- a/doc/python/3d-mesh.md
+++ b/doc/python/3d-mesh.md
@@ -163,4 +163,4 @@ fig.show()
```
## Reference
-See https://plot.ly/python/reference/#mesh3d for more information and chart attribute options!
+See https://plotly.com/python/reference/#mesh3d for more information and chart attribute options!
diff --git a/doc/python/3d-scatter-plots.md b/doc/python/3d-scatter-plots.md
index e102cac7fe4..eedc437f719 100644
--- a/doc/python/3d-scatter-plots.md
+++ b/doc/python/3d-scatter-plots.md
@@ -37,7 +37,7 @@ jupyter:
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/).
-Like the [2D scatter plot](https://plot.ly/python/line-and-scatter/) `px.scatter`, the 3D function `px.scatter_3d` plots individual data in three-dimensional space.
+Like the [2D scatter plot](https://plotly.com/python/line-and-scatter/) `px.scatter`, the 3D function `px.scatter_3d` plots individual data in three-dimensional space.
```python
import plotly.express as px
@@ -77,7 +77,7 @@ fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
#### Basic 3D Scatter Plot
If Plotly Express does not provide a good starting point, it is also possible to use the more generic `go.Scatter3D` from `plotly.graph_objs`.
-Like the [2D scatter plot](https://plot.ly/python/line-and-scatter/) `go.Scatter`, `go.Scatter3d` plots individual data in three-dimensional space.
+Like the [2D scatter plot](https://plotly.com/python/line-and-scatter/) `go.Scatter`, `go.Scatter3d` plots individual data in three-dimensional space.
```python
import plotly.graph_objects as go
@@ -122,7 +122,7 @@ fig.show()
### Dash App
-[Dash](https://plot.ly/products/dash/) is an Open Source Python library which can help you convert plotly figures into a reactive, web-based application. Below is a simple example of a dashboard created using Dash. Its [source code](https://github.com/plotly/simple-example-chart-apps/tree/master/dash-3dscatterplot) can easily be deployed to a PaaS.
+[Dash](https://plotly.com/products/dash/) is an Open Source Python library which can help you convert plotly figures into a reactive, web-based application. Below is a simple example of a dashboard created using Dash. Its [source code](https://github.com/plotly/simple-example-chart-apps/tree/master/dash-3dscatterplot) can easily be deployed to a PaaS.
```python
from IPython.display import IFrame
@@ -136,4 +136,4 @@ IFrame(src= "https://dash-simple-apps.plotly.host/dash-3dscatterplot/code", widt
#### Reference
-See https://plot.ly/python/reference/#scatter3d for more information and chart attribute options!
+See https://plotly.com/python/reference/#scatter3d for more information and chart attribute options!
diff --git a/doc/python/3d-subplots.md b/doc/python/3d-subplots.md
index ba48768c252..a5b09729316 100644
--- a/doc/python/3d-subplots.md
+++ b/doc/python/3d-subplots.md
@@ -82,4 +82,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/subplots/ for more information regarding subplots!
+See https://plotly.com/python/subplots/ for more information regarding subplots!
diff --git a/doc/python/3d-surface-coloring.md b/doc/python/3d-surface-coloring.md
index 36ad5b8739b..c8c2355c46f 100644
--- a/doc/python/3d-surface-coloring.md
+++ b/doc/python/3d-surface-coloring.md
@@ -60,5 +60,5 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#surface-surfacecolor for more information!
+See https://plotly.com/python/reference/#surface-surfacecolor for more information!
diff --git a/doc/python/3d-surface-plots.md b/doc/python/3d-surface-plots.md
index 3f7be394df3..7c407f2ca99 100644
--- a/doc/python/3d-surface-plots.md
+++ b/doc/python/3d-surface-plots.md
@@ -76,7 +76,7 @@ fig.show()
#### Surface Plot With Contours
-Display and customize contour data for each axis using the `contours` attribute ([reference](plot.ly/python/reference/#surface-contours)).
+Display and customize contour data for each axis using the `contours` attribute ([reference](plotly.com/python/reference/#surface-contours)).
```python
import plotly.graph_objects as go
@@ -98,7 +98,7 @@ fig.update_layout(title='Mt Bruno Elevation', autosize=False,
fig.show()
```
#### Configure Surface Contour Levels
-This example shows how to slice the surface graph on the desired position for each of x, y and z axis. [contours.x.start](https://plot.ly/python/reference/#surface-contours-x-start) sets the starting contour level value, `end` sets the end of it, and `size` sets the step between each contour level.
+This example shows how to slice the surface graph on the desired position for each of x, y and z axis. [contours.x.start](https://plotly.com/python/reference/#surface-contours-x-start) sets the starting contour level value, `end` sets the end of it, and `size` sets the step between each contour level.
```python
import plotly.graph_objects as go
@@ -166,4 +166,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#surface for more information!
+See https://plotly.com/python/reference/#surface for more information!
diff --git a/doc/python/3d-volume.md b/doc/python/3d-volume.md
index 21094aab6ed..1609deeb113 100644
--- a/doc/python/3d-volume.md
+++ b/doc/python/3d-volume.md
@@ -190,7 +190,7 @@ fig = go.Figure(data=go.Volume(
))
# Change camera view for a better view of the sides, XZ plane
-# (see https://plot.ly/python/v3/3d-camera-controls/)
+# (see https://plotly.com/python/v3/3d-camera-controls/)
fig.update_layout(scene_camera = dict(
up=dict(x=0, y=0, z=1),
center=dict(x=0, y=0, z=0),
@@ -254,7 +254,7 @@ fig.show()
```
#### Reference
-See https://plot.ly/python/reference/#volume for more information and chart attribute options!
+See https://plotly.com/python/reference/#volume for more information and chart attribute options!
#### See also
[3D isosurface documentation](/python/3d-isosurface-plots/)
diff --git a/doc/python/aggregations.md b/doc/python/aggregations.md
index 7a3ec5d69ae..ccd0aeb36a8 100644
--- a/doc/python/aggregations.md
+++ b/doc/python/aggregations.md
@@ -142,7 +142,7 @@ import plotly.io as pio
import pandas as pd
-df = pd.read_csv("https://plot.ly/~public.health/17.csv")
+df = pd.read_csv("https://plotly.com/~public.health/17.csv")
data = [dict(
x = df['date'],
@@ -270,4 +270,4 @@ pio.show(fig_dict, validate=False)
```
#### Reference
-See https://plot.ly/python/reference/ for more information and chart attribute options!
+See https://plotly.com/python/reference/ for more information and chart attribute options!
diff --git a/doc/python/animations.md b/doc/python/animations.md
index bf8e21dd230..ed97e36e376 100644
--- a/doc/python/animations.md
+++ b/doc/python/animations.md
@@ -63,7 +63,7 @@ Along with `data` and `layout`, `frames` can be added as a key in a figure objec
#### Adding Control Buttons to Animations
-You can add play and pause buttons to control your animated charts by adding an `updatemenus` array to the `layout` of your `figure`. More information on style and placement of the buttons is available in Plotly's [`updatemenus` reference](https://plot.ly/python/reference/#layout-updatemenus).
+You can add play and pause buttons to control your animated charts by adding an `updatemenus` array to the `layout` of your `figure`. More information on style and placement of the buttons is available in Plotly's [`updatemenus` reference](https://plotly.com/python/reference/#layout-updatemenus).
