|
1 | 1 | import warnings
|
2 |
| -from typing import Sequence |
| 2 | +from typing import Sequence, Union |
3 | 3 |
|
4 | 4 | import numpy as np
|
5 | 5 | import pymc
|
|
25 | 25 | from pytensor.tensor.shape import Shape
|
26 | 26 | from pytensor.tensor.special import log_softmax
|
27 | 27 |
|
28 |
| -__all__ = ["MarginalModel"] |
| 28 | +__all__ = ["MarginalModel", "marginalize"] |
29 | 29 |
|
30 | 30 | from pymc_experimental.distributions import DiscreteMarkovChain
|
31 | 31 |
|
| 32 | +ModelRVs = TensorVariable | Sequence[TensorVariable] | str | Sequence[str] |
| 33 | + |
32 | 34 |
|
33 | 35 | class MarginalModel(Model):
|
34 | 36 | """Subclass of PyMC Model that implements functionality for automatic
|
@@ -207,35 +209,50 @@ def logp(self, vars=None, **kwargs):
|
207 | 209 | vars = [m[var.name] for var in vars]
|
208 | 210 | return m._logp(vars=vars, **kwargs)
|
209 | 211 |
|
210 |
| - def clone(self): |
211 |
| - m = MarginalModel(coords=self.coords) |
212 |
| - model_vars = self.basic_RVs + self.potentials + self.deterministics + self.marginalized_rvs |
213 |
| - data_vars = [var for name, var in self.named_vars.items() if var not in model_vars] |
| 212 | + @staticmethod |
| 213 | + def from_model(model: Union[Model, "MarginalModel"]) -> "MarginalModel": |
| 214 | + new_model = MarginalModel(coords=model.coords) |
| 215 | + if isinstance(model, MarginalModel): |
| 216 | + marginalized_rvs = model.marginalized_rvs |
| 217 | + marginalized_named_vars_to_dims = model._marginalized_named_vars_to_dims |
| 218 | + else: |
| 219 | + marginalized_rvs = [] |
| 220 | + marginalized_named_vars_to_dims = {} |
| 221 | + |
| 222 | + model_vars = model.basic_RVs + model.potentials + model.deterministics + marginalized_rvs |
| 223 | + data_vars = [var for name, var in model.named_vars.items() if var not in model_vars] |
214 | 224 | vars = model_vars + data_vars
|
215 | 225 | cloned_vars = clone_replace(vars)
|
216 | 226 | vars_to_clone = {var: cloned_var for var, cloned_var in zip(vars, cloned_vars)}
|
217 |
| - m.vars_to_clone = vars_to_clone |
218 |
| - |
219 |
| - m.named_vars = treedict({name: vars_to_clone[var] for name, var in self.named_vars.items()}) |
220 |
| - m.named_vars_to_dims = self.named_vars_to_dims |
221 |
| - m.values_to_rvs = {i: vars_to_clone[rv] for i, rv in self.values_to_rvs.items()} |
222 |
| - m.rvs_to_values = {vars_to_clone[rv]: i for rv, i in self.rvs_to_values.items()} |
223 |
| - m.rvs_to_transforms = {vars_to_clone[rv]: i for rv, i in self.rvs_to_transforms.items()} |
224 |
| - m.rvs_to_initial_values = { |
225 |
| - vars_to_clone[rv]: i for rv, i in self.rvs_to_initial_values.items() |
| 227 | + new_model.vars_to_clone = vars_to_clone |
| 228 | + |
| 229 | + new_model.named_vars = treedict( |
| 230 | + {name: vars_to_clone[var] for name, var in model.named_vars.items()} |
| 231 | + ) |
| 232 | + new_model.named_vars_to_dims = model.named_vars_to_dims |
| 233 | + new_model.values_to_rvs = {vv: vars_to_clone[rv] for vv, rv in model.values_to_rvs.items()} |
| 234 | + new_model.rvs_to_values = {vars_to_clone[rv]: vv for rv, vv in model.rvs_to_values.items()} |
| 235 | + new_model.rvs_to_transforms = { |
