-
-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathmarginal_model.py
625 lines (508 loc) · 23.4 KB
/
marginal_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
import warnings
from collections.abc import Sequence
import numpy as np
import pymc
import pytensor.tensor as pt
from arviz import InferenceData, dict_to_dataset
from pymc.backends.arviz import coords_and_dims_for_inferencedata, dataset_to_point_list
from pymc.distributions.discrete import Bernoulli, Categorical, DiscreteUniform
from pymc.distributions.transforms import Chain
from pymc.logprob.transforms import IntervalTransform
from pymc.model import Model
from pymc.model.fgraph import (
ModelFreeRV,
ModelValuedVar,
fgraph_from_model,
model_free_rv,
model_from_fgraph,
)
from pymc.pytensorf import collect_default_updates, constant_fold, toposort_replace
from pymc.pytensorf import compile as compile_pymc
from pymc.util import RandomState, _get_seeds_per_chain
from pytensor import In, Out
from pytensor.compile import SharedVariable
from pytensor.graph import (
FunctionGraph,
Variable,
clone_replace,
graph_inputs,
graph_replace,
node_rewriter,
vectorize_graph,
)
from pytensor.graph.rewriting.basic import in2out
from pytensor.tensor import TensorVariable
__all__ = ["MarginalModel", "marginalize"]
from pytensor.tensor.random.type import RandomType
from pytensor.tensor.special import log_softmax
from pymc_extras.distributions import DiscreteMarkovChain
from pymc_extras.model.marginal.distributions import (
MarginalDiscreteMarkovChainRV,
MarginalFiniteDiscreteRV,
MarginalRV,
NonSeparableLogpWarning,
get_domain_of_finite_discrete_rv,
inline_ofg_outputs,
reduce_batch_dependent_logps,
)
from pymc_extras.model.marginal.graph_analysis import (
find_conditional_dependent_rvs,
find_conditional_input_rvs,
is_conditional_dependent,
subgraph_batch_dim_connection,
)
ModelRVs = TensorVariable | Sequence[TensorVariable] | str | Sequence[str]
class MarginalModel(Model):
def __init__(self, *args, **kwargs):
raise TypeError(
"MarginalModel was deprecated in favor of `marginalize` which now returns a PyMC model"
)
def _warn_interval_transform(rv_to_marginalize, replaced_vars: Sequence[ModelValuedVar]) -> None:
for replaced_var in replaced_vars:
if not isinstance(replaced_var.owner.op, ModelValuedVar):
raise TypeError(f"{replaced_var} is not a ModelValuedVar")
if not isinstance(replaced_var.owner.op, ModelFreeRV):
continue
if replaced_var is rv_to_marginalize:
continue
transform = replaced_var.owner.op.transform
if isinstance(transform, IntervalTransform) or (
isinstance(transform, Chain)
and any(isinstance(tr, IntervalTransform) for tr in transform.transform_list)
):
warnings.warn(
f"The transform {transform} for the variable {replaced_var}, which depends on the "
f"marginalized {rv_to_marginalize} may no longer work if bounds depended on other variables.",
UserWarning,
)
def _unique(seq: Sequence) -> list:
"""Copied from https://stackoverflow.com/a/480227"""
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
def marginalize(model: Model, rvs_to_marginalize: ModelRVs) -> MarginalModel:
"""Marginalize a subset of variables in a PyMC model.
Notes
-----
Marginalization functionality is still very restricted. Only finite discrete
variables and some closed from graphs can be marginalized.
Deterministics and Potentials cannot be conditionally dependent on the marginalized variables.
Examples
--------
Marginalize over a single variable
.. code-block:: python
import pymc as pm
from pymc_extras import marginalize
with pm.Model() as m:
p = pm.Beta("p", 1, 1)
x = pm.Bernoulli("x", p=p, shape=(3,))
y = pm.Normal("y", pm.math.switch(x, -10, 10), observed=[10, 10, -10])
with marginalize(m, [x]) as marginal_m:
idata = pm.sample()
Parameters
----------
model : Model
PyMC model to marginalize. Original variables well be cloned.
rvs_to_marginalize : Sequence[TensorVariable]
Variables to marginalize in the returned model.
Returns
-------
marginal_model: Model
PyMC model with the specified variables marginalized.