The buttons are defined as follows:
@@ -389,5 +389,5 @@ fig.show()
#### Reference
-For additional information and attributes for creating bubble charts in Plotly see: https://plot.ly/python/bubble-charts/.
-For more documentation on creating animations with Plotly, see https://plot.ly/python/#animations.
+For additional information and attributes for creating bubble charts in Plotly see: https://plotly.com/python/bubble-charts/.
+For more documentation on creating animations with Plotly, see https://plotly.com/python/#animations.
diff --git a/doc/python/annotated-heatmap.md b/doc/python/annotated-heatmap.md
index 9a4a1312a98..4cb13541f7e 100644
--- a/doc/python/annotated-heatmap.md
+++ b/doc/python/annotated-heatmap.md
@@ -202,7 +202,7 @@ fig.show()
```
#### Reference
-For more info on Plotly heatmaps, see: https://plot.ly/python/reference/#heatmap.
For more info on using colorscales with Plotly see: https://plot.ly/python/heatmap-and-contour-colorscales/
For more info on annotated_heatmaps, see:
+For more info on Plotly heatmaps, see: https://plotly.com/python/reference/#heatmap.
For more info on using colorscales with Plotly see: https://plotly.com/python/heatmap-and-contour-colorscales/
For more info on annotated_heatmaps, see:
```python
help(ff.create_annotated_heatmap)
diff --git a/doc/python/axes.md b/doc/python/axes.md
index cdab606651e..9633b0a9530 100644
--- a/doc/python/axes.md
+++ b/doc/python/axes.md
@@ -477,7 +477,7 @@ fig.show()
### Set axis title position
-This example sets `standoff` attribute to cartesian axes to determine the distance between the tick labels and the axis title. Note that the axis title position is always constrained within the margins, so the actual standoff distance is always less than the set or default value. By default [automargin](https://plot.ly/python/setting-graph-size/#automatically-adjust-margins) is `True` in Plotly template for the cartesian axis, so the margins will be pushed to fit the axis title at given standoff distance.
+This example sets `standoff` attribute to cartesian axes to determine the distance between the tick labels and the axis title. Note that the axis title position is always constrained within the margins, so the actual standoff distance is always less than the set or default value. By default [automargin](https://plotly.com/python/setting-graph-size/#automatically-adjust-margins) is `True` in Plotly template for the cartesian axis, so the margins will be pushed to fit the axis title at given standoff distance.
```python
import plotly.graph_objects as go
@@ -743,7 +743,7 @@ fig.show()
#### Synchronizing axes in subplots with `matches`
-Using `facet_col` from `plotly.express` let [zoom](https://help.plot.ly/zoom-pan-hover-controls/#step-3-zoom-in-and-zoom-out-autoscale-the-plot) and [pan](https://help.plot.ly/zoom-pan-hover-controls/#step-6-pan-along-axes) each facet to the same range implicitly. However, if the subplots are created with `make_subplots`, the axis needs to be updated with `matches` parameter to update all the subplots accordingly.
+Using `facet_col` from `plotly.express` let [zoom](https://help.plotly.com/zoom-pan-hover-controls/#step-3-zoom-in-and-zoom-out-autoscale-the-plot) and [pan](https://help.plotly.com/zoom-pan-hover-controls/#step-6-pan-along-axes) each facet to the same range implicitly. However, if the subplots are created with `make_subplots`, the axis needs to be updated with `matches` parameter to update all the subplots accordingly.
Zoom in one trace below, to see the other subplots zoomed to the same x-axis range. To pan all the subplots, click and drag from the center of x-axis to the side:
@@ -764,4 +764,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#layout-xaxis and https://plot.ly/python/reference/#layout-yaxis for more information and chart attribute options!
+See https://plotly.com/python/reference/#layout-xaxis and https://plotly.com/python/reference/#layout-yaxis for more information and chart attribute options!
diff --git a/doc/python/bar-charts.md b/doc/python/bar-charts.md
index ec2353d92bb..c137c0b213c 100644
--- a/doc/python/bar-charts.md
+++ b/doc/python/bar-charts.md
@@ -336,7 +336,7 @@ fig.show()
### Bar Chart with Sorted or Ordered Categories
-Set `categoryorder` to `"category ascending"` or `"category descending"` for the alphanumerical order of the category names or `"total ascending"` or `"total descending"` for numerical order of values. [categoryorder](https://plot.ly/python/reference/#layout-xaxis-categoryorder) for more information. Note that sorting the bars by a particular trace isn't possible right now - it's only possible to sort by the total values. Of course, you can always sort your data _before_ plotting it if you need more customization.
+Set `categoryorder` to `"category ascending"` or `"category descending"` for the alphanumerical order of the category names or `"total ascending"` or `"total descending"` for numerical order of values. [categoryorder](https://plotly.com/python/reference/#layout-xaxis-categoryorder) for more information. Note that sorting the bars by a particular trace isn't possible right now - it's only possible to sort by the total values. Of course, you can always sort your data _before_ plotting it if you need more customization.
This example orders the bar chart alphabetically with `categoryorder: 'category ascending'`
@@ -382,8 +382,8 @@ fig.show()
### Horizontal Bar Charts
-See examples of horizontal bar charts [here](https://plot.ly/python/horizontal-bar-charts/).
+See examples of horizontal bar charts [here](https://plotly.com/python/horizontal-bar-charts/).
### Reference
-See https://plot.ly/python/reference/#bar for more information and chart attribute options!
+See https://plotly.com/python/reference/#bar for more information and chart attribute options!
diff --git a/doc/python/box-plots.md b/doc/python/box-plots.md
index 20e6eca52e5..55952b6727c 100644
--- a/doc/python/box-plots.md
+++ b/doc/python/box-plots.md
@@ -36,7 +36,7 @@ jupyter:
thumbnail: thumbnail/box.jpg
---
-A [box plot](https://en.wikipedia.org/wiki/Box_plot) is a statistical representation of numerical data through their quartiles. The ends of the box represent the lower and upper quartiles, while the median (second quartile) is marked by a line inside the box. For other statistical representations of numerical data, see [other statistical charts](https://plot.ly/python/statistical-charts/).
+A [box plot](https://en.wikipedia.org/wiki/Box_plot) is a statistical representation of numerical data through their quartiles. The ends of the box represent the lower and upper quartiles, while the median (second quartile) is marked by a line inside the box. For other statistical representations of numerical data, see [other statistical charts](https://plotly.com/python/statistical-charts/).
## Box Plot with `plotly.express`
@@ -134,7 +134,7 @@ fig.show()
## Box plot with go.Box
-If Plotly Express does not provide a good starting point, it is also possible to use the more generic `go.Box` function from `plotly.graph_objects`. All available options for `go.Box` are described in the reference page https://plot.ly/python/reference/#box.
+If Plotly Express does not provide a good starting point, it is also possible to use the more generic `go.Box` function from `plotly.graph_objects`. All available options for `go.Box` are described in the reference page https://plotly.com/python/reference/#box.
### Basic Box Plot
@@ -491,4 +491,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#box for more information and chart attribute options!
+See https://plotly.com/python/reference/#box for more information and chart attribute options!
diff --git a/doc/python/bubble-charts.md b/doc/python/bubble-charts.md
index 4018c782b7d..348825851da 100644
--- a/doc/python/bubble-charts.md
+++ b/doc/python/bubble-charts.md
@@ -36,7 +36,7 @@ jupyter:
## Bubble chart with plotly.express
-A [bubble chart](https://en.wikipedia.org/wiki/Bubble_chart) is a scatter plot in which a third dimension of the data is shown through the size of markers. For other types of scatter plot, see the [line and scatter page](https://plot.ly/python/line-and-scatter/).
