-
-
Notifications
You must be signed in to change notification settings - Fork 269
/
Copy pathreferences.bib
956 lines (956 loc) · 39.4 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
@article{ando2007bayesian,
title = {Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models},
author = {Ando, Tomohiro},
journal = {Biometrika},
volume = {94},
number = {2},
pages = {443--458},
year = {2007},
publisher = {Oxford University Press},
doi = {10.1093/biomet/asm017}
}
@book{angrist2008harmless,
title = {Mostly Harmless Econometrics},
author = {Angrist, Joshua and Pischke, J\"{o}rn-Steffen},
year = {2008},
publisher = {Princeton University Press}
}
@book{aronow2019agnostic,
title = {Foundations of Agnostic Statistics},
author = {Aronow, Peter and Miller, Benjamin},
year = {2019},
publisher = {Cambridge University Press}
}
@article{baio2010bayesian,
title = {Bayesian hierarchical model for the prediction of football results},
author = {Baio, Gianluca and Blangiardo, Marta},
journal = {Journal of Applied Statistics},
volume = {37},
number = {2},
pages = {253--264},
year = {2010},
publisher = {Taylor \& Francis}
}
@article{bali2003gev,
title = {The generalized extreme value distribution},
journal = {Economics Letters},
volume = {79},
number = {3},
pages = {423--427},
year = {2003},
issn = {0165-1765},
doi = {https://doi.org/10.1016/S0165-1765(03)00035-1},
url = {https://www.sciencedirect.com/science/article/pii/S0165176503000351},
author = {Turan G. Bali}
}
@article{bauer2005probing,
title = {Probing interactions in fixed and multilevel regression: Inferential and graphical techniques},
author = {Bauer, Daniel J and Curran, Patrick J},
journal = {Multivariate behavioral research},
volume = {40},
number = {3},
pages = {373--400},
year = {2005},
publisher = {Taylor \& Francis}
}
@book{berry1996statistics,
title = {Statistics: a Bayesian perspective},
author = {Berry, Donald A},
year = {1996},
publisher = {Duxbury Press}
}
@article{bertrand2004much,
title = {How much should we trust differences-in-differences estimates?},
author = {Bertrand, Marianne and Duflo, Esther and Mullainathan, Sendhil},
journal = {The Quarterly journal of economics},
volume = {119},
number = {1},
pages = {249--275},
year = {2004},
publisher = {MIT Press}
}
@article{besag1991bayesian,
title = {Bayesian image restoration, with two applications in spatial statistics},
author = {Besag, Julian and York, Jeremy and Molli{\'e}, Annie},
journal = {Annals of the institute of statistical mathematics},
volume = {43},
number = {1},
pages = {1--20},
year = {1991},
publisher = {Springer}
}
@article{bonilla2007multioutput,
title = {Multi-task Gaussian process prediction},
author = {Bonilla, Edwin V and Chai, Kian and Williams, Christopher},
journal = {Advances in neural information processing systems},
volume = {20},
year = {2007},
url = {https://papers.nips.cc/paper/2007/hash/66368270ffd51418ec58bd793f2d9b1b-Abstract.html}
}
@book{breen1996regression,
title = {Regression models: Censored, sample selected, or truncated data},
author = {Breen, Richard and others},
volume = {111},
year = {1996},
publisher = {Sage}
}
@article{burkner2018,
title = {Modeling Monotonic Effects of Ordinal Predictors in Bayesian Regression Models},
author = {B{\"u}rkner P, \& Charpentier E},
year = {2018},
journal = {PsyArXiv},
url = {https://doi.org/10.31234/osf.io/9qkhj},
doi = {doi:10.31234/osf.io/9qkhj}
}
@inproceedings{caprani2009gev,
title = "Estimating extreme highway bridge traffic load effects",
author = {Colin C. Caprani and Eugene J. OBrien},
year = "2010",
language = "English",
isbn = "9780415475570",
pages = "1 -- 8",
editor = "Hitoshi Furuta and Frangopol, {Dan M} and Masanobu Shinozuka",
booktitle = "Proceedings of the 10th International Conference on Structural Safety and Reliability (ICOSSAR2009)",
publisher = "CRC Press",
url = {https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.6789\&rep=rep1\&type=pdf}
}
@article{caprani2010gev,
title = {The use of predictive likelihood to estimate the distribution of extreme bridge traffic load effect},
journal = {Structural Safety},
volume = {32},
number = {2},
pages = {138--144},
year = {2010},
