Skip to content

Commit 267a14f

Browse files
authored
Merge branch 'main' into sparse-unstack
2 parents 58aa601 + 36f05d7 commit 267a14f

File tree

148 files changed

+3889
-2710
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

148 files changed

+3889
-2710
lines changed

.git-blame-ignore-revs

+5
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
# black PR 3142
2+
d089df385e737f71067309ff7abae15994d581ec
3+
4+
# isort PR 1924
5+
0e73e240107caee3ffd1a1149f0150c390d43251

.github/workflows/benchmarks.yml

+74
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,74 @@
1+
name: Benchmark
2+
3+
on:
4+
pull_request:
5+
types: [opened, reopened, synchronize, labeled]
6+
workflow_dispatch:
7+
8+
jobs:
9+
benchmark:
10+
if: ${{ contains( github.event.pull_request.labels.*.name, 'run-benchmark') && github.event_name == 'pull_request' || github.event_name == 'workflow_dispatch' }}
11+
name: Linux
12+
runs-on: ubuntu-20.04
13+
env:
14+
ASV_DIR: "./asv_bench"
15+
16+
steps:
17+
# We need the full repo to avoid this issue
18+
# https://github.com/actions/checkout/issues/23
19+
- uses: actions/checkout@v2
20+
with:
21+
fetch-depth: 0
22+
23+
- name: Setup Miniconda
24+
uses: conda-incubator/setup-miniconda@v2
25+
with:
26+
# installer-url: https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh
27+
installer-url: https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
28+
29+
- name: Setup some dependencies
30+
shell: bash -l {0}
31+
run: |
32+
pip install asv
33+
sudo apt-get update -y
34+
35+
- name: Run benchmarks
36+
shell: bash -l {0}
37+
id: benchmark
38+
env:
39+
OPENBLAS_NUM_THREADS: 1
40+
MKL_NUM_THREADS: 1
41+
OMP_NUM_THREADS: 1
42+
ASV_FACTOR: 1.5
43+
ASV_SKIP_SLOW: 1
44+
run: |
45+
set -x
46+
# ID this runner
47+
asv machine --yes
48+
echo "Baseline: ${{ github.event.pull_request.base.sha }} (${{ github.event.pull_request.base.label }})"
49+
echo "Contender: ${GITHUB_SHA} (${{ github.event.pull_request.head.label }})"
50+
# Use mamba for env creation
51+
# export CONDA_EXE=$(which mamba)
52+
export CONDA_EXE=$(which conda)
53+
# Run benchmarks for current commit against base
54+
ASV_OPTIONS="--split --show-stderr --factor $ASV_FACTOR"
55+
asv continuous $ASV_OPTIONS ${{ github.event.pull_request.base.sha }} ${GITHUB_SHA} \
56+
| sed "/Traceback \|failed$\|PERFORMANCE DECREASED/ s/^/::error::/" \
57+
| tee benchmarks.log
58+
# Report and export results for subsequent steps
59+
if grep "Traceback \|failed\|PERFORMANCE DECREASED" benchmarks.log > /dev/null ; then
60+
exit 1
61+
fi
62+
working-directory: ${{ env.ASV_DIR }}
63+
64+
- name: Add instructions to artifact
65+
if: always()
66+
run: |
67+
cp benchmarks/README_CI.md benchmarks.log .asv/results/
68+
working-directory: ${{ env.ASV_DIR }}
69+
70+
- uses: actions/upload-artifact@v2
71+
if: always()
72+
with:
73+
name: asv-benchmark-results-${{ runner.os }}
74+
path: ${{ env.ASV_DIR }}/.asv/results

.github/workflows/ci-additional.yaml

+1-2
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,6 @@ jobs:
4242
[
4343
"py37-bare-minimum",
4444
"py37-min-all-deps",
45-
"py37-min-nep18",
4645
"py38-all-but-dask",
4746
"py38-flaky",
4847
]
@@ -103,7 +102,7 @@ jobs:
103102
$PYTEST_EXTRA_FLAGS
104103
105104
- name: Upload code coverage to Codecov
106-
uses: codecov/codecov-action@v2.0.2
105+
uses: codecov/codecov-action@v2.1.0
107106
with:
108107
file: ./coverage.xml
109108
flags: unittests,${{ matrix.env }}

.github/workflows/ci.yaml

+1-1
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ jobs:
100100
path: pytest.xml
101101

102102
- name: Upload code coverage to Codecov
103-
uses: codecov/codecov-action@v2.0.2
103+
uses: codecov/codecov-action@v2.1.0
104104
with:
105105
file: ./coverage.xml
106106
flags: unittests