+A [bubble chart](https://en.wikipedia.org/wiki/Bubble_chart) is a scatter plot in which a third dimension of the data is shown through the size of markers. For other types of scatter plot, see the [line and scatter page](https://plotly.com/python/line-and-scatter/).
We first show a bubble chart example using Plotly Express. [Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/). The size of markers is set from the dataframe column given as the `size` parameter.
@@ -52,7 +52,7 @@ fig.show()
## Bubble Chart with plotly.graph_objects
-If Plotly Express does not provide a good starting point, it is also possible to use the more generic `go.Scatter` from `plotly.graph_objects`, and define the size of markers to create a bubble chart. All of the available options are described in the scatter section of the reference page: https://plot.ly/python/reference#scatter.
+If Plotly Express does not provide a good starting point, it is also possible to use the more generic `go.Scatter` from `plotly.graph_objects`, and define the size of markers to create a bubble chart. All of the available options are described in the scatter section of the reference page: https://plotly.com/python/reference#scatter.
### Simple Bubble Chart
@@ -91,8 +91,8 @@ fig.show()
To scale the bubble size, use the attribute `sizeref`. We recommend using the following formula to calculate a `sizeref` value:
`sizeref = 2. * max(array of size values) / (desired maximum marker size ** 2)`
-Note that setting 'sizeref' to a value greater than 1, decreases the rendered marker sizes, while setting 'sizeref' to less than 1, increases the rendered marker sizes. See https://plot.ly/python/reference/#scatter-marker-sizeref for more information.
-Additionally, we recommend setting the sizemode attribute: https://plot.ly/python/reference/#scatter-marker-sizemode to area.
+Note that setting 'sizeref' to a value greater than 1, decreases the rendered marker sizes, while setting 'sizeref' to less than 1, increases the rendered marker sizes. See https://plotly.com/python/reference/#scatter-marker-sizeref for more information.
+Additionally, we recommend setting the sizemode attribute: https://plotly.com/python/reference/#scatter-marker-sizemode to area.
```python
import plotly.graph_objects as go
@@ -222,4 +222,4 @@ fig.show()
### Reference
-See https://plot.ly/python/reference/#scatter for more information and chart attribute options!
+See https://plotly.com/python/reference/#scatter for more information and chart attribute options!
diff --git a/doc/python/bubble-maps.md b/doc/python/bubble-maps.md
index 90aa3a61afe..d9c1b78a20f 100644
--- a/doc/python/bubble-maps.md
+++ b/doc/python/bubble-maps.md
@@ -74,7 +74,7 @@ To scale the bubble size, use the attribute sizeref. We recommend using the foll
Note that setting `sizeref` to a value greater than $1$, decreases the rendered marker sizes, while setting `sizeref` to less than $1$, increases the rendered marker sizes.
-See https://plot.ly/python/reference/#scatter-marker-sizeref for more information. Additionally, we recommend setting the sizemode attribute: https://plot.ly/python/reference/#scatter-marker-sizemode to area.
+See https://plotly.com/python/reference/#scatter-marker-sizeref for more information. Additionally, we recommend setting the sizemode attribute: https://plotly.com/python/reference/#scatter-marker-sizemode to area.
```python
import plotly.graph_objects as go
@@ -208,4 +208,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#choropleth and https://plot.ly/python/reference/#scattergeo for more information and chart attribute options!
+See https://plotly.com/python/reference/#choropleth and https://plotly.com/python/reference/#scattergeo for more information and chart attribute options!
diff --git a/doc/python/bullet-charts.md b/doc/python/bullet-charts.md
index ff2297df4b6..c8ca69af844 100644
--- a/doc/python/bullet-charts.md
+++ b/doc/python/bullet-charts.md
@@ -34,8 +34,8 @@ jupyter:
---
#### Basic Bullet Charts
-Stephen Few's Bullet Chart was invented to replace dashboard [gauges](https://plot.ly/python/gauge-charts/) and meters, combining both types of charts into simple bar charts with qualitative bars (steps), quantitative bar (bar) and performance line (threshold); all into one simple layout.
- Steps typically are broken into several values, which are defined with an array. The bar represent the actual value that a particular variable reached, and the threshold usually indicate a goal point relative to the value achieved by the bar. See [indicator page](https://plot.ly/python/gauge-charts/) for more detail.
+Stephen Few's Bullet Chart was invented to replace dashboard [gauges](https://plotly.com/python/gauge-charts/) and meters, combining both types of charts into simple bar charts with qualitative bars (steps), quantitative bar (bar) and performance line (threshold); all into one simple layout.
+ Steps typically are broken into several values, which are defined with an array. The bar represent the actual value that a particular variable reached, and the threshold usually indicate a goal point relative to the value achieved by the bar. See [indicator page](https://plotly.com/python/gauge-charts/) for more detail.
```python
import plotly.graph_objects as go
@@ -78,7 +78,7 @@ fig.show()
```
#### Custom Bullet
-The following example shows how to customize your charts. For more information about all possible options check our [reference page](https://plot.ly/python/reference/#indicator).
+The following example shows how to customize your charts. For more information about all possible options check our [reference page](https://plotly.com/python/reference/#indicator).
```python
import plotly.graph_objects as go
@@ -167,7 +167,7 @@ fig.show()
```
#### Reference
-See https://plot.ly/python/reference/#indicator for more information and chart attribute options!
+See https://plotly.com/python/reference/#indicator for more information and chart attribute options!
```python
diff --git a/doc/python/candlestick-charts.md b/doc/python/candlestick-charts.md
index eeec1a0c311..4f8c48960f2 100644
--- a/doc/python/candlestick-charts.md
+++ b/doc/python/candlestick-charts.md
@@ -144,4 +144,4 @@ fig.show()
```
#### Reference
-For more information on candlestick attributes, see: https://plot.ly/python/reference/#candlestick
+For more information on candlestick attributes, see: https://plotly.com/python/reference/#candlestick
diff --git a/doc/python/carpet-contour.md b/doc/python/carpet-contour.md
index 47cf84347f0..720eb2eadc1 100644
--- a/doc/python/carpet-contour.md
+++ b/doc/python/carpet-contour.md
@@ -37,7 +37,7 @@ jupyter:
### Basic Carpet Plot
-Set the `x` and `y` coorindates, using `x` and `y` attributes. If `x` coorindate values are ommitted a cheater plot will be created. To save parameter values use `a` and `b` attributes. To make changes to the axes, use `aaxis` or `baxis` attributes. For a more detailed list of axes attributes refer to [python reference](https://plot.ly/python/reference/#carpet-aaxis).
+Set the `x` and `y` coorindates, using `x` and `y` attributes. If `x` coorindate values are ommitted a cheater plot will be created. To save parameter values use `a` and `b` attributes. To make changes to the axes, use `aaxis` or `baxis` attributes. For a more detailed list of axes attributes refer to [python reference](https://plotly.com/python/reference/#carpet-aaxis).
```python
import plotly.graph_objects as go
@@ -286,4 +286,4 @@ fig.show()
### Reference
-See https://plot.ly/python/reference/#contourcarpet for more information and chart attribute options!
