diff --git a/notebooks/modelbuilder_example.ipynb b/notebooks/modelbuilder_example.ipynb new file mode 100644 index 00000000..99bf13af --- /dev/null +++ b/notebooks/modelbuilder_example.ipynb @@ -0,0 +1,548 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n" + ] + } + ], + "source": [ + "from typing import Dict\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import networkx as nx\n", + "import numpy as np\n", + "import pandas as pd\n", + "from pandas import DataFrame, Series\n", + "import pymc as pm\n", + "from pymc import model_to_networkx, model_to_graphviz\n", + "from pymc_experimental.model_builder import ModelBuilder" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "class HierarchicalModel(ModelBuilder):\n", + "\n", + " _model_type = \"HierarchicalModel\"\n", + " version = \"0.01\"\n", + " def _data_setter(self, X, y=None):\n", + " with self.model:\n", + " pm.set_data({\"x\": X[\"x\"].values})\n", + " try: # if y values in new data\n", + " pm.set_data({\"y\": y.values})\n", + " except: # dummies otherwise\n", + " pm.set_data({\"y\": np.zeros(len(X))})\n", + "\n", + " @property\n", + " def output_var(self):\n", + " return \"target\"\n", + "\n", + " @property\n", + " def default_model_config(self) -> Dict:\n", + " return {\"mu_mu_a\": 0, \"sigma_mu_a\": 10, \"sigma_a\": 10, \"mu_mu_b\": 0,\"sigma_mu_b\": 10, \"sigma_b\": 10, \"sigma_sigma\": 3}\n", + "\n", + " @property\n", + " def default_sampler_config(self):\n", + " return {\n", + " 'draws': 1_000,\n", + " 'tune': 1_000,\n", + " 'chains': 1,\n", + " 'cores': 1,\n", + " 'target_accept': 0.95,\n", + " }\n", + " \n", + " def set_model_coords_from_data(self, X):\n", + " group = X['group'].unique().tolist()\n", + " self.model_coords = {'group':group}\n", + " \n", + " @classmethod\n", + " def preprocess_model_data(self, X: DataFrame | Series, y: Series = None):\n", + " X_prep = X.copy()\n", + " X_prep['x'] = (X_prep['x'] - X_prep['x'].mean())/X_prep['x'].std()\n", + " if