"""
if isinstance(rvs_to_marginalize, str | Variable):
rvs_to_marginalize = (rvs_to_marginalize,)
rvs_to_marginalize = [model[rv] if isinstance(rv, str) else rv for rv in rvs_to_marginalize]
if not rvs_to_marginalize:
return model
for rv_to_marginalize in rvs_to_marginalize:
if rv_to_marginalize not in model.free_RVs:
raise ValueError(f"Marginalized RV {rv_to_marginalize} is not a free RV in the model")
# rv_op = rv_to_marginalize.owner.op
# if isinstance(rv_op, DiscreteMarkovChain):
# if rv_op.n_lags > 1:
# raise NotImplementedError(
# "Marginalization for DiscreteMarkovChain with n_lags > 1 is not supported"
# )
# if rv_to_marginalize.owner.inputs[0].type.ndim > 2:
# raise NotImplementedError(
# "Marginalization for DiscreteMarkovChain with non-matrix transition probability is not supported"
# )
# elif not isinstance(rv_op, Bernoulli | Categorical | DiscreteUniform):
# raise NotImplementedError(
# f"Marginalization of RV with distribution {rv_to_marginalize.owner.op} is not supported"
# )
fg, memo = fgraph_from_model(model)
rvs_to_marginalize = [memo[rv] for rv in rvs_to_marginalize]
toposort = fg.toposort()
for rv_to_marginalize in sorted(
rvs_to_marginalize,
key=lambda rv: toposort.index(rv.owner),
reverse=True,
):
all_rvs = [node.out for node in fg.toposort() if isinstance(node.op, ModelValuedVar)]
dependent_rvs = find_conditional_dependent_rvs(rv_to_marginalize, all_rvs)
if not dependent_rvs:
# TODO: This should at most be a warning, not an error
raise ValueError(f"No RVs depend on marginalized RV {rv_to_marginalize}")
# Issue warning for IntervalTransform on dependent RVs
for dependent_rv in dependent_rvs:
transform = dependent_rv.owner.op.transform
if isinstance(transform, IntervalTransform) or (
isinstance(transform, Chain)
and any(isinstance(tr, IntervalTransform) for tr in transform.transform_list)
):
warnings.warn(
f"The transform {transform} for the variable {dependent_rv}, which depends on the "
f"marginalized {rv_to_marginalize} may no longer work if bounds depended on other variables.",
UserWarning,
)
# Check that no deterministics or potentials depend on the rv to marginalize
for det in model.deterministics:
if is_conditional_dependent(memo[det], rv_to_marginalize, all_rvs):
raise NotImplementedError(
f"Cannot marginalize {rv_to_marginalize} due to dependent Deterministic {det}"
)
for pot in model.potentials:
if is_conditional_dependent(memo[pot], rv_to_marginalize, all_rvs):
raise NotImplementedError(
f"Cannot marginalize {rv_to_marginalize} due to dependent Potential {pot}"
)
marginalized_rv_input_rvs = find_conditional_input_rvs([rv_to_marginalize], all_rvs)
other_direct_rv_ancestors = [
rv
for rv in find_conditional_input_rvs(dependent_rvs, all_rvs)
if rv is not rv_to_marginalize
]
input_rvs = _unique((*marginalized_rv_input_rvs, *other_direct_rv_ancestors))
marginalize_subgraph(fg, rv_to_marginalize, dependent_rvs, input_rvs)
return model_from_fgraph(fg, mutate_fgraph=True)
def marginalize_subgraph(
fgraph, rv_to_marginalize, dependent_rvs, input_rvs
) -> None:
output_rvs = [rv_to_marginalize, *dependent_rvs]
rng_updates = collect_default_updates(output_rvs, inputs=input_rvs, must_be_shared=False)
outputs = output_rvs + list(rng_updates.values())
inputs = input_rvs + list(rng_updates.keys())
# Add any other shared variable inputs
inputs += collect_shared_vars(output_rvs, blockers=inputs)
inner_inputs = [inp.clone() for inp in inputs]
inner_outputs = clone_replace(outputs, replace=dict(zip(inputs, inner_inputs)))
inner_outputs = remove_model_vars(inner_outputs)
_, _, *dims = rv_to_marginalize.owner.inputs
marginalization_op = MarginalRV(
inputs=inner_inputs,
outputs=inner_outputs,
dims=dims,
n_dependent_rvs=len(dependent_rvs)
)
new_outputs = marginalization_op(*inputs)
assert len(new_outputs) == len(outputs)
for old_output, new_output in zip(outputs, new_outputs):
new_output.name = old_output.name
model_replacements = []
for old_output, new_output in zip(outputs, new_outputs):
if old_output is rv_to_marginalize or not isinstance(old_output.owner.op, ModelValuedVar):
# Replace the marginalized ModelFreeRV (or non model-variables) themselves
var_to_replace = old_output