.github/workflows/upstream-dev-ci.yaml

+1-1
Original file line numberDiff line numberDiff line change
@@ -122,7 +122,7 @@ jobs:
122122
shopt -s globstar
123123
python .github/workflows/parse_logs.py logs/**/*-log
124124
- name: Report failures
125-
uses: actions/github-script@v4.0.2
125+
uses: actions/github-script@v4.1
126126
with:
127127
github-token: ${{ secrets.GITHUB_TOKEN }}
128128
script: |

.pre-commit-config.yaml

+7-5
Original file line numberDiff line numberDiff line change
@@ -13,9 +13,10 @@ repos:
1313
- id: isort
1414
# https://github.com/python/black#version-control-integration
1515
- repo: https://github.com/psf/black
16-
rev: 21.7b0
16+
rev: 21.9b0
1717
hooks:
1818
- id: black
19+
- id: black-jupyter
1920
- repo: https://github.com/keewis/blackdoc
2021
rev: v0.3.4
2122
hooks:
@@ -30,20 +31,21 @@ repos:
3031
# - id: velin
3132
# args: ["--write", "--compact"]
3233
- repo: https://github.com/pre-commit/mirrors-mypy
33-
rev: v0.910
34+
rev: v0.910-1
3435
hooks:
3536
- id: mypy
36-
# Copied from setup.cfg
37-
exclude: "properties|asv_bench"
37+
# `properies` & `asv_bench` are copied from setup.cfg.
38+
# `_typed_ops.py` is added since otherwise mypy will complain (but notably only in pre-commit)
39+
exclude: "properties|asv_bench|_typed_ops.py"
3840
additional_dependencies: [
3941
# Type stubs
4042
types-python-dateutil,
4143
types-pkg_resources,
4244
types-PyYAML,
4345
types-pytz,
46+
typing-extensions==3.10.0.0,
4447
# Dependencies that are typed
4548
numpy,
46-
typing-extensions==3.10.0.0,
4749
]
4850
# run this occasionally, ref discussion https://github.com/pydata/xarray/pull/3194
4951
# - repo: https://github.com/asottile/pyupgrade

README.rst

+4-4
Original file line numberDiff line numberDiff line change
@@ -105,7 +105,7 @@ to support our efforts.
105105
History
106106
-------
107107

108-
xarray is an evolution of an internal tool developed at `The Climate
108+
Xarray is an evolution of an internal tool developed at `The Climate
109109
Corporation`__. It was originally written by Climate Corp researchers Stephan
110110
Hoyer, Alex Kleeman and Eugene Brevdo and was released as open source in
111111
May 2014. The project was renamed from "xray" in January 2016. Xarray became a
@@ -131,16 +131,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
131131
See the License for the specific language governing permissions and
132132
limitations under the License.
133133

134-
xarray bundles portions of pandas, NumPy and Seaborn, all of which are available
134+
Xarray bundles portions of pandas, NumPy and Seaborn, all of which are available
135135
under a "3-clause BSD" license:
136136
- pandas: setup.py, xarray/util/print_versions.py
137137
- NumPy: xarray/core/npcompat.py
138138
- Seaborn: _determine_cmap_params in xarray/core/plot/utils.py
139139

140-
xarray also bundles portions of CPython, which is available under the "Python
140+
Xarray also bundles portions of CPython, which is available under the "Python
141141
Software Foundation License" in xarray/core/pycompat.py.
142142

143-
xarray uses icons from the icomoon package (free version), which is
143+
Xarray uses icons from the icomoon package (free version), which is
144144
available under the "CC BY 4.0" license.
145145

