-
-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathpartial_order.py
227 lines (179 loc) · 8.21 KB
/
partial_order.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright 2025 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pytensor.tensor as pt
from pymc.logprob.transforms import Transform
__all__ = ["PartialOrder"]
def dtype_minval(dtype):
"""Find the minimum value for a given dtype"""
return np.iinfo(dtype).min if np.issubdtype(dtype, np.integer) else np.finfo(dtype).min
def padded_where(x, to_len, padval=-1):
"""A padded version of np.where"""
w = np.where(x)
return np.concatenate([w[0], np.full(to_len - len(w[0]), padval)])
class PartialOrder(Transform):
"""Create a PartialOrder transform
A more flexible version of the pymc ordered transform that
allows specifying a (strict) partial order on the elements.
Examples
--------
.. code:: python
import numpy as np
import pymc as pm
import pymc_extras as pmx
# Define two partial orders on 4 elements
# am[i,j] = 1 means i < j
adj_mats = np.array([
# 0 < {1, 2} < 3
[[0, 1, 1, 0],
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 0]],
# 1 < 0 < 3 < 2
[[0, 0, 0, 1],
[1, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 1, 0]],
])
# Create the partial order from the adjacency matrices
po = pmx.PartialOrder(adj_mats)
with pm.Model() as model:
# Generate 3 samples from both partial orders
pm.Normal("po_vals", shape=(3,2,4), transform=po,
initval=po.initvals((3,2,4)))
idata = pm.sample()
# Verify that for first po, the zeroth element is always the smallest
assert (idata.posterior['po_vals'][:,:,:,0,0] <
idata.posterior['po_vals'][:,:,:,0,1:]).all()
# Verify that for second po, the second element is always the largest
assert (idata.posterior['po_vals'][:,:,:,1,2] >=
idata.posterior['po_vals'][:,:,:,1,:]).all()
Technical notes
----------------
Partial order needs to be strict, i.e. without equalities.
A DAG defining the partial order is sufficient, as transitive closure is automatically computed.
Code works in O(N*D) in runtime, but takes O(N^3) in initialization,
where N is the number of nodes in the dag and D is the maximum
in-degree of a node in the transitive reduction.
"""
name = "partial_order"
def __init__(self, adj_mat):
"""
Initialize the PartialOrder transform
Parameters
----------
adj_mat: ndarray
adjacency matrix for the DAG that generates the partial order,
where ``adj_mat[i][j] = 1`` denotes ``i < j``.
Note this also accepts multiple DAGs if RV is multidimensional
"""
# Basic input checks
if adj_mat.ndim < 2:
raise ValueError("Adjacency matrix must have at least 2 dimensions")
if adj_mat.shape[-2] != adj_mat.shape[-1]:
raise ValueError("Adjacency matrix is not square")
if adj_mat.min() != 0 or adj_mat.max() != 1:
raise ValueError("Adjacency matrix must contain only 0s and 1s")
# Create index over the first ellipsis dimensions
idx = np.ix_(*[np.arange(s) for s in adj_mat.shape[:-2]])
# Transitive closure using Floyd-Warshall
tc = adj_mat.astype(bool)
for k in range(tc.shape[-1]):
tc |= np.logical_and(tc[..., :, k, None], tc[..., None, k, :])
# Check if the dag is acyclic
if np.any(tc.diagonal(axis1=-2, axis2=-1)):
raise ValueError("Partial order contains equalities")
# Transitive reduction using the closure
# This gives the minimum description of the partial order
# This is to minmax the input degree
adj_mat = tc * (1 - np.matmul(tc, tc))
# Find the maximum in-degree of the reduced dag
dag_idim = adj_mat.sum(axis=-2).max()
# Topological sort
ts_inds = np.zeros(adj_mat.shape[:-1], dtype=int)
dm = adj_mat.copy()
for i in range(adj_mat.shape[1]):
assert dm.sum(axis=-2).min() == 0 # DAG is acyclic
nind = np.argmin(dm.sum(axis=-2), axis=-1)
dm[(*idx, slice(None), nind)] = 1 # Make nind not show up again
dm[(*idx, nind, slice(None))] = 0 # Allow it's children to show
ts_inds[(*idx, i)] = nind
self.ts_inds = ts_inds
# Change the dag to adjacency lists (with -1 for NA)
dag_T = np.apply_along_axis(padded_where, axis=-2, arr=adj_mat, padval=-1, to_len=dag_idim)
self.dag = np.swapaxes(dag_T, -2, -1)
self.is_start = np.all(self.dag[..., :, :] == -1, axis=-1)
def initvals(self, shape=None, lower=-1, upper=1):
"""
Create a set of appropriate initial values for the variable.
NB! It is important that proper initial values are used,
as only properly ordered values are in the range of the transform.
Parameters
----------
shape: tuple, default None
shape of the initial values. If None, adj_mat[:-1] is used
lower: float, default -1
lower bound for the initial values
upper: float, default 1
upper bound for the initial values
Returns
-------
vals: ndarray
initial values for the transformed variable
"""
if shape is None:
shape = self.dag.shape[:-1]
if shape[-len(self.dag.shape[:-1]) :] != self.dag.shape[:-1]:
raise ValueError("Shape must match the shape of the adjacency matrix")
# Create the initial values
vals = np.linspace(lower, upper, self.dag.shape[-2])
inds = np.argsort(self.ts_inds, axis=-1)
ivals = vals[inds]
# Expand the initial values to the extra dimensions
extra_dims = shape[: -len(self.dag.shape[:-1])]
ivals = np.tile(ivals, extra_dims + tuple([1] * len(self.dag.shape[:-1])))
return ivals
def backward(self, value, *inputs):
minv = dtype_minval(value.dtype)
x = pt.concatenate(
[pt.zeros_like(value), pt.full(value.shape[:-1], minv)[..., None]], axis=-1
)
# Indices to allow broadcasting the max over the last dimension
idx = np.ix_(*[np.arange(s) for s in self.dag.shape[:-2]])
idx2 = tuple(np.tile(i[:, None], self.dag.shape[-1]) for i in idx)
# Has to be done stepwise as next steps depend on previous values
# Also has to be done in topological order, hence the ts_inds
for i in range(self.dag.shape[-2]):
tsi = self.ts_inds[..., i]
if len(tsi.shape) == 0:
tsi = int(tsi) # if shape 0, it's a scalar
ni = (*idx, tsi) # i-th node in topological order
eni = (Ellipsis, *ni)
ist = self.is_start[ni]
mval = pt.max(x[(Ellipsis, *idx2, self.dag[ni])], axis=-1)
x = pt.set_subtensor(x[eni], ist * value[eni] + (1 - ist) * (mval + pt.exp(value[eni])))
return x[..., :-1]
def forward(self, value, *inputs):
y = pt.zeros_like(value)
minv = dtype_minval(value.dtype)
vx = pt.concatenate([value, pt.full(value.shape[:-1], minv)[..., None]], axis=-1)
# Indices to allow broadcasting the max over the last dimension
idx = np.ix_(*[np.arange(s) for s in self.dag.shape[:-2]])
idx = tuple(np.tile(i[:, None, None], self.dag.shape[-2:]) for i in idx)
y = self.is_start * value + (1 - self.is_start) * (
pt.log(value - pt.max(vx[(Ellipsis, *idx, self.dag[..., :])], axis=-1))
)
return y
def log_jac_det(self, value, *inputs):
return pt.sum(value * (1 - self.is_start), axis=-1)