+See https://plotly.com/python/reference/#contourcarpet for more information and chart attribute options!
diff --git a/doc/python/carpet-plot.md b/doc/python/carpet-plot.md
index f4f0db30197..5820da84198 100644
--- a/doc/python/carpet-plot.md
+++ b/doc/python/carpet-plot.md
@@ -70,7 +70,7 @@ fig.show()
### Add A and B axis
-Use `aaxis` or `baxis` list to make changes to the axes. For a more detailed list of attributes refer to [R reference](https://plot.ly/r/reference/#carpet-aaxis).
+Use `aaxis` or `baxis` list to make changes to the axes. For a more detailed list of attributes refer to [R reference](https://plotly.com/r/reference/#carpet-aaxis).
```python inputHidden=false outputHidden=false
import plotly.graph_objects as go
@@ -184,9 +184,9 @@ fig.show()
### Add Points and Contours
-To add points and lines see [Carpet Scatter Plots](https://plot.ly/python/carpet-scatter) or to add contours see [Carpet Contour Plots](https://plot.ly/python/carpet-contour)
+To add points and lines see [Carpet Scatter Plots](https://plotly.com/python/carpet-scatter) or to add contours see [Carpet Contour Plots](https://plotly.com/python/carpet-contour)
### Reference
-See https://plot.ly/python/reference/#carpet for more information and chart attribute options!
+See https://plotly.com/python/reference/#carpet for more information and chart attribute options!
diff --git a/doc/python/carpet-scatter.md b/doc/python/carpet-scatter.md
index a2293608aa2..e771cd5d909 100644
--- a/doc/python/carpet-scatter.md
+++ b/doc/python/carpet-scatter.md
@@ -187,4 +187,4 @@ fig.show()
### Reference
-See https://plot.ly/python/reference/#scattercarpet for more information and chart attribute options!
+See https://plotly.com/python/reference/#scattercarpet for more information and chart attribute options!
diff --git a/doc/python/choropleth-maps.md b/doc/python/choropleth-maps.md
index f71d85dc975..bd3535e2e6e 100644
--- a/doc/python/choropleth-maps.md
+++ b/doc/python/choropleth-maps.md
@@ -348,4 +348,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#choropleth for more information and chart attribute options!
+See https://plotly.com/python/reference/#choropleth for more information and chart attribute options!
diff --git a/doc/python/colorscales.md b/doc/python/colorscales.md
index 918c308557c..4fab915e659 100644
--- a/doc/python/colorscales.md
+++ b/doc/python/colorscales.md
@@ -418,7 +418,7 @@ fig.show()
### Setting the Midpoint of a Diverging Color scale with Graph Objects
-The following example uses the [marker.cmid](https://plot.ly/python/reference/#scatter-marker-cmid) attribute to set the mid-point of the color domain by scaling 'cmin' and/or 'cmax' to be equidistant to this point. It only has impact when [marker.color](https://plot.ly/python/reference/#scattercarpet-marker-line-color) sets to a numerical array, and 'marker.cauto' is `True`.
+The following example uses the [marker.cmid](https://plotly.com/python/reference/#scatter-marker-cmid) attribute to set the mid-point of the color domain by scaling 'cmin' and/or 'cmax' to be equidistant to this point. It only has impact when [marker.color](https://plotly.com/python/reference/#scattercarpet-marker-line-color) sets to a numerical array, and 'marker.cauto' is `True`.
```python
import plotly.graph_objects as go
@@ -432,7 +432,7 @@ fig.add_trace(go.Scatter(
fig.show()
```
-The heatmap chart uses [marker.zmid](https://plot.ly/python/reference/#scatter-marker-zmid) attribute to set the mid-point of the color domain.
+The heatmap chart uses [marker.zmid](https://plotly.com/python/reference/#scatter-marker-zmid) attribute to set the mid-point of the color domain.
```python
import plotly.graph_objects as go
@@ -508,7 +508,7 @@ fig.show()
### Sharing a Color Axis with Graph Objects
-To share colorscale information in multiple subplots, you can use [coloraxis](https://plot.ly/javascript/reference/#scatter-marker-line-coloraxis).
+To share colorscale information in multiple subplots, you can use [coloraxis](https://plotly.com/javascript/reference/#scatter-marker-line-coloraxis).
```python
import plotly.graph_objects as go
@@ -558,4 +558,4 @@ fig.show()
### Reference
-See https://plot.ly/python/reference/ for more information and chart attribute options!
+See https://plotly.com/python/reference/ for more information and chart attribute options!
diff --git a/doc/python/compare-webgl-svg.md b/doc/python/compare-webgl-svg.md
index 022fca807cd..62c50ef2483 100644
--- a/doc/python/compare-webgl-svg.md
+++ b/doc/python/compare-webgl-svg.md
@@ -101,5 +101,5 @@ fig.show()
For more information see
-`Scattergl()` : https://plot.ly/python/reference/#scattergl
-`Scatter()` : https://plot.ly/python/reference/#scatter
+`Scattergl()` : https://plotly.com/python/reference/#scattergl
+`Scatter()` : https://plotly.com/python/reference/#scatter
diff --git a/doc/python/cone-plot.md b/doc/python/cone-plot.md
index 0ffcb4aad71..2169d3f2ae5 100644
--- a/doc/python/cone-plot.md
+++ b/doc/python/cone-plot.md
@@ -127,5 +127,5 @@ fig.show()
```
#### Reference
-See https://plot.ly/python/reference/ for more information and chart attribute options!
+See https://plotly.com/python/reference/ for more information and chart attribute options!
diff --git a/doc/python/contour-plots.md b/doc/python/contour-plots.md
index 5a5608cac95..f662d6ec6fb 100644
--- a/doc/python/contour-plots.md
+++ b/doc/python/contour-plots.md
@@ -339,4 +339,4 @@ fig.show()
```
#### Reference
-See https://plot.ly/python/reference/#contour for more information and chart attribute options!
+See https://plotly.com/python/reference/#contour for more information and chart attribute options!
diff --git a/doc/python/county-choropleth.md b/doc/python/county-choropleth.md
index 904eff8fb9b..01ba4b1c549 100644
--- a/doc/python/county-choropleth.md
+++ b/doc/python/county-choropleth.md
@@ -273,7 +273,7 @@ fig.layout.template = None
fig.show()
```
-Also see Mapbox county choropleths made in Python: [https://plot.ly/python/mapbox-county-choropleth/](https://plot.ly/python/mapbox-county-choropleth/)
+Also see Mapbox county choropleths made in Python: [https://plotly.com/python/mapbox-county-choropleth/](https://plotly.com/python/mapbox-county-choropleth/)
#### Reference
diff --git a/doc/python/creating-and-updating-figures.md b/doc/python/creating-and-updating-figures.md
index 89710a448a9..7e7502fa850 100644
--- a/doc/python/creating-and-updating-figures.md
+++ b/doc/python/creating-and-updating-figures.md
@@ -62,7 +62,7 @@ The value of the top-level `"data"` key is a list of trace specifications. Each
The value of the top-level `"layout"` key is a dictionary that specifies the properties of the figure's layout. In contrast to trace configuration options that apply to individual traces, the layout configuration options apply to the figure as a whole, customizing items like the axes, annotations, shapes, legend, and more.
-The [_Full Reference_](https://plot.ly/python/reference/) page contains descriptions of all of the supported trace and layout options.
+The [_Full Reference_](https://plotly.com/python/reference/) page contains descriptions of all of the supported trace and layout options.