issn = {0167-4730},
doi = {https://doi.org/10.1016/j.strusafe.2009.09.001},
url = {https://www.sciencedirect.com/science/article/pii/S016747300900071X},
author = {Colin C. Caprani and Eugene J. OBrien}
}
@misc{card1993minimum,
title = {Minimum wages and employment: A case study of the fast food industry in New Jersey and Pennsylvania},
author = {Card, David and Krueger, Alan B},
year = {1993},
publisher = {National Bureau of Economic Research Cambridge, Mass., USA}
}
@misc{carpenter2016hierarchical,
title = {Hierarchical partial pooling for repeated binary trials},
author = {Carpenter, Bob and Gabry, J and Goodrich, B},
year = {2016},
publisher = {Technical report. Retrieved from https://mc-stan. org/users/docum entat ion~\ldots{}}
}
@article{ChernozhukovDoubleML,
author = {Victor, Chernozhukov and Denis, Chetverikov and Mert, Demirer and Esther, Duflo and Christian, Hansen and Whitney, Newey and James, Robins},
title = {{Double/debiased machine learning for treatment and structural parameters}},
volume = {21},
journal = {The Econometrics Journal},
number = {1},
publisher = {OUP},
pages = {1 -- 68},
year = {2018},
doi = {https://doi.org/10.1111/ectj.12097}
}
@book{coles2001gev,
title = "An introduction to statistical modeling of extreme values",
author = "Coles, Stuart",
publisher = "Springer",
series = "Springer Series in Statistics",
edition = 2001,
month = aug,
year = 2001,
address = "London, England",
language = "en",
isbn = {978-1-85233-459-8},
url = {https://doi.org/10.1007/978-1-4471-3675-0}
}
@book{collett2014survival,
title = {Modelling Survival Data in Medical Research},
author = {Collett, David},
year = {2014},
publisher = {CRC Press}
}
@article{collinswilson2019,
title = {Ten simple rules for the computational modeling of behavioral data},
author = {Wilson, Robert C and Collins, Anne GE},
editor = {Behrens, Timothy E},
volume = 8,
year = 2019,
month = {nov},
pub_date = {2019-11-26},
pages = {e49547},
citation = {eLife 2019;8:e49547},
doi = {10.7554/eLife.49547},
abstract = {Computational modeling of behavior has revolutionized psychology and neuroscience. By fitting models to experimental data we can probe the algorithms underlying behavior, find neural correlates of computational variables and better understand the effects of drugs, illness and interventions. But with great power comes great responsibility. Here, we offer ten simple rules to ensure that computational modeling is used with care and yields meaningful insights. In particular, we present a beginner-friendly, pragmatic and details-oriented introduction on how to relate models to data. What, exactly, can a model tell us about the mind? To answer this, we apply our rules to the simplest modeling techniques most accessible to beginning modelers and illustrate them with examples and code available online. However, most rules apply to more advanced techniques. Our hope is that by following our guidelines, researchers will avoid many pitfalls and unleash the power of computational modeling on their own data.},
keywords = {computational modeling, model fitting, validation, reproducibility},
journal = {eLife},
issn = {2050-084X},
publisher = {eLife Sciences Publications, Ltd}
}
@book{cunningham2021causal,
title = {Causal inference: The Mixtape},
author = {Cunningham, Scott},
year = {2021},
publisher = {Yale University Press}
}
@book{daniels2024bnp,
title = {Bayesian Nonparametrics for Causal Inference and Missing Data},
author = {Daniels, Michael and Linero, Antonio and Roy Jason},
year = {2024},
publisher = {CRC Press}
}
@article{Dickey1970,
author = {James M. Dickey and B. P. Lientz},
title = {{The Weighted Likelihood Ratio, Sharp Hypotheses about Chances, the Order of a Markov Chain}},
volume = {41},
journal = {The Annals of Mathematical Statistics},
number = {1},
publisher = {Institute of Mathematical Statistics},
pages = {214 -- 226},
year = {1970},
doi = {10.1214/aoms/1177697203}
}
@article{efron1975data,
title = {Data analysis using Stein's estimator and its generalizations},
author = {Efron, Bradley and Morris, Carl},
journal = {Journal of the American Statistical Association},
volume = {70},
number = {350},
pages = {311--319},