146146
The full text of these licenses are included in the licenses directory.

asv_bench/benchmarks/README_CI.md

+122
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,122 @@
1+
# Benchmark CI
2+
3+
<!-- Author: @jaimergp -->
4+
<!-- Last updated: 2021.07.06 -->
5+
<!-- Describes the work done as part of https://github.com/scikit-image/scikit-image/pull/5424 -->
6+
7+
## How it works
8+
9+
The `asv` suite can be run for any PR on GitHub Actions (check workflow `.github/workflows/benchmarks.yml`) by adding a `run-benchmark` label to said PR. This will trigger a job that will run the benchmarking suite for the current PR head (merged commit) against the PR base (usually `main`).
10+
11+
We use `asv continuous` to run the job, which runs a relative performance measurement. This means that there's no state to be saved and that regressions are only caught in terms of performance ratio (absolute numbers are available but they are not useful since we do not use stable hardware over time). `asv continuous` will:
12+
13+
* Compile `scikit-image` for _both_ commits. We use `ccache` to speed up the process, and `mamba` is used to create the build environments.
14+
* Run the benchmark suite for both commits, _twice_ (since `processes=2` by default).
15+
* Generate a report table with performance ratios:
16+
* `ratio=1.0` -> performance didn't change.
17+
* `ratio<1.0` -> PR made it slower.
18+
* `ratio>1.0` -> PR made it faster.
19+
20+
Due to the sensitivity of the test, we cannot guarantee that false positives are not produced. In practice, values between `(0.7, 1.5)` are to be considered part of the measurement noise. When in doubt, running the benchmark suite one more time will provide more information about the test being a false positive or not.
21+
22+
## Running the benchmarks on GitHub Actions
23+
24+
1. On a PR, add the label `run-benchmark`.
25+
2. The CI job will be started. Checks will appear in the usual dashboard panel above the comment box.
26+
3. If more commits are added, the label checks will be grouped with the last commit checks _before_ you added the label.
27+
4. Alternatively, you can always go to the `Actions` tab in the repo and [filter for `workflow:Benchmark`](https://github.com/scikit-image/scikit-image/actions?query=workflow%3ABenchmark). Your username will be assigned to the `actor` field, so you can also filter the results with that if you need it.
28+
29+
## The artifacts
30+
31+
The CI job will also generate an artifact. This is the `.asv/results` directory compressed in a zip file. Its contents include:
32+
33+
* `fv-xxxxx-xx/`. A directory for the machine that ran the suite. It contains three files:
34+
* `<baseline>.json`, `<contender>.json`: the benchmark results for each commit, with stats.
35+
* `machine.json`: details about the hardware.
36+
* `benchmarks.json`: metadata about the current benchmark suite.
37+
* `benchmarks.log`: the CI logs for this run.
38+
* This README.
39+
40+
## Re-running the analysis
41+
42+
Although the CI logs should be enough to get an idea of what happened (check the table at the end), one can use `asv` to run the analysis routines again.
43+
44+
1. Uncompress the artifact contents in the repo, under `.asv/results`. This is, you should see `.asv/results/benchmarks.log`, not `.asv/results/something_else/benchmarks.log`. Write down the machine directory name for later.
45+
2. Run `asv show` to see your available results. You will see something like this:
46+
47+
```
48+
$> asv show
49+
50+
Commits with results:
51+
52+
Machine : Jaimes-MBP
53+
Environment: conda-py3.9-cython-numpy1.20-scipy
54+
55+
00875e67
56+
57+
Machine : fv-az95-499
58+
Environment: conda-py3.7-cython-numpy1.17-pooch-scipy
59+
60+
8db28f02
61+
3a305096
62+
```
63+
64+
3. We are interested in the commits for `fv-az95-499` (the CI machine for this run). We can compare them with `asv compare` and some extra options. `--sort ratio` will show largest ratios first, instead of alphabetical order. `--split` will produce three tables: improved, worsened, no changes. `--factor 1.5` tells `asv` to only complain if deviations are above a 1.5 ratio. `-m` is used to indicate the machine ID (use the one you wrote down in step 1). Finally, specify your commit hashes: baseline first, then contender!
65+
66+
```
67+
$> asv compare --sort ratio --split --factor 1.5 -m fv-az95-499 8db28f02 3a305096
68+
69+
Benchmarks that have stayed the same:
70+
71+
before after ratio
72+
[8db28f02] [3a305096]
73+
<ci-benchmark-check~9^2>
74+
n/a n/a n/a benchmark_restoration.RollingBall.time_rollingball_ndim