y is None:\n", + " return X_prep\n", + " return X_prep, y.copy()\n", + "\n", + "\n", + " def build_model(self, X: DataFrame, y: Series, **kwargs) -> None:\n", + " with pm.Model(coords = self.model_coords) as self.model:\n", + " # Data\n", + " X_ = pm.MutableData(\"x\",X[\"x\"].values)\n", + " target_ = pm.MutableData('y',y)\n", + " group_indices = np.array([self.model_coords['group'].index(item) for item in X[\"group\"]])\n", + "\n", + " # hyperparams\n", + " mu_mu_a = self.model_config['mu_mu_a']\n", + " sigma_mu_a = self.model_config['sigma_mu_a']\n", + " sigma_a = self.model_config['sigma_a']\n", + "\n", + " mu_mu_b = self.model_config['mu_mu_b']\n", + " sigma_mu_b = self.model_config['sigma_mu_b']\n", + " sigma_b = self.model_config['sigma_b']\n", + " sigma_sigma = self.model_config['sigma_sigma']\n", + "\n", + " # priors\n", + " mu_a = pm.Normal('mu_a', mu_mu_a, sigma_mu_a)\n", + " xi_a = pm.Normal('xi_a', 0,1,dims='group')\n", + " a = pm.Deterministic('a', mu_a + sigma_a*xi_a, dims='group')\n", + "\n", + " mu_b = pm.Normal('mu_b', mu_mu_b, sigma_mu_b)\n", + " xi_b = pm.Normal('xi_b', 0,1, dims = 'group')\n", + " b = pm.Deterministic('b', mu_b + xi_b * sigma_b, dims='group')\n", + "\n", + " sigma = pm.HalfNormal('sigma', sigma=sigma_sigma)\n", + "\n", + " # likelihood\n", + " pm.Normal('target', mu=a[group_indices]+b[group_indices]*X_, sigma=sigma, observed = target_)\n", + " \n", + " @property\n", + " def _serializable_model_config(self) -> Dict[str, int | float | Dict]:\n", + " return self.model_config " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def generate_data(n_samples=100, n_groups=2, a = None, b = None):\n", + " if (a is None ) and (b is None):\n", + " a = np.random.randn(n_groups)\n", + " b = np.random.randn(n_groups)\n", + " group = np.random.choice(n_groups, n_samples).astype(int)\n", + " x = np.linspace(start=-5, stop=5, num=n_samples)\n", + " y = a[group] + b[group] * x + np.random.randn(n_samples)\n", + " X = pd.DataFrame({'x':x,'group':group})\n", + " y = pd.Series(y, name='y')\n", + " return X, y, a, b" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAPHRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMHJjMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy9ytYEsAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9PklEQVR4nOydd3wUZf7HPzObTSWFJEASRIgUIYSqhCoqBxJBsKCeKCreHSrlEPA8wFORwxM4C4goqGdHQMQCWIIgSk2ISpEYEMGA/iChJKSQutmZ3x+zs5mdnfLM7Gx2Q573y7wwmynPzM7M851v+XwZnud5UCgUCoVCoQQANtADoFAoFAqF0nyhhgiFQqFQKJSAQQ0RCoVCoVAoAYMaIhQKhUKhUAIGNUQoFAqFQqEEDGqIUCgUCoVCCRjUEKFQKBQKhRIwqCFCoVAoFAolYIQEegBacByH06dPIzo6GgzDBHo4FAqFQqFQCOB5HhUVFUhJSQHLavs8gtoQOX36NNq1axfoYVAoFAqFQjHBH3/8gcsuu0xzmaA2RKKjowEIBxITExPg0VAoFAqFQiGhvLwc7dq1c8/jWvjVEHE6nXj66aexatUqFBUVISUlBRMnTsQTTzxBFGoRl4mJiaGGCIVCoVAoTQySud6vhsjixYuxYsUKvPvuu+jevTt++OEHPPDAA4iNjcX06dP9uWsKhUKhUChNAL8aInv27MHNN9+M0aNHAwA6dOiANWvWIDc315+7pVAoFAqF0kTwa/nuoEGD8M033+Do0aMAgIMHD2LXrl248cYbFZevra1FeXm5xw+FQqFQKJRLF796RObMmYPy8nJ07doVNpsNTqcT//nPf3DPPfcoLr9w4ULMnz/fn0OiUCgUCsXv8DyP+vp6OJ3OQA/Fb9jtdthsNp+341dDZN26dfjggw+wevVqdO/eHQcOHMCMGTOQkpKC+++/32v5uXPnYtasWe7fxaxbCoVCoVCaCnV1dSgsLERVVVWgh+JXGIbBZZddhhYtWvi2HZ7neYvG5EW7du0wZ84cTJ061f3ZM888g1WrVuHIkSO665eXlyM2NhZlZWW0aoZCoVAoQQ/Hcfj1119hs9nQqlUrhIaGXpKCnDzP49y5c6iqqkLnzp29PCNG5m+/ekSqqqq8FNVsNhs4jvPnbikUCoVCCQh1dXXgOA7t2rVDZGRkoIfjV1q1aoUTJ07A4XD4FKLxqyEyZswY/Oc//8Hll1+O7t27Y//+/XjxxRfxl7/8xZ+7pVAoFAoloOjJml8KWOXp8ash8vLLL+PJJ5/ElClTcPbsWaSkpOChhx7CU0895c/dUiQ4OR65BSU4W1GD1tHhyEiNh4299NyEFAqFQmma+NUQiY6OxtKlS7F06VJ/7oaiQlZeIeZvykdhWY37s+TYcMwbk4bM9OQAjoxCoVAoFIFL33fUTMnKK8TkVfs8jBAAKCqrweRV+5CVVxigkVEoFAqF0gA1RC5BnByP+ZvyoVQOJX42f1M+nJzfCqYoFAqF4gfq6uoCPQTLoYaIn3FyPLKPF2PDgVPIPl7cKJN/bkGJlydECg+gsKwGuQUlfh8LhUKhUNSpqKjAPffcg6ioKCQnJ2PJkiW47rrrMGPGDABCa5QFCxbgvvvuQ0xMDB588EEAwMcff4zu3bsjLCwMHTp0wAsvvOCxXYZh8Nlnn3l8FhcXh3feeQcAcOLECTAMg7Vr12LQoEEIDw9Heno6tm/f7u9D9sKvOSJNESuTOwOVo3G2Qt0IMbMchUKhUPzDrFmzsHv3bmzcuBFt2rTBU089hX379qF3797