year = {1975},
publisher = {Taylor \& Francis}
}
@book{enders2022,
title = {Applied Missing Data Analysis},
author = {Enders K, Craig},
year = {2022},
publisher = {The Guilford Press}
}
@book{facure2023causal,
title = {Causal Inference in Python},
author = {Facure, Matheus},
year = {2023},
publisher = {O'Reilly}
}
@book{fox2010bayesian,
title = {Bayesian item response modeling: Theory and applications},
author = {Fox, Jean-Paul},
year = {2010},
publisher = {Springer}
}
@book{gelman2006data,
title = {Data analysis using regression and multilevel/hierarchical models},
author = {Gelman, Andrew and Hill, Jennifer},
year = {2006},
publisher = {Cambridge university press}
}
@article{gelman2006multilevel,
title = {Multilevel (hierarchical) modeling: what it can and cannot do},
author = {Gelman, Andrew},
journal = {Technometrics},
volume = {48},
number = {3},
pages = {432--435},
year = {2006},
publisher = {Taylor \& Francis}
}
@article{gelman2008scaling,
title = {Scaling regression inputs by dividing by two standard deviations},
author = {Gelman, Andrew},
journal = {Statistics in medicine},
volume = {27},
number = {15},
pages = {2865--2873},
year = {2008},
publisher = {Wiley Online Library},
doi = {10.1002/sim.3107}
}
@book{gelman2013bayesian,
title = {Bayesian Data Analysis},
publisher = {Chapman and Hall/CRC},
author = {Gelman, Andrew and Carlin, John B. and Stern, Hal S. and Dunson, David B. and Vehtari, Aki and Rubin, Donald B.},
year = {2013}
}
@article{gelman2020bayesian,
title = {Bayesian workflow},
author = {Gelman, Andrew and Vehtari, Aki and Simpson, Daniel and Margossian, Charles C and Carpenter, Bob and Yao, Yuling and Kennedy, Lauren and Gabry, Jonah and B{\"u}rkner, Paul-Christian and Modr{\'a}k, Martin},
journal = {arXiv preprint arXiv:2011.01808},
year = {2020},
url = {https://arxiv.org/abs/2011.01808}
}
@book{gelman2020regression,
title = {Regression and other stories},
author = {Gelman, Andrew and Hill, Jennifer and Vehtari, Aki},
year = {2020},
publisher = {Cambridge University Press}
}
@article{goldberg2001eigentaste,
author = {Ken Goldberg and Theresa Roeder and Chris Perkins},
title = {Eigentaste: A Constant Time Collaborative Filtering Algorithm},
journal = {Information Retrieval},
year = {2001},
volume = {4},
pages = {133--151}
}
@article{goodman1999,
doi = {10.7326/0003-4819-130-12-199906150-00008},
url = {https://doi.org/10.7326/0003-4819-130-12-199906150-00008},
year = {1999},
month = jun,
publisher = {American College of Physicians},
volume = {130},
number = {12},
pages = {995},
author = {Steven N. Goodman},
title = {Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy},
journal = {Annals of Internal Medicine}
}
@article{google_causal_impact2015,
title = {Inferring causal impact using Bayesian structural time-series models},
author = {Kay H. Brodersen and Fabian Gallusser and Jim Koehler and Nicolas Remy and Steven L. Scott},
year = {2015},
journal = {Annals of Applied Statistics},
pages = {247--274},
volume = {9}
}
@misc{harper2015movielens,
title = {The MovieLens Datasets: History and Context},
author = {Harper, F. Maxwell and Konstan, Joseph A.},
journal = {ACM Transactions on Interactive Intelligent Systems},
volume = {5},
number = {4},
pages = {1--19},
year = {2016},
month = {January},
url = {https://doi.org/10.1145/2827872}
}
@book{hayes2017introduction,
title = {Introduction to mediation, moderation, and conditional process analysis: A regression-based approach},
author = {Hayes, Andrew F},
year = {2017},
publisher = {Guilford publications}
}
@book{hernan2020whatif,
title = {Causal Inference: What If},
author = {Hern\'{a}n, MA and Robins, JM},
year = {2020},
publisher = {Chapman \& Hall/CRC}
}
@article{hoffman2014nuts,
title = {The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo},
author = {Hoffman, Matthew and Gelman, Andrew},
year = {2014},
journal = {Journal of Machine Learning Research},
volume = {15},
issue = {1},
pages = {1593--1623},
url = {https://dl.acm.org/doi/10.5555/2627435.2638586}
}
@misc{hogg2010data,
title = {Data analysis recipes: Fitting a model to data},
author = {David W. Hogg and Jo Bovy and Dustin Lang},
year = {2010},