else:
# Replace the underlying RV, keeping the same value, transform and dims
var_to_replace = old_output.owner.inputs[0]
model_replacements.append((var_to_replace, new_output))
fgraph.replace_all(model_replacements)
@node_rewriter(tracks=[MarginalRV])
def local_unmarginalize(fgraph, node):
unmarginalized_rv, *dependent_rvs_and_rngs = inline_ofg_outputs(node.op, node.inputs)
rngs = [rng for rng in dependent_rvs_and_rngs if isinstance(rng.type, RandomType)]
dependent_rvs = [rv for rv in dependent_rvs_and_rngs if rv not in rngs]
# Wrap the marginalized RV in a FreeRV
# TODO: Preserve dims and transform in MarginalRV
value = unmarginalized_rv.clone()
fgraph.add_input(value)
transform = None
unmarginalized_free_rv = model_free_rv(unmarginalized_rv, value, transform, *node.op.dims)
# Replace references to the marginalized RV with the FreeRV in the dependent RVs
dependent_rvs = graph_replace(dependent_rvs, {unmarginalized_rv: unmarginalized_free_rv})
return [unmarginalized_free_rv, *dependent_rvs, *rngs]
unmarginalize_rewrite = in2out(local_unmarginalize, ignore_newtrees=False)
def unmarginalize(model: Model, rvs_to_unmarginalize: str | Sequence[str] | None = None) -> Model:
"""Unmarginalize a subset of variables in a PyMC model.
Parameters
----------
model : Model
PyMC model to unmarginalize. Original variables well be cloned.
rvs_to_unmarginalize : str or sequence of str, optional
Variables to unmarginalize in the returned model. If None, all variables are
unmarginalized.
Returns
-------
unmarginal_model: Model
Model with the specified variables unmarginalized.
"""
# Unmarginalize all the MarginalRVs
fg, memo = fgraph_from_model(model)
unmarginalize_rewrite(fg)
unmarginalized_model = model_from_fgraph(fg, mutate_fgraph=True)
if rvs_to_unmarginalize is None:
return unmarginalized_model
# Re-marginalize the variables we want to keep marginalized
if not isinstance(rvs_to_unmarginalize, list | tuple):
rvs_to_unmarginalize = (rvs_to_unmarginalize,)
rvs_to_unmarginalize = set(rvs_to_unmarginalize)
old_free_rv_names = set(rv.name for rv in model.free_RVs)
new_free_rv_names = set(
rv.name for rv in unmarginalized_model.free_RVs if rv.name not in old_free_rv_names
)
if rvs_to_unmarginalize - new_free_rv_names:
raise ValueError(
f"Unrecognized rvs_to_unmarginalize: {rvs_to_unmarginalize - new_free_rv_names}"
)
rvs_to_keep_marginalized = tuple(new_free_rv_names - rvs_to_unmarginalize)
return marginalize(unmarginalized_model, rvs_to_keep_marginalized)
def transform_posterior_pts(model, posterior_pts):
"""Create a function from the untransformed space to the transformed space"""
# TODO: This should be a utility in PyMC
transformed_rvs = []
transformed_names = []
for rv in model.free_RVs:
transform = model.rvs_to_transforms.get(rv)
if transform is None:
transformed_rvs.append(rv)
transformed_names.append(rv.name)
else:
transformed_rv = transform.forward(rv, *rv.owner.inputs)
transformed_rvs.append(transformed_rv)
transformed_names.append(model.rvs_to_values[rv].name)
fn = compile_pymc(
inputs=[In(inp, borrow=True) for inp in model.free_RVs],
outputs=[Out(out, borrow=True) for out in transformed_rvs],
)
fn.trust_input = True
# TODO: This should work with vectorized inputs
return [dict(zip(transformed_names, fn(**point))) for point in posterior_pts]
def recover_marginals(
model: Model,
idata: InferenceData,
var_names: Sequence[str] | None = None,
return_samples: bool = True,
extend_inferencedata: bool = True,
random_seed: RandomState = None,
):
"""Computes posterior log-probabilities and samples of marginalized variables
conditioned on parameters of the model given InferenceData with posterior group
When there are multiple marginalized variables, each marginalized variable is
conditioned on both the parameters and the other variables still marginalized
All log-probabilities are within the transformed space
Parameters
----------
model: Model
PyMC model with marginalized variables to recover
idata : InferenceData
InferenceData with posterior group
var_names : sequence of str, optional