uZZ5//nk89dRTmDdvHgDgxx9/xJ133omnn34af/7zn7Fnzx5MmTIFCQkJmDhxoqH9P/bYY1i6dCnS0tLw4osvYsyYMSgoKEBCQoKFR6kNNUQkZOUV4umN+Sgqb5igk2LC8fRY44aDmKMh938UltXg4VX7MHN4Z0wb1tkvFSyto8MtXY5CoVAo1lNRUYF3330Xq1evxp/+9CcAwNtvv42UlBSP5YYNG4ZHH33U/fs999yDP/3pT3jyyScBAF26dEF+fj6ee+45w4bItGnTMG7cOADAihUrkJWVhTfffBP//Oc/fTgyY9DQjIusvEI8vGqfhxECAEXlguFgJLlTK0dDZMnWXzF40Ta/JI1mpMYjOTYcaiYOA8Ezk5Eab/m+KRQKhULGb7/9BofDgYyMDPdnsbGxuPLKKz2Wu/rqqz1+P3z4MAYPHuzx2eDBg/Hrr78a7m0zcOBA9/+HhITg6quvxuHDhw1tw1eoIQLBcJjzySHNZeZ+csgjv0Mr90MvR0OkqNw/FSw2lsG8MWkA4GWMiL/PG5NG9UQoFAqlCRAVFWV4HYZhIO/g4nA4rBqSpVBDBEDOb8UordL+gi5UOZDzWzEAwXsyZPE2jH8jB4+sPYDxb+RgyOIG74aR3AsewOOfHkJdvbWy95npyVgxoS+SYj3DL0mx4VgxoS/VEaFQKJQAc8UVV8But+P77793f1ZWVoajR49qrtetWzfs3r3b47Pdu3ejS5cubqn1Vq1aobCw4SX3119/VWzCl5OT4/7/+vp6/Pjjj+jWrZup4zELzREBkH28mHi5ihqHYu6HqM+xYkJfw7kXJZUODFj4DZ69Nd1SAyEzPRkj0pKosiqFQqEEIdHR0bj//vvx2GOPIT4+Hq1bt8a8efPAsqymfPqjjz6Kfv36YcGCBfjzn/+M7OxsLF++HK+++qp7mWHDhmH58uUYOHAgnE4nZs+eDbvd7rWtV155BZ07d0a3bt2wZMkSXLhwodHbsFCPCABoZnM0wPEckT7HVe1bauZoKFFSWee3MM3Ajgm4uXdbDOyYQI0QCoVCCSJefPFFDBw4EDfddBOGDx+OwYMHo1u3bggPV3+h7du3L9atW4e1a9ciPT0dTz31FP797397JKq+8MILaNeuHa655hrcfffd+Mc//qHYhG/RokVYtGgRevXqhV27dmHjxo1ITEz0x6GqQj0iAAZekYjl3x7XXa5lZBiRPsePJy9g3pg0TF61z/BY5m/Kx4i0JGowUCgUSjMgOjoaH3zwgfv3yspKzJ8/360XcuLECcX1xo0b5652USIlJQWbN2/2+Ky0tNRruW7dumHv3r3GB24h1CMCYEDHBMRFeruspMRGhKC0mkzR7mxFTUOORkwY8Tio0BiFQqE0L/bv3481a9bg+PHj2LdvH+655x4AwM033xzgkTUe1BCBEL5YdFsPzWUYhsErBF4TAEiMEoyPzPRk7J7zJ8z4U2dD46FCYxQKhdJ8eP7559GrVy8MHz4clZWV2LlzZ6OHRwIJDc24yExPxsoJffH0xp9RVF7r/jwuIgSl1fW6VTVSHv3ooFsEbUt+ET784Q9DY6FCYxQKhdI86NOnD3788cdG32+HDh28ynsDBTVEJMirTOIjQvHIugOGt3PGpQ/y4NBUvL6jgDAVViAu0k6FxigUCoXSbKChGRlilUlYCItH1u1HSaXxToe86+eNncaMEMBbgIxCoVAolEsZaogoIPaJKan0TYXOTKPdC1UOmqxKoVAolGYDNURkkPSJ8Tc0WZVCoVAozQVqiMgg7RPjT2iyKoVCoVCaC9QQkWGlN4JljOd8xEXYwfG8RxM9CoVCoVAuVaghIoPUG5EQFYqHhqaCgXKHWwbApGtS3b+TUlrtwD3/2+vRRK+poNWRmEKhUCgUJaghIiMjNV63T0x8lB3Zc/+EuaPSsGJCX7SRqafGRIRgxvDO+GdmN8UOuCSITfSaijGi15GYQqFQKMHNjh07MGbMGKSkpIBhGHz22WeNsl9qiMiwsQzmjUkDoO7JuLV3W/x48oLkjd9zybLqeizZ+iuGLN4GAHhydJrhcUib6AW7Z0GsMpLn1jQ1Y4pCoVCCicb2MldWVqJXr1545ZVX/LofOVTQTIaT4xEbEYoHBnfAZwdOe+iIsIxQkvvm7hN4c/cJxEXaNRVXC8tq8PCqfbp9bNSQ9p4Z2DHB1Db8jVaVEQ/BRKON/CgUCsUYWXmFmL8p3+MFLzk2HPPGCKrd/uDGG2/EjTfe6Jdta0ENEQlKX3x8lB192sXhmyPnvHRBSGXfjcjDKyFNoHVyvFv5tXV0ODJS4wM6wetVGTUFY4pCoVCCCdHLLH/BE73MKyb09ZsxEgioIeJC7YsvqXTgmyPnAjImETGBNhAWsh6kVUZUG4VCoVD0aY5eZpojguAQMVOCgWBoZKTGB20eBmmVEdVGoVAoFH2MeJkvFaghAiDnt+KAi5gplQADcCfOalnI4t8DkdSqV2UkNaYoFAqFok1z9DI3e0MkK68QUz/Y57ftMwBRsmqsbJmk2HB3HDCYLWStKiOpMXWpuBApFArFnzRHL3OzzhFRywuxEh7A/QPb442dBaiqcyouwwAID2Hxwd/64/zFWq8k1GC3kDPTk7FiQl+v/JWkAOevUCgUSlND9DIXldUozk0MhGerP7zMFy9exLFjx9y/FxQU4MCBA4iPj8fll19u+f5Emq0hYiYvhAE8lhd/VyvjFT0hL31zzOtvUngAReW1YBkGN/VMQW5BCT7/6bTbICG1fBOjwpB9vDggFTWZ6ckYkZYUVBU9FAqF0tQQvcyTV+1TnHMA/3mZf/jhB1x//fXu32fNmgUAuP/++/HOO+9Yvj+RZmmIODke7+wuIM4LYQA8ODQVGw8WKr7xixNwUVk1SirrEN8iDCfPV2LpN78aGteW/CLMWnfAqyrmydHddC3k2Eg7Hv3oIIrKA1dRY2MZWqJLoVAoPhIoL/N1110Hnm/8XEOGD8ReCSkvL0dsbCzKysoQExNjyTaVSmC1iIu0Y9FtPZCZnkys4fHlT6cxbc1+L90RM4hbf3BoKl7fUQBA2Sujte6lVnNOoVAowUpNTQ0KCgqQmpqK8HDf8jiCTTdKjtaxGpm/m1WyqloJrBZTr+uEEWlJABre+G/qmQIA+Pyn016yu1l5hZiy2rgRonZtiZvZeLAQr9zt3bemTUyYajJsoCtqKBQKhWIecc65uXdbDOyYEFRGiJU0m9CMWa2Q/3x5GG/tLnC7w7RExUakJWH+pnxD2xc9Glp2glgV0zIqFLtmD/OwkDmexz3/26u7LlU2pVAoFEow0mwMEb0SWC1E0TAxPKImuztjeGfD+0iKDceo9CS8ufuE7rJnK2q88jA2HDhFtJ+ismpD46JQKBQKpTFoNqEZX0pbedfPGzu9jRDx7wDwNoExIRIXYccHf+uPXbOHYbgr9KPHr2cueoWCSCtqntzwM+2CS6FQKJSgo9kYIlaIv+iFT0qryZvbLRrXA4M7JcLGMrrqpCLLvz2G8W/kYMjibW6jQlxXj4u19Xg4gFLwFAqFQqEo4XdD5NSpU5gwYQISEhIQERGBHj164IcffvD3br0gnez9DcsAr97tWcWipU6qhLS/jI1l8OTobsT7p4mrFAqFQgkm/GqIXLhwAYMHD4bdbsdXX32F/Px8vPDCC2jZsqU/d6sIiRR5Y/D3YZ0xqqd3Ka1YNy6vilFCXg3TMiqMeP+XWrMkCoVCoTRt/JqsunjxYrRr1w5vv/22+7PU1FR/7lITLZGYJ0d3w4IvDquKhgEAwwC+qq5c0SpKc3yiONruY+ew/NvjqstKq2GM5r80phR8sNfBUygUCiWw+NUQ2bhxI0aOHIk77rgD27dvR9u2bTFlyhRMmjRJcfna2lrU1ta6fy8vL7d8TFpS5CzLqMrq8vDdCAH0c1XEqhhSY2H3sXMY2DHR0jFYhVapMxVYo1AoFArg59DMb7/9hhUrVqBz587YvHkzJk+ejOnTp+Pdd99VXH7hwoWIjY11/7Rr184v41ITiVELj7SJCUNshL7NxjLqYR4GwiRM2qiI1FhY/u1xPLruANH4AKFah+N5v+eJqInHSfNbKBQKhRJ8vPLKK+jQoQPCw8PRv39/5Obm+nV/fpV4Dw0NxdVXX409e/a4P5s+fTq+//57ZGdney2v5BFp166dpRLvIlohA/nf9ETD5Kg1KjIite7keAxZvE0zVKS2PxLio+x45uZ0jHKpxFqJOHY1TRWxe+Su2cNomIZCoVxSWCnxDs4JnNwDXDwDtGgDtB8EsDZrBqrChx9+iPvuuw8rV65E//79sXTpUnz00Uf45Zdf0Lp1a49lrZJ492toJjk5GWlpaR6fdevWDR9//LHi8mFhYQgLI0+8NIteyMCsaBgA/GVwB3yVV0TcqEjNINLqwCiHR0Pju7p6DlV1Tt1xllQ6MGX1fjz0f6WYOypNd3mtscrRE4+jaq8UCoWiQ/5GIGs2UH664bOYFCBzMZA21m+7ffHFFzFp0iQ88MADAICVK1fiiy++wFtvvYU5c+b4ZZ9+NUQGDx6MX375xeOzo0ePon379v7crSZiyEBNHVXJa2Ekp+JPXdvgT13bIPu38wAEg2bAFco9Ar78qRBPbMhDSWWd+zOpQaSWXKsED6C0ilzHROS1HQXodVlLxUoeKUbyPUjzWxozaZZCoVCaDPkbgXX3wesVtLxQ+PzO9/xijNTV1eHHH3/E3Llz3Z+xLIvhw4crRjGswq85IjNnzkROTg6effZZHDt2DKtXr8brr7+OqVOn+nO3qmj1m9FqEJeRGo+kGH1PTVykHY9+dBD3vLkXy789juXfHsM/PjqILflFXssu/DIfU1bv8zBCAMFTIM2hyExPxq7ZwzDt+k5Ex2iGJzfkaeaMGM33IDXcGitpNlA4OR7Zx4ux4cApL0VcCoVCUYRzCp4QrZkqa46wnMWcP38eTqcTbdq08fi8TZs2KCrynseswq+GSL9+/fDpp59izZo1SE9Px4IFC7B06VLcc889/tytKkZCBlJsLIOnx3bX3X5plQNF5fqT9Zc/ncZrOwo0xyE1iGwsg8GdjFXGGKG4sk5VW8SM8aYnHmc0cbcpkpVXiCGLt2H8Gzl4ZO0BL0VcCoVCUeTkHs9wjBc8UH5KWO4Swe/KqjfddBMOHTqEmpoaHD58WLV0tzHwJWSQmZ6MlRP6Ii7S7vW3uIgQxc8B78nayfF4YkOe7hjkBpG/lWHVzo0Z441EPG7emDSvcNWl4kGgFUMUCsU0F89Yu5wBEhMTYbPZcOaM57bPnDmDpCSynmhmaDbddwHfQwaiBknO8WKPHBAAmlU18sm6pJIsl0NqHGglr5qpmpGjdsxmjTct8TilvJJLRXNEz4PEQDBKR6Ql0YohCoXiTYs2+ssYWc4AoaGhuOqqq/DNN9/glltuAQBwHIdvvvkG06ZNs3x/Is3KEBG9CmolsWJZqVbIwMYyGNw5EYM7N4RKSKtqjCZnyo0DX5Vh1WAZ4IIsV0VtDKRjFcerJh4nxUwCcbAqttKKIQqF4hPtBwnVMeWFUH7FZIS/tx/kl93PmjUL999/P66++mpkZGRg6dKlqKysdFfR+INmZYjoeRUA5ZCBHv5IzkyIClU0iEiUYY3C8cDU1fuwgvWe8PWMNwBIiglTNd7kpdByzHgQgtl7QiuGKBSKT7A2oUR33X1QVaXKXOQ3PZE///nPOHfuHJ566ikUFRWhd+/eyMrK8kpgtRK/54gEG2rqqUmx4YYEx6SQJGcmxYSB43kUlVUjPipUd5sLbk5XNYj0lGHDQsx9rUoVQySdgWvqOcXKID2cHI93dhcYykEJ9vwLWjFEoVB8Jm2sUKIbI5uPYlL8VrorZdq0aTh58iRqa2uxd+9e9O/f36