eprint = {1008.4686},
archiveprefix = {arXiv},
primaryclass = {astro-ph.IM}
}
@book{huntington2021effect,
title = {The effect: An introduction to research design and causality},
author = {Huntington-Klein, Nick},
year = {2021},
publisher = {Chapman and Hall/CRC}
}
@online{Huszár2019causal2,
author = {Husz\'{a}r, Ferenc},
title = {Causal Inference 2: Illustrating Interventions via a Toy Example},
year = {2019},
url = {https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/},
urldate = {2023-07-01}
}
@article{iacobucci2016mean,
title = {Mean centering helps alleviate ``micro'' but not ``macro'' multicollinearity},
author = {Iacobucci, Dawn and Schneider, Matthew J and Popovich, Deidre L and Bakamitsos, Georgios A},
journal = {Behavior research methods},
volume = {48},
number = {4},
pages = {1308--1317},
year = {2016},
publisher = {Springer}
}
@article{iacobucci2017mean,
title = {Mean centering, multicollinearity, and moderators in multiple regression: The reconciliation redux},
author = {Iacobucci, Dawn and Schneider, Matthew J and Popovich, Deidre L and Bakamitsos, Georgios A},
journal = {Behavior research methods},
volume = {49},
number = {1},
pages = {403--404},
year = {2017},
publisher = {Springer}
}
@book{ivezić2014astroMLtext,
author = {\v{Z}eljko Ivezi\'{c} and Andrew J. Connolly and Jacob T. VanderPlas and Alexander Gray},
doi = {10.1515/9781400848911},
title = {Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data},
year = {2014},
publisher = {Princeton University Press},
isbn = {9781400848911}
}
@book{james2021statisticallearning,
title = {An Introduction to Statistical Learning},
author = {James, Gareth ad Witten, Daniela and Hastie, Trevor and Tibshirani, Robert},
year = {2021},
publisher = {Springer},
doi = {https://doi.org/10.1007/978-1-0716-1418-1},
issn = {1431-875X},
isbn = {978-1-0716-1420-4}
}
@article{johnson1999,
doi = {10.2307/3802789},
url = {https://doi.org/10.2307/3802789},
year = {1999},
month = jul,
publisher = {{JSTOR}},
volume = {63},
number = {3},
pages = {763},
author = {Douglas H. Johnson},
title = {The Insignificance of Statistical Significance Testing},
journal = {The Journal of Wildlife Management}
}
@online{junpenglao2020,
title = {Partial Missing Multivariate Observation and What to Do With Them},
author = {Lao, Junpeng},
url = {https://discourse.pymc.io/t/partial-missing-multivariate-observation-and-what-to-do-with-them-by-junpeng-lao/6050},
urldate = {2020-10-01},
year = {2020}
}
@manual{kassambara2019datarium,
title = {datarium: Data Bank for Statistical Analysis and Visualization},
author = {Alboukadel Kassambara},
year = {2019},
note = {R package version 0.1.0},
url = {https://CRAN.R-project.org/package=datarium}
}
@book{kemp1985atlas,
author = {Kemp, I. and World Health Organization. and International Agency for Research on Cancer.},
title = {Atlas of cancer in Scotland, 1975-1980 : incidence and epidemiological perspective},
publisher = {World Health Organization ; Distributed for the International Agency for Research on Cancer by Oxford University Press] Lyon : [Oxford, UK ; New York},
pages = {282 p. :},
year = {1985},
type = {Book}
}
@misc{kingma2014autoencoding,
title = {Auto-Encoding Variational Bayes},
author = {Diederik P Kingma and Max Welling},
year = {2014},
eprint = {1312.6114},
archiveprefix = {arXiv},
primaryclass = {stat.ML}
}
@article{koren2009matrixfactorization,
author = {Koren, Yehuda and Bell, Robert and Volinsky, Chris},
journal = {Computer},
title = {Matrix Factorization Techniques for Recommender Systems},
year = {2009},
volume = {42},
number = {8},
pages = {30--37},
doi = {10.1109/MC.2009.263}
}
@article{kruschke2011bayesian,
title = {Bayesian assessment of null values via parameter estimation and model comparison},
author = {Kruschke, John K},
journal = {Perspectives on Psychological Science},
volume = {6},
number = {3},
pages = {299--312},
year = {2011},
publisher = {Sage Publications Sage CA: Los Angeles, CA}
}
@article{kruschke2013,
doi = {10.1037/a0029146},
url = {https://doi.org/10.1037/a0029146},
year = {2013},
publisher = {American Psychological Association ({APA})},
volume = {142},
number = {2},
pages = {573--603},