If working from the _Full Reference_ to build figures as Python dictionaries and lists suites your needs, go for it! This is a perfectly valid way to use plotly.py to build figures. On the other hand, if you would like an API that offers a bit more assistance, read on to learn about graph objects.
diff --git a/doc/python/custom-buttons.md b/doc/python/custom-buttons.md
index 09594b8a454..2b329b0f631 100644
--- a/doc/python/custom-buttons.md
+++ b/doc/python/custom-buttons.md
@@ -456,8 +456,8 @@ fig.show()
```
#### Animate Button
-Refer to our animation docs: https://plot.ly/python/#animations for examples on how to use the `animate` method with Plotly buttons.
+Refer to our animation docs: https://plotly.com/python/#animations for examples on how to use the `animate` method with Plotly buttons.
#### Reference
-See https://plot.ly/python/reference/#layout-updatemenus for more information about `updatemenu` buttons.
+See https://plotly.com/python/reference/#layout-updatemenus for more information about `updatemenu` buttons.
diff --git a/doc/python/distplot.md b/doc/python/distplot.md
index b2bedfeffbe..1b3f2256fd2 100644
--- a/doc/python/distplot.md
+++ b/doc/python/distplot.md
@@ -35,7 +35,7 @@ jupyter:
## Combined statistical representations with px.histogram
-Several representations of statistical distributions are available in plotly, such as [histograms](https://plot.ly/python/histograms/), [violin plots](https://plot.ly/python/violin/), [box plots](https://plot.ly/python/box-plots/) (see [the complete list here](https://plot.ly/python/statistical-charts/)). It is also possible to combine several representations in the same plot.
+Several representations of statistical distributions are available in plotly, such as [histograms](https://plotly.com/python/histograms/), [violin plots](https://plotly.com/python/violin/), [box plots](https://plotly.com/python/box-plots/) (see [the complete list here](https://plotly.com/python/statistical-charts/)). It is also possible to combine several representations in the same plot.
For example, the `plotly.express` function `px.histogram` can add a subplot with a different statistical representation than the histogram, given by the parameter `marginal`. [Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/).
diff --git a/doc/python/dot-plots.md b/doc/python/dot-plots.md
index a5aaa6997ee..bb212eb4069 100644
--- a/doc/python/dot-plots.md
+++ b/doc/python/dot-plots.md
@@ -158,4 +158,4 @@ fig.show()
### Reference
-See https://plot.ly/python/reference/#scatter for more information and chart attribute options!
+See https://plotly.com/python/reference/#scatter for more information and chart attribute options!
diff --git a/doc/python/dropdowns.md b/doc/python/dropdowns.md
index ca9a77df2e2..12bf1ad3ba5 100644
--- a/doc/python/dropdowns.md
+++ b/doc/python/dropdowns.md
@@ -34,11 +34,11 @@ jupyter:
---
#### Methods
-The [updatemenu method](https://plot.ly/python/reference/#layout-updatemenus-buttons-method) determines which [plotly.js function](https://plot.ly/javascript/plotlyjs-function-reference/) will be used to modify the chart. There are 4 possible methods:
+The [updatemenu method](https://plotly.com/python/reference/#layout-updatemenus-buttons-method) determines which [plotly.js function](https://plotly.com/javascript/plotlyjs-function-reference/) will be used to modify the chart. There are 4 possible methods:
- `"restyle"`: modify data or data attributes
- `"relayout"`: modify layout attributes
- `"update"`: modify data **and** layout attributes
-- `"animate"`: start or pause an [animation](https://plot.ly/python/#animations)
+- `"animate"`: start or pause an [animation](https://plotly.com/python/#animations)
## Restyle Dropdown
@@ -445,4 +445,4 @@ fig.show()
```
#### Reference
-See https://plot.ly/python/reference/#layout-updatemenus for more information about `updatemenu` dropdowns.
+See https://plotly.com/python/reference/#layout-updatemenus for more information about `updatemenu` dropdowns.
diff --git a/doc/python/error-bars.md b/doc/python/error-bars.md
index 4a3f7dc7539..bd3cf91b6a2 100644
--- a/doc/python/error-bars.md
+++ b/doc/python/error-bars.md
@@ -35,7 +35,7 @@ jupyter:
### Error Bars with Plotly Express
-[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/). For functions representing 2D data points such as [`px.scatter`](https://plot.ly/python/line-and-scatter/), [`px.line`](https://plot.ly/python/line-charts/), [`px.bar`](https://plot.ly/python/bar-charts/) etc., error bars are given as a column name which is the value of the `error_x` (for the error on x position) and `error_y` (for the error on y position).
+[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/). For functions representing 2D data points such as [`px.scatter`](https://plotly.com/python/line-and-scatter/), [`px.line`](https://plotly.com/python/line-charts/), [`px.bar`](https://plotly.com/python/bar-charts/) etc., error bars are given as a column name which is the value of the `error_x` (for the error on x position) and `error_y` (for the error on y position).
```python
import plotly.express as px
@@ -202,4 +202,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#scatter for more information and chart attribute options!
+See https://plotly.com/python/reference/#scatter for more information and chart attribute options!
diff --git a/doc/python/facet-plots.md b/doc/python/facet-plots.md
index 6df50ae549a..5bfd632fae8 100644
--- a/doc/python/facet-plots.md
+++ b/doc/python/facet-plots.md
@@ -103,7 +103,7 @@ fig.show()
### Customize Subplot Figure Titles
-Since subplot figure titles are [annotations](https://plot.ly/python/text-and-annotations/#simple-annotation), you can use the `for_each_annotation` function to customize them.
+Since subplot figure titles are [annotations](https://plotly.com/python/text-and-annotations/#simple-annotation), you can use the `for_each_annotation` function to customize them.
In the following example, we pass a lambda function to `for_each_annotation` in order to change the figure subplot titles from `smoker=No` and `smoker=Yes` to just `No` and `Yes`.
@@ -121,7 +121,7 @@ fig.show()
### Synchronizing axes in subplots with `matches`
-Using `facet_col` from `plotly.express` let [zoom](https://help.plot.ly/zoom-pan-hover-controls/#step-3-zoom-in-and-zoom-out-autoscale-the-plot) and [pan](https://help.plot.ly/zoom-pan-hover-controls/#step-6-pan-along-axes) each facet to the same range implicitly. However, if the subplots are created with `make_subplots`, the axis needs to be updated with `matches` parameter to update all the subplots accordingly.
+Using `facet_col` from `plotly.express` let [zoom](https://help.plotly.com/zoom-pan-hover-controls/#step-3-zoom-in-and-zoom-out-autoscale-the-plot) and [pan](https://help.plotly.com/zoom-pan-hover-controls/#step-6-pan-along-axes) each facet to the same range implicitly. However, if the subplots are created with `make_subplots`, the axis needs to be updated with `matches` parameter to update all the subplots accordingly.
Zoom in one trace below, to see the other subplots zoomed to the same x-axis range. To pan all the subplots, click and drag from the center of x-axis to the side:
diff --git a/doc/python/figure-factory-subplots.md b/doc/python/figure-factory-subplots.md
index 0c34731f249..db946d73b58 100644
--- a/doc/python/figure-factory-subplots.md
+++ b/doc/python/figure-factory-subplots.md
@@ -210,4 +210,4 @@ fig.show()
```
#### Reference
-See https://plot.ly/python/subplots/ for more information on working with subplots. See https://plot.ly/python/reference/ for more information regarding chart attributes!