List of variable names for which to compute posterior log-probabilities and samples. Defaults to all marginalized variables
return_samples : bool, default True
If True, also return samples of the marginalized variables
extend_inferencedata : bool, default True
Whether to extend the original InferenceData or return a new one
random_seed: int, array-like of int or SeedSequence, optional
Seed used to generating samples
Returns
-------
idata : InferenceData
InferenceData with where a lp_{varname} and {varname} for each marginalized variable in var_names added to the posterior group
.. code-block:: python
import pymc as pm
from pymc_extras import MarginalModel
with MarginalModel() as m:
p = pm.Beta("p", 1, 1)
x = pm.Bernoulli("x", p=p, shape=(3,))
y = pm.Normal("y", pm.math.switch(x, -10, 10), observed=[10, 10, -10])
m.marginalize([x])
idata = pm.sample()
m.recover_marginals(idata, var_names=["x"])
"""
unmarginal_model = unmarginalize(model)
# Find the names of the marginalized variables
model_var_names = set(rv.name for rv in model.free_RVs)
marginalized_rv_names = [
rv.name for rv in unmarginal_model.free_RVs if rv.name not in model_var_names
]
if var_names is None:
var_names = marginalized_rv_names
var_names = [var if isinstance(var, str) else var.name for var in var_names]
var_names_to_recover = [name for name in marginalized_rv_names if name in var_names]
missing_names = [name for name in var_names_to_recover if name not in marginalized_rv_names]
if missing_names:
raise ValueError(f"Unrecognized var_names: {missing_names}")
if return_samples and random_seed is not None:
seeds = _get_seeds_per_chain(random_seed, len(var_names_to_recover))
else:
seeds = [None] * len(var_names_to_recover)
posterior_pts, stacked_dims = dataset_to_point_list(
# Remove Deterministics
idata.posterior[[rv.name for rv in model.free_RVs]],
sample_dims=("chain", "draw"),
)
transformed_posterior_pts = transform_posterior_pts(model, posterior_pts)
rv_dict = {}
rv_dims = {}
for seed, var_name_to_recover in zip(seeds, var_names_to_recover):
var_to_recover = unmarginal_model[var_name_to_recover]
supported_dists = (Bernoulli, Categorical, DiscreteUniform)
if not isinstance(var_to_recover.owner.op, supported_dists):
raise NotImplementedError(
f"RV with distribution {var_to_recover.owner.op} cannot be recovered. "
f"Supported distribution include {supported_dists}"
)
other_marginalized_rvs_names = marginalized_rv_names.copy()
other_marginalized_rvs_names.remove(var_name_to_recover)
dependent_rvs = [
rv
for rv in find_conditional_dependent_rvs(var_to_recover, unmarginal_model.basic_RVs)
if rv.name not in other_marginalized_rvs_names
]
# Handle batch dims for marginalized value and its dependent RVs
dependent_rvs_dim_connections = subgraph_batch_dim_connection(var_to_recover, dependent_rvs)
marginalized_model = marginalize(unmarginal_model, other_marginalized_rvs_names)
marginalized_var_to_recover = marginalized_model[var_name_to_recover]
dependent_rvs = [marginalized_model[rv.name] for rv in dependent_rvs]
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=NonSeparableLogpWarning)
logps = marginalized_model.logp(
vars=[marginalized_var_to_recover, *dependent_rvs], sum=False
)
marginalized_logp, *dependent_logps = logps
joint_logp = marginalized_logp + reduce_batch_dependent_logps(
dependent_rvs_dim_connections,
[dependent_var.owner.op for dependent_var in dependent_rvs],
dependent_logps,
)
marginalized_value = marginalized_model.rvs_to_values[marginalized_var_to_recover]
other_values = [v for v in marginalized_model.value_vars if v is not marginalized_value]
rv_shape = constant_fold(tuple(var_to_recover.shape), raise_not_constant=False)
rv_domain = get_domain_of_finite_discrete_rv(var_to_recover)
rv_domain_tensor = pt.moveaxis(
pt.full(
(*rv_shape, len(rv_domain)),
rv_domain,
dtype=var_to_recover.dtype,
),
-1,
0,
)
batched_joint_logp = vectorize_graph(
joint_logp,
replace={marginalized_value: rv_domain_tensor},
)
batched_joint_logp = pt.moveaxis(batched_joint_logp, 0, -1)
joint_logp_norm = log_softmax(batched_joint_logp, axis=-1)
if return_samples:
rv_draws = Categorical.dist(logit_p=batched_joint_logp)