author = {John K. Kruschke},
title = {Bayesian estimation supersedes the t test.},
journal = {Journal of Experimental Psychology: General}
}
@book{kruschke2014doing,
title = {Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan},
author = {Kruschke, John},
year = {2014},
publisher = {Academic Press}
}
@misc{kucukelbir2015automatic,
title = {Automatic Variational Inference in Stan},
author = {Alp Kucukelbir and Rajesh Ranganath and Andrew Gelman and David M. Blei},
year = {2015},
eprint = {1506.03431},
archiveprefix = {arXiv},
primaryclass = {stat.ML}
}
@book{kurzAppliedLongitudinalDataAnalysis2021,
title = {Applied longitudinal data analysis in brms and the tidyverse},
author = {Kurz, A. Solomon},
year = {2021},
publisher = {Bookdown},
url = {https://bookdown.org/content/4253/}
}
@incollection{leroux2000estimation,
title = {Estimation of disease rates in small areas: a new mixed model for spatial dependence},
author = {Leroux, Brian G and Lei, Xingye and Breslow, Norman},
booktitle = {Statistical models in epidemiology, the environment, and clinical trials},
pages = {179--191},
year = {2000},
publisher = {Springer}
}
@book{levy2020bayesian,
title = {Bayesian Psychometric Modeling},
author = {Levy, Roy and Mislevy, Robert J},
year = {2020},
publisher = {CRC Press}
}
@article{lewandowski2009generating,
title = {Generating random correlation matrices based on vines and extended onion method},
author = {Lewandowski, Daniel and Kurowicka, Dorota and Joe, Harry},
journal = {Journal of multivariate analysis},
volume = {100},
number = {9},
pages = {1989--2001},
year = {2009},
publisher = {Elsevier}
}
@article{LIDDELL2018328,
title = {Analyzing ordinal data with metric models: What could possibly go wrong?},
author = {Torrin M. Liddell and John K. Kruschke},
journal = {Journal of Experimental Social Psychology},
volume = {79},
year = {2018}
}
@book{martin2018bayesian,
title = {Bayesian analysis with Python: introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ},
author = {Martin, Osvaldo},
year = {2018},
publisher = {Packt Publishing Ltd}
}
@book{martin2021bayesian,
title = {Bayesian Modeling and Computation in Python},
author = {Martin, Osvaldo A and Kumar, Ravin and Lao, Junpeng},
year = {2021},
publisher = {Chapman and Hall/CRC},
doi = {10.1201/9781003019169}
}
@article{mcclelland2017multicollinearity,
title = {Multicollinearity is a red herring in the search for moderator variables: A guide to interpreting moderated multiple regression models and a critique of Iacobucci, Schneider, Popovich, and Bakamitsos (2016)},
author = {McClelland, Gary H and Irwin, Julie R and Disatnik, David and Sivan, Liron},
journal = {Behavior research methods},
volume = {49},
number = {1},
pages = {394--402},
year = {2017},
publisher = {Springer}
}
@book{mcelreath2018statistical,
title = {Statistical rethinking: A Bayesian course with examples in R and Stan},
author = {McElreath, Richard},
year = {2018},
publisher = {Chapman and Hall/CRC}
}
@book{mcknulty2020people,
title = {Handbook of Regression Modeling in People Analytics},
author = {McKnulty, Keith},
year = {2020},
publisher = {Chapman and Hall/CRC}
}
@book{Meeker2021,
author = {Meeker, W.Q. and Escobar, L.A. and Pascual, F.G},
publisher = {Wiley},
title = {Statistical Methods for Reliability Data},
year = {2022}
}
@inproceedings{mnih2008advances,
title = {Probabilistic Matrix Factorization},
author = {Mnih, Andriy and Salakhutdinov, Russ R},
booktitle = {Advances in Neural Information Processing Systems},
editor = {J. Platt and D. Koller and Y. Singer and S. Roweis},
publisher = {Curran Associates, Inc.},
url = {https://proceedings.neurips.cc/paper/2007/file/d7322ed717dedf1eb4e6e52a37ea7bcd-Paper.pdf},
volume = {20},
year = {2008}
}
@misc{mnih2013playing,
title = {Playing Atari with Deep Reinforcement Learning},
author = {Volodymyr Mnih and Koray Kavukcuoglu and David Silver and Alex Graves and Ioannis Antonoglou and Daan Wierstra and Martin Riedmiller},
year = {2013},
eprint = {1312.5602},
archiveprefix = {arXiv},
primaryclass = {cs.LG}
}
@book{molak2023ciadip,
title = {Causal Inference and Discovery in Python},
author = {Molak, Aleksander},
year = {2023},