+See https://plotly.com/python/subplots/ for more information on working with subplots. See https://plotly.com/python/reference/ for more information regarding chart attributes!
diff --git a/doc/python/figure-labels.md b/doc/python/figure-labels.md
index 0d879357bab..38a3ec7f930 100644
--- a/doc/python/figure-labels.md
+++ b/doc/python/figure-labels.md
@@ -69,7 +69,7 @@ fig.show()
The configuration of the legend is discussed in detail in the [Legends](/python/legend/) page.
### Align Plot Title
-The following example shows how to align the plot title in [layout.title](https://plot.ly/python/reference/#layout-title). `x` sets the x position with respect to `xref` from "0" (left) to "1" (right), and `y` sets the y position with respect to `yref` from "0" (bottom) to "1" (top). Moreover, you can define `xanchor` to `left`,`right`, or `center` for setting the title's horizontal alignment with respect to its x position, and/or `yanchor` to `top`, `bottom`, or `middle` for setting the title's vertical alignment with respect to its y position.
+The following example shows how to align the plot title in [layout.title](https://plotly.com/python/reference/#layout-title). `x` sets the x position with respect to `xref` from "0" (left) to "1" (right), and `y` sets the y position with respect to `yref` from "0" (bottom) to "1" (top). Moreover, you can define `xanchor` to `left`,`right`, or `center` for setting the title's horizontal alignment with respect to its x position, and/or `yanchor` to `top`, `bottom`, or `middle` for setting the title's vertical alignment with respect to its y position.
```python
import plotly.graph_objects as go
@@ -90,4 +90,4 @@ fig.show()
```
#### Reference
-See https://plot.ly/python/reference/#layout for more information!
+See https://plotly.com/python/reference/#layout for more information!
diff --git a/doc/python/filled-area-on-mapbox.md b/doc/python/filled-area-on-mapbox.md
index 7b7ebe982a8..979b9afd6de 100644
--- a/doc/python/filled-area-on-mapbox.md
+++ b/doc/python/filled-area-on-mapbox.md
@@ -41,9 +41,9 @@ To plot on Mapbox maps with Plotly you _may_ need a Mapbox account and a public
There are three different ways to show a filled area in a Mapbox map:
-1. Use a [Scattermapbox](https://plot.ly/python/reference/#scattermapbox) trace and set `fill` attribute to 'toself'
-2. Use a Mapbox layout (i.e. by minimally using an empty [Scattermapbox](https://plot.ly/python/reference/#scattermapbox) trace) and add a GeoJSON layer
-3. Use the [Choroplethmapbox](https://plot.ly/python/mapbox-county-choropleth/) trace type
+1. Use a [Scattermapbox](https://plotly.com/python/reference/#scattermapbox) trace and set `fill` attribute to 'toself'
+2. Use a Mapbox layout (i.e. by minimally using an empty [Scattermapbox](https://plotly.com/python/reference/#scattermapbox) trace) and add a GeoJSON layer
+3. Use the [Choroplethmapbox](https://plotly.com/python/mapbox-county-choropleth/) trace type
### Filled `Scattermapbox` Trace
@@ -70,7 +70,7 @@ fig.show()
### Multiple Filled Areas with a `Scattermapbox` trace
-The following example shows how to use `None` in your data to draw multiple filled areas. Such gaps in trace data are unconnected by default, but this can be controlled via the [connectgaps](https://plot.ly/python/reference/#scattermapbox-connectgaps) attribute.
+The following example shows how to use `None` in your data to draw multiple filled areas. Such gaps in trace data are unconnected by default, but this can be controlled via the [connectgaps](https://plotly.com/python/reference/#scattermapbox-connectgaps) attribute.
```python
import plotly.graph_objects as go
@@ -141,4 +141,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#scattermapbox for more information about mapbox and their attribute options.
+See https://plotly.com/python/reference/#scattermapbox for more information about mapbox and their attribute options.
diff --git a/doc/python/filled-area-plots.md b/doc/python/filled-area-plots.md
index 645edc87ef9..347fbeb1efb 100644
--- a/doc/python/filled-area-plots.md
+++ b/doc/python/filled-area-plots.md
@@ -210,6 +210,6 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#scatter-line
-and https://plot.ly/python/reference/#scatter-fill
+See https://plotly.com/python/reference/#scatter-line
+and https://plotly.com/python/reference/#scatter-fill
for more information and attribute options!
diff --git a/doc/python/filter.md b/doc/python/filter.md
index b1798d1a34f..d3fb6a86886 100644
--- a/doc/python/filter.md
+++ b/doc/python/filter.md
@@ -64,4 +64,4 @@ pio.show(fig_dict, validate=False)
```
#### Reference
-See https://plot.ly/python/reference/ for more information and chart attribute options!
+See https://plotly.com/python/reference/ for more information and chart attribute options!
diff --git a/doc/python/funnel-charts.md b/doc/python/funnel-charts.md
index 669b3221f3a..cf9c6898f93 100644
--- a/doc/python/funnel-charts.md
+++ b/doc/python/funnel-charts.md
@@ -74,7 +74,7 @@ fig.show()
### Setting Marker Size and Color
-This example uses [textposition](https://plot.ly/python/reference/#scatter-textposition) and [textinfo](https://plot.ly/python/reference/#funnel-textinfo) to determine information apears on the graph, and shows how to customize the bars.
+This example uses [textposition](https://plotly.com/python/reference/#scatter-textposition) and [textinfo](https://plotly.com/python/reference/#funnel-textinfo) to determine information apears on the graph, and shows how to customize the bars.
```python
from plotly import graph_objects as go
@@ -202,4 +202,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#funnel and https://plot.ly/python/reference/#funnelarea for more information and chart attribute options!
+See https://plotly.com/python/reference/#funnel and https://plotly.com/python/reference/#funnelarea for more information and chart attribute options!
diff --git a/doc/python/gantt.md b/doc/python/gantt.md
index 63df4f0ad28..e63e58f5c96 100644
--- a/doc/python/gantt.md
+++ b/doc/python/gantt.md
@@ -36,7 +36,7 @@ jupyter:
A [Gantt chart](https://en.wikipedia.org/wiki/Gantt_chart) is a type of bar chart that illustrates a project schedule. The chart lists the tasks to be performed on the vertical axis, and time intervals on the horizontal axis. The width of the horizontal bars in the graph shows the duration of each activity.
-See also the [bar charts examples](https://plot.ly/python/bar-charts/).
+See also the [bar charts examples](https://plotly.com/python/bar-charts/).
#### Simple Gantt Chart
diff --git a/doc/python/gauge-charts.md b/doc/python/gauge-charts.md
index ad0167e2e4b..0d6ba38127a 100644
--- a/doc/python/gauge-charts.md
+++ b/doc/python/gauge-charts.md
@@ -41,7 +41,7 @@ A radial gauge chart has a circular arc, which displays a single value to estima
The bar shows the target value, and the shading represents the progress toward that goal. Gauge charts, known as
speedometer charts as well. This chart type is usually used to illustrate key business indicators.
- The example below displays a basic gauge chart with default attributes. For more information about different added attributes check [indicator](https://plot.ly/python/indicator/) tutorial.
+ The example below displays a basic gauge chart with default attributes. For more information about different added attributes check [indicator](https://plotly.com/python/indicator/) tutorial.
```python
import plotly.graph_objects as go
@@ -78,7 +78,7 @@ fig.show()
```
#### Custom Gauge Chart
-The following example shows how to style your gauge charts. For more information about all possible options check our [reference page](https://plot.ly/python/reference/#indicator).
+The following example shows how to style your gauge charts. For more information about all possible options check our [reference page](https://plotly.com/python/reference/#indicator).