| 236 | + vars_to_clone[rv]: tr for rv, tr in model.rvs_to_transforms.items() |
| 237 | + } |
| 238 | + new_model.rvs_to_initial_values = { |
| 239 | + vars_to_clone[rv]: iv for rv, iv in model.rvs_to_initial_values.items() |
226 | 240 | }
|
227 |
| - m.free_RVs = [vars_to_clone[rv] for rv in self.free_RVs] |
228 |
| - m.observed_RVs = [vars_to_clone[rv] for rv in self.observed_RVs] |
229 |
| - m.potentials = [vars_to_clone[pot] for pot in self.potentials] |
230 |
| - m.deterministics = [vars_to_clone[det] for det in self.deterministics] |
| 241 | + new_model.free_RVs = [vars_to_clone[rv] for rv in model.free_RVs] |
| 242 | + new_model.observed_RVs = [vars_to_clone[rv] for rv in model.observed_RVs] |
| 243 | + new_model.potentials = [vars_to_clone[pot] for pot in model.potentials] |
| 244 | + new_model.deterministics = [vars_to_clone[det] for det in model.deterministics] |
231 | 245 |
|
232 |
| - m.marginalized_rvs = [vars_to_clone[rv] for rv in self.marginalized_rvs] |
233 |
| - m._marginalized_named_vars_to_dims = self._marginalized_named_vars_to_dims |
234 |
| - return m |
| 246 | + new_model.marginalized_rvs = [vars_to_clone[rv] for rv in marginalized_rvs] |
| 247 | + new_model._marginalized_named_vars_to_dims = marginalized_named_vars_to_dims |
| 248 | + return new_model |
| 249 | + |
| 250 | + def clone(self): |
| 251 | + return self.from_model(self) |
235 | 252 |
|
236 | 253 | def marginalize(
|
237 | 254 | self,
|
238 |
| - rvs_to_marginalize: TensorVariable | Sequence[TensorVariable] | str | Sequence[str], |
| 255 | + rvs_to_marginalize: ModelRVs, |
239 | 256 | ):
|
240 | 257 | if not isinstance(rvs_to_marginalize, Sequence):
|
241 | 258 | rvs_to_marginalize = (rvs_to_marginalize,)
|
@@ -491,6 +508,35 @@ def transform_input(inputs):
|
491 | 508 | return rv_dataset
|
492 | 509 |
|
493 | 510 |
|
| 511 | +def marginalize(model: Model, rvs_to_marginalize: ModelRVs) -> MarginalModel: |
| 512 | + """Marginalize a subset of variables in a PyMC model. |
| 513 | +
|
| 514 | + This creates a class of `MarginalModel` from an existing `Model`, with the specified |
| 515 | + variables marginalized. |
| 516 | +
|
| 517 | + See documentation for `MarginalModel` for more information. |
| 518 | +
|
| 519 | + Parameters |
| 520 | + ---------- |
| 521 | + model : Model |
| 522 | + PyMC model to marginalize. Original variables well be cloned. |
| 523 | + rvs_to_marginalize : Sequence[TensorVariable] |
| 524 | + Variables to marginalize in the returned model. |
| 525 | +
|
| 526 | + Returns |
| 527 | + ------- |
| 528 | + marginal_model: MarginalModel |
| 529 | + Marginal model with the specified variables marginalized. |
| 530 | + """ |
| 531 | + if not isinstance(rvs_to_marginalize, tuple | list): |
| 532 | + rvs_to_marginalize = (rvs_to_marginalize,) |
| 533 | + rvs_to_marginalize = [rv if isinstance(rv, str) else rv.name for rv in rvs_to_marginalize] |
| 534 | + |
| 535 | + marginal_model = MarginalModel.from_model(model) |
| 536 | + marginal_model.marginalize(rvs_to_marginalize) |
| 537 | + return marginal_model |
| 538 | + |
| 539 | + |
494 | 540 | class MarginalRV(SymbolicRandomVariable):
|
495 | 541 | """Base class for Marginalized RVs"""
|
496 | 542 |
|
|
0 commit comments