publisher = {Packt Publishing}
}
@book{molnar2019,
title = {Interpretable Machine Learning},
author = {Christoph Molnar},
year = {2019},
subtitle = {A Guide for Making Black Box Models Explainable},
url = {https://christophm.github.io/interpretable-ml-book/},
publisher = {Christoph Molnar}
}
@article{morris2021bym,
title = {Bayesian hierarchical spatial models: Implementing the Besag York Molli\'{e} model in stan},
author = {Mitzi Morris and Katherine Wheeler-Martin and Dan Simpson and Stephen J. Mooney and Andrew Gelman and Charles DiMaggio},
journal = {Spatial and Spatio-temporal Epidemiology},
volume = {31},
pages = {100301},
year = {2019},
issn = {1877-5845},
doi = {https://doi.org/10.1016/j.sste.2019.100301},
url = {https://www.sciencedirect.com/science/article/pii/S1877584518301175}
}
@article{nowlan1992simplifying,
title = {Simplifying Neural Networks By Soft Weight-Sharing},
author = {Nowlan, Steven J and Hinton, Geoffrey E},
journal = {Neural computation},
volume = {4},
number = {4},
pages = {473--493},
year = {1992},
publisher = {MIT Press}
}
@article{nuijten2015default,
title = {A default Bayesian hypothesis test for mediation},
author = {Nuijten, Mich{\`e}le B and Wetzels, Ruud and Matzke, Dora and Dolan, Conor V and Wagenmakers, Eric-Jan},
journal = {Behavior research methods},
volume = {47},
number = {1},
pages = {85--97},
year = {2015},
publisher = {Springer}
}
@online{numpyroBirthdays,
title = {Example: Hilbert space approximation for Gaussian processes},
url = {https://num.pyro.ai/en/stable/examples/hsgp.html}
}
@online{orduz2024Birthdays,
title = {Time Series Modeling with HSGP: Baby Births Example},
author = {Orduz, Juan},
url = {https://juanitorduz.github.io/birthdays/},
urldate = {2024-01-02},
year = {2024}
}
@unpublished{padonou2015polar,
title = {{Polar Gaussian Processes for Predicting on Circular Domains}},
author = {Padonou, Esp{\'e}ran and Roustant, O},
url = {https://hal.archives-ouvertes.fr/hal-01119942},
note = {working paper or preprint},
year = {2015},
month = Feb,
pdf = {https://hal.archives-ouvertes.fr/hal-01119942v1/file/PolarGP_CircularDomains.pdf}
}
@book{pearl1985prob,
title = {Probabilistic Reasoning in Intelligent Systems: Networks of plausible Inference},
author = {Pearl, Judea},
publisher = {Morgan Kaufman},
year = {1985}
}
@book{pearl2000causality,
title = {Causality: Models, reasoning and inference},
author = {Pearl, Judea},
publisher = {Cambridge University Press},
year = {2000},
isbn = {978-0521895606}
}
@book{pearl2016causal,
title = {Causal inference in statistics: A primer},
author = {Glymour, Madelyn and Pearl, Judea and Jewell, Nicholas P},
year = {2016},
publisher = {John Wiley \& Sons}
}
@book{pearl2018why,
title = {The book of why: the new science of cause and effect},
author = {Pearl, Judea and Mackenzie, Dana},
year = {2018},
publisher = {Basic books}
}
@article{penrose1985,
title = {{GENERALIZED} {BODY} {COMPOSITION} {PREDICTION} {EQUATION} {FOR} {MEN} {USING} {SIMPLE} {MEASUREMENT} {TECHNIQUES}},
volume = {17},
issn = {0195-9131},
url = {https://journals.lww.com/acsm-msse/citation/1985/04000/generalized_body_composition_prediction_equation.37.aspx},
abstract = {An abstract is unavailable. This article is available as a PDF only.},
language = {en-US},
number = {2},
urldate = {2023-10-17},
journal = {Medicine \& Science in Sports \& Exercise},
author = {Penrose, K. W. and Nelson, A. G. and Fisher, A. G.},
month = apr,
year = {1985},
pages = {189}
}
@misc{quiroga2022bart,
title = {Bayesian additive regression trees for probabilistic programming},
author = {Quiroga, Miriana and Garay, Pablo G and Alonso, Juan M. and Loyola, Juan Martin and Martin, Osvaldo A},
publisher = {arXiv},
doi = {10.48550/ARXIV.2206.03619},
url = {https://arxiv.org/abs/2206.03619},
keywords = {Computation (stat.CO), FOS: Computer and information sciences, FOS: Computer and information sciences},
year = {2022},
copyright = {Creative Commons Attribution Share Alike 4.0 International}
}
@book{rasmussen2003gaussian,
title = {Gaussian Processes for Machine Learning},
author = {Rasmussen, Carl Edward and Williams, Christopher K. I.},
year = {2006},
isbn = {026218253X},