```python
import plotly.graph_objects as go
@@ -110,4 +110,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#indicator for more information and chart attribute options!
+See https://plotly.com/python/reference/#indicator for more information and chart attribute options!
diff --git a/doc/python/getting-started.md b/doc/python/getting-started.md
index 73aa5696371..5d44383c434 100644
--- a/doc/python/getting-started.md
+++ b/doc/python/getting-started.md
@@ -38,9 +38,9 @@ jupyter:
### Overview
-The plotly Python library ([plotly.py](https://plot.ly/python/)) is an interactive, [open-source](https://github.com/plotly/plotly.py) plotting library that supports over 40 unique chart types covering a wide range of statistical, financial, geographic, scientific, and 3-dimensional use-cases.
+The plotly Python library ([plotly.py](https://plotly.com/python/)) is an interactive, [open-source](https://github.com/plotly/plotly.py) plotting library that supports over 40 unique chart types covering a wide range of statistical, financial, geographic, scientific, and 3-dimensional use-cases.
-Built on top of the Plotly JavaScript library ([plotly.js](https://plot.ly/javascript/)), plotly.py enables Python users to create beautiful interactive web-based visualizations that can be displayed in Jupyter notebooks, saved to standalone HTML files, or served as part of pure Python-built web applications using Dash.
+Built on top of the Plotly JavaScript library ([plotly.js](https://plotly.com/javascript/)), plotly.py enables Python users to create beautiful interactive web-based visualizations that can be displayed in Jupyter notebooks, saved to standalone HTML files, or served as part of pure Python-built web applications using Dash.
Thanks to deep integration with the [orca](https://github.com/plotly/orca) image export utility, plotly.py also provides great support for non-web contexts including desktop editors (e.g. QtConsole, Spyder, PyCharm) and static document publishing (e.g. exporting notebooks to PDF with high-quality vector images).
@@ -240,7 +240,7 @@ or conda.
$ conda install -c plotly plotly-geo=1.0.0
```
-See [_USA County Choropleth Maps in Python_](https://plot.ly/python/county-choropleth/) for more information on the county choropleth figure factory.
+See [_USA County Choropleth Maps in Python_](https://plotly.com/python/county-choropleth/) for more information on the county choropleth figure factory.
#### Chart Studio Support
@@ -271,8 +271,8 @@ For information on theming plotly figures, see [_Theming and templates with plot
For information on all of the ways that plotly figures can be displayed, see [_Displaying plotly figures with plotly for Python_](/python/renderers/).
-For the full searchable reference of every figure property, see the [_Python figure reference_](https://plot.ly/python/reference/).
+For the full searchable reference of every figure property, see the [_Python figure reference_](https://plotly.com/python/reference/).
-For information on using Python to build web applications containing plotly figures, see the [_Dash User Guide_](https://dash.plot.ly/).
+For information on using Python to build web applications containing plotly figures, see the [_Dash User Guide_](https://dash.plotly.com/).
diff --git a/doc/python/graphing-multiple-chart-types.md b/doc/python/graphing-multiple-chart-types.md
index 12d8231dc86..118e1c6a616 100644
--- a/doc/python/graphing-multiple-chart-types.md
+++ b/doc/python/graphing-multiple-chart-types.md
@@ -98,4 +98,4 @@ fig.show()
```
#### Reference
-See https://plot.ly/python/reference/ for more information and attribute options!
+See https://plotly.com/python/reference/ for more information and attribute options!
diff --git a/doc/python/group-by.md b/doc/python/group-by.md
index 0d927e6a4de..ac9d1464523 100644
--- a/doc/python/group-by.md
+++ b/doc/python/group-by.md
@@ -62,4 +62,4 @@ pio.show(fig_dict, validate=False)
```
#### Reference
-See https://plot.ly/python/reference/ for more information and chart attribute options!
+See https://plotly.com/python/reference/ for more information and chart attribute options!
diff --git a/doc/python/heatmaps.md b/doc/python/heatmaps.md
index ec2735bf725..90acbd7a06b 100644
--- a/doc/python/heatmaps.md
+++ b/doc/python/heatmaps.md
@@ -67,7 +67,7 @@ fig.show()
### Heatmap with Categorical Axis Labels
-In this example we also show how to ignore [hovertext](https://plot.ly/python/hover-text-and-formatting/) when we have [missing values](https://plot.ly/python/missing_values) in the data by setting the [hoverongaps](https://plot.ly/python/reference/#heatmap-hoverongaps) to False.
+In this example we also show how to ignore [hovertext](https://plotly.com/python/hover-text-and-formatting/) when we have [missing values](https://plotly.com/python/missing_values) in the data by setting the [hoverongaps](https://plotly.com/python/reference/#heatmap-hoverongaps) to False.
```python
import plotly.graph_objects as go
@@ -168,4 +168,4 @@ Arrays of rasterized values build by datashader can be visualized using
plotly's heatmaps, as shown in the [plotly and datashader tutorial](/python/datashader/).
#### Reference
-See https://plot.ly/python/reference/#heatmap for more information and chart attribute options!
+See https://plotly.com/python/reference/#heatmap for more information and chart attribute options!
diff --git a/doc/python/histograms.md b/doc/python/histograms.md
index 2d60749cd0d..7227e1d9ac3 100644
--- a/doc/python/histograms.md
+++ b/doc/python/histograms.md
@@ -134,7 +134,7 @@ fig.show()
#### Visualizing the distribution
-With the `marginal` keyword, a subplot is drawn alongside the histogram, visualizing the distribution. See [the distplot page](https://plot.ly/python/distplot/)for more examples of combined statistical representations.
+With the `marginal` keyword, a subplot is drawn alongside the histogram, visualizing the distribution. See [the distplot page](https://plotly.com/python/distplot/)for more examples of combined statistical representations.
```python
import plotly.express as px
@@ -146,7 +146,7 @@ fig.show()
## Histograms with go.Histogram
-If Plotly Express does not provide a good starting point, it is also possible to use the more generic `go.Histogram` from `plotly.graph_objects`. All of the available histogram options are described in the histogram section of the reference page: https://plot.ly/python/reference#histogram.
+If Plotly Express does not provide a good starting point, it is also possible to use the more generic `go.Histogram` from `plotly.graph_objects`. All of the available histogram options are described in the histogram section of the reference page: https://plotly.com/python/reference#histogram.
### Basic Histogram
@@ -306,7 +306,7 @@ fig.show()
### Custom Binning
-For custom binning along x-axis, use the attribute [`nbinsx`](https://plot.ly/python/reference/#histogram-nbinsx). Please note that the autobin algorithm will choose a 'nice' round bin size that may result in somewhat fewer than `nbinsx` total bins. Alternatively, you can set the exact values for [`xbins`](https://plot.ly/python/reference/#histogram-xbins) along with `autobinx = False`.
+For custom binning along x-axis, use the attribute [`nbinsx`](https://plotly.com/python/reference/#histogram-nbinsx). Please note that the autobin algorithm will choose a 'nice' round bin size that may result in somewhat fewer than `nbinsx` total bins. Alternatively, you can set the exact values for [`xbins`](https://plotly.com/python/reference/#histogram-xbins) along with `autobinx = False`.