/7a1YeERHSkAEpJPkbNfUcsTrrQ0NTdXU91OA4HrX1nOH1tEIGooEz55NDilolZVUO1RCKGkpeDS3OVtQ0ifwLK8J/FAqFgrSxQNfRja6sGgianUdERM2rYJYRaUmYMbwLYiM8q2diXdU0JGJj8VF2vHp3H2KlUzmkFTlaqIUMRqQlITxE+QbQ0mBRQs2rocWJ81Wmy68bE7MVQxQKheIFawNSrwF63C78ewkaIUAz9YhYjdLbfVyEHfcPao8Pv/8/AOpGSHyUHU/e1B1JMb4nXOYWlBBX5KiRGOUp3CYmhe4+ds5LI0WKaATkHC/2SOSVo+XV0GLp1qP4y+AORMsGOv/CaMUQhUKhNGeoIeIjahUfZdUOvPTNMd31SyodSIoJt6SCwooJ+NGPDuLpscJkaTR8AghJr4vG9VANfel5NdTgAaz9/g+iZYMh/8Lq8B+FQqFcqlBDxAdIVEdJsOoN3ooJuKi8Bg+v2oeHhqbi9R0Fhj0XpdUOPLxqH+Ii7R7hKLGqxUz+ikilTjO/YMu/0KsYolAoFEozzhGxArNv93JIDQg95VExUVKP2Ah9+/P1ncaNECnynBixquXE+UoftqoOzb+gUCjBBM83TWVoI1h1jNQj4gO+ejKMvMGTaGdIq3fULo+HhqZiaJfWuhU8Vt9DYlXLmtzfkRQTjjPlxoXXtKD5FxQKJRiw24UChaqqKkRERAR4NP6lrk4QwrTZfEuipYaIDxgJhfgioGZEeVQtUTI+yo5nbk7HqJ4pxEqwVsMDKCqvxczhXbB061FLpOmnXd8Jgzsl0vwLCoUSFNhsNsTFxeHs2bMAgMjISDDMpfds4jgO586dQ2RkJEJCfDMlqCHiA6SaEU+OTsOCL8xVUJDkoTz+6SEM69oGoS4hM61ESSfH43xFranjtYoOiZGKxpKYV2LEQOncpgXNw6BQKEGF2CBONEYuVViWxeWXX+6zoUUNER8glYzPTE/GyHRzFRQkeSgllQ70f3YrFt7WwyNMI5+gzVTBqMEyQvjGjEejdbRQJaRkLG3JLzI0xmCokKFQKBQpDMMgOTkZrVu3hsPhm6RCMBMaGgqW9T3VlOGDOKOmvLwcsbGxKCsrQ0xMTKCHo4o/e59sOHAKj6w9QLz8ShV1U7XwjlFE0+lBV1UNQG6MiB6iXbOHaRphTo5HzvFiTF29D6XVyjcx6bYoFAqF0vgYmb+pR8QC/KkZYfSNf84nh7wkzs2KiCkhDSn1ubwlcXjFSE6M2OF40bge7iZ+VjUopFAoFEpwQQ0Ri/CXZgRJ91sppVUOL3VTq8qMY8JDsP2x671yUXKOFyP7t/MAhHNQVuUwnRMjhSqUUigUyqUPNUSCHGkeCikf/fgHBkj651glmFZeU48fT17wMLjkOR3Lvz2G5NhwPDm6G1pGhal6iETpeD0PElUopVAolEsbaojoQDph+hPRM/DoRwdRWautLgoAnx04jb0FJW6vgZUJnVKjRquseOrq/VgxoS9u7t3WaxtGc2qoQimFQqFculBDRAOrk1B9MWoy05MRFRqCe9/KJVpeqjEyIi3JUHhHi1/PXET28WJc1b6lZlkxA6EbrzxfRc14KSwTpOVnDu+MacM6q56XYDAMKRQKhWIdtGpGBbUJU5zyVqhUp2htz1ejxsnxuOqZLV7y6VqI3X1/L67C0q1HLVMzjY+yE3X6XTNpgNub4eR4DFm8TTdfJSkm3N14T4o/q5MoFAqFYh1G5m/aa0YBEhGx+ZvyvXq9qCEaNfIJWPRaZOUVEm3HxjJYdFsPomVFSiodmPnhASxRMUKiQs1J85IYIYBnKIc0abao3Pu8kJxDvV48FAqFQgk+aGhGAb0Jk4cQSsgtKNHNXdAzatRCGGpkpifjoaGpeGNnAayYZ/U62vqKND/FSNIsjwbFWBvL6J7DOZ8cwtMb81FUTr0lFAqF0pSgHhEFSCdMkuWMGDUkZOUV4