publisher = {The MIT Press},
url = {https://gaussianprocess.org/gpml/}
}
@article{riebler2016intuitive,
title = {An intuitive Bayesian spatial model for disease mapping that accounts for scaling},
author = {Riebler, Andrea and S{\o}rbye, Sigrunn H and Simpson, Daniel and Rue, H{\aa}vard},
journal = {Statistical methods in medical research},
volume = {25},
number = {4},
pages = {1145--1165},
year = {2016},
publisher = {Sage Publications Sage UK: London, England}
}
@article{riutort2022PracticalHilbertSpaceApproximate,
author = {Riutort-Mayol, Gabriel and B{\"u}rkner, Paul-Christian and Andersen, Michael R. and Solin, Arno and Vehtari, Aki},
doi = {10.1007/s11222-022-10167-2},
journal = {Statistics and Computing},
number = {1},
pages = {17},
title = {Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming},
url = {https://doi.org/10.1007/s11222-022-10167-2},
volume = {33},
year = {2022}
}
@book{roback2021beyond,
title = {Beyond multiple linear regression: Applied generalized linear models and multilevel models in R},
author = {Roback, P., and Legler, J.},
year = {2021},
publisher = {CRC Press},
url = {https://bookdown.org/roback/bookdown-BeyondMLR/}
}
@online{rochford2018,
author = {Austin Rochford},
url = {https://austinrochford.com/posts/2018-11-10-monotonic-predictors.html}
}
@inproceedings{salakhutdinov2008bayesian,
title = {Bayesian Probabilistic Matrix Factorization Using Markov Chain Monte Carlo},
author = {Salakhutdinov, Ruslan and Mnih, Andriy},
booktitle = {Proceedings of the 25th international conference on Machine learning},
pages = {880--887},
year = {2008},
volume = {25}
}
@article{silver2016masteringgo,
title = {Mastering the game of Go with deep neural networks and tree search},
author = {D. Silver, A. Huang, C. Maddison et al.},
journal = {Nature},
volume = {529},
pages = {484--489},
year = {2016},
url = {https://doi.org/10.1038/nature16961}
}
@book{singer2003,
title = {Applied Longitudinal Data Analysis},
author = {Singer .D, Judith and Willett .B, John},
year = {2003},
publisher = {Oxford University Press}
}
@article{solin2020Hilbert,
author = {Solin, Arno and S{\"a}rkk{\"a}, Simo},
doi = {10.1007/s11222-019-09886-w},
journal = {Statistics and Computing},
number = {2},
pages = {419--446},
title = {Hilbert space methods for reduced-rank Gaussian process regression},
url = {https://doi.org/10.1007/s11222-019-09886-w},
volume = {30},
year = {2020}
}
@article{spiller2013spotlights,
title = {Spotlights, floodlights, and the magic number zero: Simple effects tests in moderated regression},
author = {Spiller, Stephen A and Fitzsimons, Gavan J and Lynch Jr, John G and McClelland, Gary H},
journal = {Journal of marketing research},
volume = {50},
number = {2},
pages = {277--288},
year = {2013},
publisher = {SAGE Publications Sage CA: Los Angeles, CA}
}
@online{stucchio2015bayesian,
title = {Bayesian A/B Testing at VWO},
author = {Stucchio, Chris},
year = {2015},
url = {https://vwo.com/downloads/VWO_SmartStats_technical_whitepaper.pdf}
}
@misc{szegedy2014going,
title = {Going Deeper with Convolutions},
author = {Christian Szegedy and Wei Liu and Yangqing Jia and Pierre Sermanet and Scott Reed and Dragomir Anguelov and Dumitru Erhan and Vincent Vanhoucke and Andrew Rabinovich},
year = {2014},
eprint = {1409.4842},
archiveprefix = {arXiv},
primaryclass = {cs.CV}
}
@online{Talebi2022dooperator,
author = {Talebi, Shawhin},
title = {Causal Effects via the Do-operator},
year = {2022},
url = {https://towardsdatascience.com/causal-effects-via-the-do-operator-5415aefc834a},
urldate = {2023-07-01}
}
@article{taylor2018forecasting,
title = {Forecasting at scale},
author = {Taylor, Sean J and Letham, Benjamin},
journal = {The American Statistician},
volume = {72},
number = {1},
pages = {37--45},
year = {2018},
publisher = {Taylor \& Francis},
url = {https://peerj.com/preprints/3190/}
}
@article{terBraak2006markov,
title = {A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces},
author = {ter Braak, Cajo J.F.},
journal = {Statistics and Computing},
number = {16},
pages = {239--249},
year = {2006},
publisher = {Springer},
url = {https://link.springer.com/article/10.1007/s11222-006-8769-1}
}
