-
-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathtest_transform.py
77 lines (68 loc) · 2.61 KB
/
test_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright 2025 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pymc as pm
from pymc_extras.distributions.transforms import PartialOrder
class TestPartialOrder:
adj_mats = np.array(
[
# 0 < {1, 2} < 3
[[0, 1, 1, 0], [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 0]],
# 1 < 0 < 3 < 2
[[0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0]],
]
)
valid_values = np.array([[0, 2, 1, 3], [1, 0, 3, 2]], dtype=float)
# Test that forward and backward are inverses of eachother
# And that it works when extra dimensions are added in data
def test_forward_backward_dimensionality(self):
po = PartialOrder(self.adj_mats)
po0 = PartialOrder(self.adj_mats[0])
vv = self.valid_values
vv0 = self.valid_values[0]
testsets = [
(vv, po),
(po.initvals(), po),
(vv0, po0),
(po0.initvals(), po0),
(np.tile(vv0, (2, 1)), po0),
(np.tile(vv0, (2, 3, 2, 1)), po0),
(np.tile(vv, (2, 3, 2, 1, 1)), po),
]
for vv, po in testsets:
fw = po.forward(vv)
bw = po.backward(fw)
np.testing.assert_allclose(bw.eval(), vv)
def test_sample_model(self):
po = PartialOrder(self.adj_mats)
with pm.Model() as model:
x = pm.Normal(
"x",
size=(3, 2, 4),
transform=po,
initval=po.initvals(shape=(3, 2, 4), lower=-1, upper=1),
)
idata = pm.sample()
# Check that the order constraints are satisfied
# Move chain, draw and "3" dimensions to the back
xvs = idata.posterior.x.values.transpose(3, 4, 0, 1, 2)
x0 = xvs[0] # 0 < {1, 2} < 3
assert (
(x0[0] < x0[1]).all()
and (x0[0] < x0[2]).all()
and (x0[1] < x0[3]).all()
and (x0[2] < x0[3]).all()
)
x1 = xvs[1] # 1 < 0 < 3 < 2
assert (x1[1] < x1[0]).all() and (x1[0] < x1[3]).all() and (x1[3] < x1[2]).all()