if isinstance(var_to_recover.owner.op, DiscreteUniform):
rv_draws += rv_domain[0]
outputs = [joint_logp_norm, rv_draws]
else:
outputs = joint_logp_norm
rv_loglike_fn = compile_pymc(
inputs=other_values,
outputs=outputs,
on_unused_input="ignore",
random_seed=seed,
)
logvs = [rv_loglike_fn(**vs) for vs in transformed_posterior_pts]
if return_samples:
logps, samples = zip(*logvs)
logps = np.asarray(logps)
samples = np.asarray(samples)
rv_dict[var_name_to_recover] = samples.reshape(
tuple(len(coord) for coord in stacked_dims.values()) + samples.shape[1:],
)
else:
logps = np.asarray(logvs)
rv_dict["lp_" + var_name_to_recover] = logps.reshape(
tuple(len(coord) for coord in stacked_dims.values()) + logps.shape[1:],
)
if var_name_to_recover in unmarginal_model.named_vars_to_dims:
rv_dims[var_name_to_recover] = list(
unmarginal_model.named_vars_to_dims[var_name_to_recover]
)
rv_dims["lp_" + var_name_to_recover] = rv_dims[var_name_to_recover] + [
"lp_" + var_name_to_recover + "_dim"
]
coords, dims = coords_and_dims_for_inferencedata(unmarginal_model)
dims.update(rv_dims)
rv_dataset = dict_to_dataset(
rv_dict,
library=pymc,
dims=dims,
coords=coords,
skip_event_dims=True,
)
if extend_inferencedata:
idata.posterior = idata.posterior.assign(rv_dataset)
return idata
else:
return rv_dataset
def collect_shared_vars(outputs, blockers):
return [
inp
for inp in graph_inputs(outputs, blockers=blockers)
if (isinstance(inp, SharedVariable) and inp not in blockers)
]
def remove_model_vars(vars):
"""Remove ModelVars from the graph of vars."""
model_vars = [var for var in vars if isinstance(var.owner.op, ModelValuedVar)]
replacements = [(model_var, model_var.owner.inputs[0]) for model_var in model_vars]
fgraph = FunctionGraph(outputs=vars, clone=False)
toposort_replace(fgraph, replacements)
return fgraph.outputs
def replace_finite_discrete_marginal_subgraph(
fgraph, rv_to_marginalize, dependent_rvs, input_rvs
) -> None:
# If the marginalized RV has multiple dimensions, check that graph between
# marginalized RV and dependent RVs does not mix information from batch dimensions
# (otherwise logp would require enumerating over all combinations of batch dimension values)
try:
dependent_rvs_dim_connections = subgraph_batch_dim_connection(
rv_to_marginalize, dependent_rvs
)
except (ValueError, NotImplementedError) as e:
# For the perspective of the user this is a NotImplementedError
raise NotImplementedError(
"The graph between the marginalized and dependent RVs cannot be marginalized efficiently. "
"You can try splitting the marginalized RV into separate components and marginalizing them separately."
) from e
output_rvs = [rv_to_marginalize, *dependent_rvs]
rng_updates = collect_default_updates(output_rvs, inputs=input_rvs, must_be_shared=False)
outputs = output_rvs + list(rng_updates.values())
inputs = input_rvs + list(rng_updates.keys())
# Add any other shared variable inputs
inputs += collect_shared_vars(output_rvs, blockers=inputs)
inner_inputs = [inp.clone() for inp in inputs]
inner_outputs = clone_replace(outputs, replace=dict(zip(inputs, inner_inputs)))
inner_outputs = remove_model_vars(inner_outputs)
if isinstance(inner_outputs[0].owner.op, DiscreteMarkovChain):
marginalize_constructor = MarginalDiscreteMarkovChainRV
else:
marginalize_constructor = MarginalFiniteDiscreteRV
_, _, *dims = rv_to_marginalize.owner.inputs
marginalization_op = marginalize_constructor(
inputs=inner_inputs,
outputs=inner_outputs,
dims_connections=dependent_rvs_dim_connections,
dims=dims,
)
new_outputs = marginalization_op(*inputs)
for old_output, new_output in zip(outputs, new_outputs):
new_output.name = old_output.name
model_replacements = []
for old_output, new_output in zip(outputs, new_outputs):
if old_output is rv_to_marginalize or not isinstance(old_output.owner.op, ModelValuedVar):
# Replace the marginalized ModelFreeRV (or non model-variables) themselves
var_to_replace = old_output
else:
# Replace the underlying RV, keeping the same value, transform and dims
var_to_replace = old_output.owner.inputs[0]
model_replacements.append((var_to_replace, new_output))
fgraph.replace_all(model_replacements)