```python
import plotly.graph_objects as go
@@ -369,7 +369,7 @@ fig2.show()
### Share bins between histograms
-In this example both histograms have a compatible bin settings using [bingroup](https://plot.ly/python/reference/#histogram-bingroup) attribute. Note that traces on the same subplot, and with the same `barmode` ("stack", "relative", "group") are forced into the same `bingroup`, however traces with `barmode = "overlay"` and on different axes (of the same axis type) can have compatible bin settings. Histogram and [histogram2d](https://plot.ly/python/2D-Histogram/) trace can share the same `bingroup`.
+In this example both histograms have a compatible bin settings using [bingroup](https://plotly.com/python/reference/#histogram-bingroup) attribute. Note that traces on the same subplot, and with the same `barmode` ("stack", "relative", "group") are forced into the same `bingroup`, however traces with `barmode = "overlay"` and on different axes (of the same axis type) can have compatible bin settings. Histogram and [histogram2d](https://plotly.com/python/2D-Histogram/) trace can share the same `bingroup`.
```python
import plotly.graph_objects as go
@@ -392,4 +392,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/#histogram for more information and chart attribute options!
+See https://plotly.com/python/reference/#histogram for more information and chart attribute options!
diff --git a/doc/python/horizontal-bar-charts.md b/doc/python/horizontal-bar-charts.md
index b9daa15e407..d80525f3c58 100644
--- a/doc/python/horizontal-bar-charts.md
+++ b/doc/python/horizontal-bar-charts.md
@@ -33,7 +33,7 @@ jupyter:
thumbnail: thumbnail/horizontal-bar.jpg
---
-See more examples of bar charts (including vertical bar charts) and styling options [here](https://plot.ly/python/bar-charts/).
+See more examples of bar charts (including vertical bar charts) and styling options [here](https://plotly.com/python/bar-charts/).
### Horizontal Bar Chart with Plotly Express
@@ -64,7 +64,7 @@ fig.show()
### Horizontal Bar Chart with go.Bar
-When data are not available as a tidy dataframe, you can use the more generic function `go.Bar` from `plotly.graph_objects`. All the options of `go.Bar` are documented in the reference https://plot.ly/python/reference/#bar
+When data are not available as a tidy dataframe, you can use the more generic function `go.Bar` from `plotly.graph_objects`. All the options of `go.Bar` are documented in the reference https://plotly.com/python/reference/#bar
#### Basic Horizontal Bar Chart
@@ -335,4 +335,4 @@ fig.show()
### Reference
-See more examples of bar charts and styling options [here](https://plot.ly/python/bar-charts/).
See https://plot.ly/python/reference/#bar for more information and chart attribute options!
+See more examples of bar charts and styling options [here](https://plotly.com/python/bar-charts/).
See https://plotly.com/python/reference/#bar for more information and chart attribute options!
diff --git a/doc/python/hover-text-and-formatting.md b/doc/python/hover-text-and-formatting.md
index 585a61f746b..ca645b46d79 100644
--- a/doc/python/hover-text-and-formatting.md
+++ b/doc/python/hover-text-and-formatting.md
@@ -103,10 +103,10 @@ fig.show()
### Customize tooltip text with a hovertemplate
-To customize the tooltip on your graph you can use [hovertemplate](https://plot.ly/python/reference/#pie-hovertemplate), which is a template string used for rendering the information that appear on hoverbox.
+To customize the tooltip on your graph you can use [hovertemplate](https://plotly.com/python/reference/#pie-hovertemplate), which is a template string used for rendering the information that appear on hoverbox.
This template string can include `variables` in %{variable} format, `numbers` in [d3-format's syntax](https://github.com/d3/d3-3.x-api-reference/blob/master/Formatting.md#d3_forma), and `date` in [d3-time-format's syntax](https://github.com/d3/d3-3.x-api-reference/blob/master/Time-Formatting.md#format).
-Hovertemplate customize the tooltip text vs. [texttemplate](https://plot.ly/python/reference/#pie-texttemplate) which customizes the text that appears on your chart.
-Set the horizontal alignment of the text within tooltip with [hoverlabel.align](https://plot.ly/python/reference/#layout-hoverlabel-align).
+Hovertemplate customize the tooltip text vs. [texttemplate](https://plotly.com/python/reference/#pie-texttemplate) which customizes the text that appears on your chart.
+Set the horizontal alignment of the text within tooltip with [hoverlabel.align](https://plotly.com/python/reference/#layout-hoverlabel-align).
```python
import plotly.graph_objects as go
@@ -150,7 +150,7 @@ fig.show()
### Advanced Hover Template
-The following example shows how to format hover template. [Here](https://plot.ly/python/v3/hover-text-and-formatting/#dash-example) is an example to see how to format hovertemplate in Dash.
+The following example shows how to format hover template. [Here](https://plotly.com/python/v3/hover-text-and-formatting/#dash-example) is an example to see how to format hovertemplate in Dash.
```python
import plotly.graph_objects as go
@@ -260,4 +260,4 @@ fig.show()
#### Reference
-See https://plot.ly/python/reference/ for more information and chart attribute options!
+See https://plotly.com/python/reference/ for more information and chart attribute options!
diff --git a/doc/python/images.md b/doc/python/images.md
index d20d6c3b05a..e00b49f7d8b 100644
--- a/doc/python/images.md
+++ b/doc/python/images.md
@@ -56,7 +56,7 @@ fig.add_trace(
# Add images
fig.add_layout_image(
dict(
- source="https://images.plot.ly/language-icons/api-home/python-logo.png",
+ source="https://images.plotly.com/language-icons/api-home/python-logo.png",
xref="x",
yref="y",
x=0,
@@ -75,7 +75,7 @@ fig.show()
```
#### Add a Logo
-See more examples of [adding logos to charts](https://plot.ly/python/logos/)!
+See more examples of [adding logos to charts](https://plotly.com/python/logos/)!
```python
import plotly.graph_objects as go
@@ -301,9 +301,9 @@ fig.update_layout(
)
# Disable the autosize on double click because it adds unwanted margins around the image
-# More detail: https://plot.ly/python/configuration-options/
+# More detail: https://plotly.com/python/configuration-options/
fig.show(config={'doubleClick': 'reset'})
```
#### Reference
-See https://plot.ly/python/reference/#layout-images for more information and chart attribute options!
+See https://plotly.com/python/reference/#layout-images for more information and chart attribute options!
diff --git a/doc/python/imshow.md b/doc/python/imshow.md
index ba5b0c20cb7..ea192b9a29b 100644
--- a/doc/python/imshow.md
+++ b/doc/python/imshow.md
@@ -141,7 +141,7 @@ img = data.astronaut()
# Increase contrast by clipping the data range between 50 and 200
fig = px.imshow(img, zmin=50, zmax=200)
# We customize the hovertemplate to show both the data and the color values
-# See https://plot.ly/python/hover-text-and-formatting/#customize-tooltip-text-with-a-hovertemplate
+# See https://plotly.com/python/hover-text-and-formatting/#customize-tooltip-text-with-a-hovertemplate
fig.update_traces(hovertemplate="x: %{x}
y: %{y}
z: %{z}
color: %{color}")
fig.show()
```
@@ -206,5 +206,5 @@ examples on how to use plotly and datashader.
#### Reference
-See https://plot.ly/python/reference/#image for more information and chart attribute options!
+See https://plotly.com/python/reference/#image for more information and chart attribute options!
diff --git a/doc/python/indicator.md b/doc/python/indicator.md
index 2bd0ad5bafd..a695045b20b 100644
--- a/doc/python/indicator.md
+++ b/doc/python/indicator.md
@@ -63,7 +63,7 @@ In this tutorial we introduce a new trace named "Indicator". The purpose of "ind