@article{terBraak2008differential,
title = {Differential Evolution Markov Chain with snooker updater and fewer chains},
author = {ter Braak, Cajo J.F. and Vrugt, Jasper A.},
journal = {Statistics and Computing},
number = {18},
pages = {435--446},
year = {2008},
publisher = {Springer},
url = {https://link.springer.com/content/pdf/10.1007/s11222-008-9104-9.pdf?pdf=button}
}
@book{train2009,
title = {Discrete Choice Methods with Simulation},
author = {Train, Kenneth},
year = {2009},
publisher = {Cambridge}
}
@online{vandenbergSPSS,
author = {van den Berg, R. G},
title = {SPSS Moderation Regression Tutorial},
url = {https://www.spss-tutorials.com/spss-regression-with-moderation-interaction-effect/},
urldate = {2022-03-20}
}
@inproceedings{vanderplas2012astroML,
author = {{Vanderplas}, J.T. and {Connolly}, A.J. and {Ivezi{\'c}}, {\v Z}. and {Gray}, A.},
booktitle = {Conference on Intelligent Data Understanding (CIDU)},
title = {Introduction to astroML: Machine learning for astrophysics},
month = {oct.},
pages = {47--54},
doi = {10.1109/CIDU.2012.6382200},
year = {2012}
}
@online{vehtari2022Birthdays,
title = {Bayesian workflow book - Birthdays},
author = {Vehtari, Aki},
url = {https://avehtari.github.io/casestudies/Birthdays/birthdays.html},
urldate = {2022-03-07},
year = {2022}
}
@online{vieira2022BVAR,
title = {Bayesian Vector Autoregression in PyMC},
author = {Vieira, Ricardo},
url = {https://www.pymc-labs.io/blog-posts/bayesian-vector-autoregression/},
urldate = {2022-12-09}
}
@article{Wagenmakers2010,
title = {Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method},
journal = {Cognitive Psychology},
volume = {60},
number = {3},
pages = {158--189},
year = {2010},
issn = {0010-0285},
doi = {https://doi.org/10.1016/j.cogpsych.2009.12.001},
url = {https://www.sciencedirect.com/science/article/pii/S0010028509000826},
author = {Eric-Jan Wagenmakers and Tom Lodewyckx and Himanshu Kuriyal and Raoul Grasman}
}
@book{wilkinson2005grammar,
title = {The Grammar of Graphics},
author = {Wilkinson, Leland},
year = {2005},
publisher = {Springer},
doi = {https://doi.org/10.1007/0-387-28695-0},
issn = {1431-8784},
isbn = {978-0-387-24544-7}
}
@article{wing2018designing,
title = {Designing difference in difference studies: best practices for public health policy research},
author = {Wing, Coady and Simon, Kosali and Bello-Gomez, Ricardo A},
journal = {Annu Rev Public Health},
volume = {39},
number = {1},
pages = {453--469},
year = {2018}
}
@article{Yao_2018,
doi = {10.1214/17-ba1091},
url = {https://doi.org/10.1214\%2F17-ba1091},
year = 2018,
month = {sep},
publisher = {Institute of Mathematical Statistics},
volume = {13},
number = {3},
author = {Yuling Yao and Aki Vehtari and Daniel Simpson and Andrew Gelman},
title = {Using Stacking to Average Bayesian Predictive Distributions (with Discussion)},
journal = {Bayesian Analysis}
}
@article{Yao_2022,
author = {Yuling Yao and Gregor Pir\v{s} and Aki Vehtari and Andrew Gelman},
title = {{Bayesian Hierarchical Stacking: Some Models Are (Somewhere) Useful}},
volume = {17},
journal = {Bayesian Analysis},
number = {4},
publisher = {International Society for Bayesian Analysis},
pages = {1043 -- 1071},
keywords = {Bayesian hierarchical modeling, conditional prediction, covariate shift, model averaging, prior construction, stacking},
year = {2022},
doi = {10.1214/21-BA1287},
url = {https://doi.org/10.1214/21-BA1287}
}
@article{yuan2009bayesian,
title = {Bayesian mediation analysis.},
author = {Yuan, Ying and MacKinnon, David P},
journal = {Psychological methods},
volume = {14},
number = {4},
pages = {301},
year = {2009},
publisher = {American Psychological Association}
}
@article{zhang2017moderation,
title = {Moderation analysis with missing data in the predictors.},
author = {Zhang, Qian and Wang, Lijuan},
journal = {Psychological methods},
volume = {22},
number = {4},
pages = {649},
year = {2017},
publisher = {American Psychological Association}
}
@article{zhang2021pathfinder,
title = {Pathfinder: Parallel quasi-Newton variational inference},
author = {Zhang, Lu and Carpenter, Bob and Gelman, Andrew and Vehtari, Aki},
journal = {arXiv preprint arXiv:2108.03782},
year = {2021}
}