75+
1.23±0.04ms 1.37±0.1ms 1.12 benchmark_transform_warp.WarpSuite.time_to_float64(<class 'numpy.float64'>, 128, 3)
76+
5.07±0.1μs 5.59±0.4μs 1.10 benchmark_transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.float32'>, (192, 192, 192), (192, 192, 192))
77+
1.23±0.02ms 1.33±0.1ms 1.08 benchmark_transform_warp.WarpSuite.time_same_type(<class 'numpy.float32'>, 128, 3)
78+
9.45±0.2ms 10.1±0.5ms 1.07 benchmark_rank.Rank3DSuite.time_3d_filters('majority', (32, 32, 32))
79+
23.0±0.9ms 24.6±1ms 1.07 benchmark_interpolation.InterpolationResize.time_resize((80, 80, 80), 0, 'symmetric', <class 'numpy.float64'>, True)
80+
38.7±1ms 41.1±1ms 1.06 benchmark_transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.float32'>, (2048, 2048), (192, 192, 192))
81+
4.97±0.2μs 5.24±0.2μs 1.05 benchmark_transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.float32'>, (2048, 2048), (2048, 2048))
82+
4.21±0.2ms 4.42±0.3ms 1.05 benchmark_rank.Rank3DSuite.time_3d_filters('gradient', (32, 32, 32))
83+
84+
...
85+
```
86+
87+
If you want more details on a specific test, you can use `asv show`. Use `-b pattern` to filter which tests to show, and then specify a commit hash to inspect:
88+
89+
```
90+
$> asv show -b time_to_float64 8db28f02
91+
92+
Commit: 8db28f02 <ci-benchmark-check~9^2>
93+
94+
benchmark_transform_warp.WarpSuite.time_to_float64 [fv-az95-499/conda-py3.7-cython-numpy1.17-pooch-scipy]
95+
ok
96+
=============== ============= ========== ============= ========== ============ ========== ============ ========== ============
97+
-- N / order
98+
--------------- --------------------------------------------------------------------------------------------------------------
99+
dtype_in 128 / 0 128 / 1 128 / 3 1024 / 0 1024 / 1 1024 / 3 4096 / 0 4096 / 1 4096 / 3
100+
=============== ============= ========== ============= ========== ============ ========== ============ ========== ============
101+
numpy.uint8 2.56±0.09ms 523±30μs 1.28±0.05ms 130±3ms 28.7±2ms 81.9±3ms 2.42±0.01s 659±5ms 1.48±0.01s
102+
numpy.uint16 2.48±0.03ms 530±10μs 1.28±0.02ms 130±1ms 30.4±0.7ms 81.1±2ms 2.44±0s 653±3ms 1.47±0.02s
103+
numpy.float32 2.59±0.1ms 518±20μs 1.27±0.01ms 127±3ms 26.6±1ms 74.8±2ms 2.50±0.01s 546±10ms 1.33±0.02s
104+
numpy.float64 2.48±0.04ms 513±50μs 1.23±0.04ms 134±3ms 30.7±2ms 85.4±2ms 2.55±0.01s 632±4ms 1.45±0.01s
105+
=============== ============= ========== ============= ========== ============ ========== ============ ========== ============
106+
started: 2021-07-06 06:14:36, duration: 1.99m
107+
```
108+
109+
## Other details
110+
111+
### Skipping slow or demanding tests
112+
113+
To minimize the time required to run the full suite, we trimmed the parameter matrix in some cases and, in others, directly skipped tests that ran for too long or require too much memory. Unlike `pytest`, `asv` does not have a notion of marks. However, you can `raise NotImplementedError` in the setup step to skip a test. In that vein, a new private function is defined at `benchmarks.__init__`: `_skip_slow`. This will check if the `ASV_SKIP_SLOW` environment variable has been defined. If set to `1`, it will raise `NotImplementedError` and skip the test. To implement this behavior in other tests, you can add the following attribute:
114+
115+
```python
116+
from . import _skip_slow # this function is defined in benchmarks.__init__
117+
118+
def time_something_slow():
119+
pass
120+
121+
time_something.setup = _skip_slow
122+
```

asv_bench/benchmarks/__init__.py

+19
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,5 @@
11
import itertools
2+
import os
23

34
import numpy as np
45

@@ -53,3 +54,21 @@ def randint(low, high=None, size=None, frac_minus=None, seed=0):
5354
x.flat[inds] = -1
5455

5556
return x
57+
58+
59+
def _skip_slow():
60+
"""
61+
Use this function to skip slow or highly demanding tests.
62+
63+
Use it as a `Class.setup` method or a `function.setup` attribute.
64+
65+
Examples
66+
--------
67+
>>> from . import _skip_slow
68+
>>> def time_something_slow():
69+
... pass
70+
...
71+
>>> time_something.setup = _skip_slow
72+
"""
73+
if os.environ.get("ASV_SKIP_SLOW", "0") == "1":
74+
raise NotImplementedError("Skipping this test...")

asv_bench/benchmarks/combine.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ class Combine:
99
def setup(self):
1010
"""Create 4 datasets with two different variables"""
1111

12-
t_size, x_size, y_size = 100, 900, 800
12+
t_size, x_size, y_size = 50, 450, 400
1313
t = np.arange(t_size)
1414
data = np.random.randn(t_size, x_size, y_size)
1515

0 commit comments

Comments
 (0)