vUd1hghjcGFyjr3/xtNmi2pdGDAwm+wfNuvuuewtMrhYYQAxj1OFAqFQml8qCGiAOmEeeJ8le4yVho1VgqTNRYLvmgIYYmaKEZSS0sq67Bk66+m9m0mjBZIaGiJQqE0R2hoRgFSEbGlW4/iyqQWmq5/UqOGZDmrhMlIIU1I1UIawjKjieIrRsJogYQm4lIolOYK9YgoIE6Yeu+jPIDZ63/CGzt+w6f7ld9i9bwADIQJJyM1XndcVgmTkXJP//aGPRhKSMctaqIkxYT5uFXzYzCLvzwWViUzUygUSlOEekRUyExPxszhnXXDAmU19fjPl4fdv8vfYkk79JIkqjZ2p9n3c07i2Vt6YOpq77EbQT5uUS11+bZjWLL1qKFtmR2Hr+fOXx4Lq5OZKRQKpalBPSIadEiMMryOKMz10taj7jdmtxcg1nMyTIoNN6RHYibHwhdKqxxoGRWqOHZSWMYzYVXExjJ4ZHhnrJzQF/FRdqJtzRzexWscbaJD0SJM3Z424nFSw58eC6uTmSkUCqWpQT0iGvjyFr1k669Yk/uHW5jLip4pgcixOFtRg5t7t8WItCS8s7sAC744rL+SBI4Hpqzeh7+e7IDhaUlex5yZnoxhXdtgwMJvUKJgsACCMZEUG45pwzph2rBO7nN44nwV1uT+jou1yusBwkQ+b0waACD7eLHhc0/qsRjWtQ1+PHnB8PatTGamUCiUpgg1RDQw2vlWjijMJXo9rOiZInpX5nx8CKXV+omkN6a3QfbxEo9l4yLs6JocjZzf9N+yRWPMxjKYODgV/9tVYOp8vLn7BN7cfQJJMWEYn3E5OiRGuSfs0BAWz96a7jaw9MJXAzsmICuvkFgpdv/vF0yHVUg9FnJDinT7ViYzUygUSlOESrzrILrlAXO5CeLb/K7ZwyyN8e8+dh73/G+v7nJrJg1ARmq8lycGgKZcvHTcADy8EEtdeR1WXDjSCZs0D4NUKl4LUqn+DQdO4ZG1B/y2ffFY1Iw7f10/FAqF4k+MzN/UI6KD6IGQT5Ck+Kt8tKyqDiwDTWEzMTdCzROz6LYemv105o1Jw5b8Iq9jj4sUcjqM9LxRQ9qcjzR8ZUUZM2kiqFlPBOn2rUxmplAolKYITVYlIDM9GbtmD8MHf+2PuAiyxEo5Vsb4s/IKMXX1fl111bG9kjUnMNHISlZJogWgmKRZVuVAaZUDM4d3xkt39caTo7uZOxB4i46JRtPNvdu6tUfkWHUuSRJBfUkQJk00tSqZmUKhUJoi1CNCiI1lMLhzIhaNU/Yi6GFVjN+IuurrOwrQ5/KWmhOZkhfiqvYt8X1BCaauVj5O8W1/7fd/uEM3ZnNHxO0VltXgnd0FmDg4Vfft3+p8CS3DxsYyGNsrGa/tKPDL9kWsSGamUCiUpgj1iBAgFbKKjQjFK3d7exHUsKJ8VIrRsASJvLnUC1FWXYdrn/sW97y5VzMZVvq2TyoAp8eCLw5jyOJtHuWwSiJiJF4KFhwGsPkYy+7BADYfLDjVZROj1MXVxN4+vkBqOJF4gygUCuVSg3pEdFBLoHxydDe0jApDUVk1dh87j/X7Tnmt648Yv9EOtkbyU8TEXCMGhTgeUgE4PaQ5IwBUk1fV8ioAYCSbi3n295DCNIRETvPxmO+4D5u5DK99PvrRQXeZtRQS7xPLADyvnLgrJppaZYRSKBTKpUijeUQWLVoEhmEwY8aMxtqlz2gJWU1dvR9l1XW4te9leP7O3lipkWthZYzfTFjCnw31pOMxIwAnR9z/nE8OaYqIAcCDQ1PByOy7kWwuVtiXIgmeeRlJKMEK+1KMZHO99nmmXFmYjMT7xPENoSopNNGUQqFQyGgUj8j333+P1157DT179myM3VmCUeltIzF+J8ebzgW4UFmrWy0jxx8N9ZTe9q3K3eChXpEjnvs5nxxCWZXD4/thwWGe/T3h/2WnUzxn8+zvY0vt1eAkNrhahQup9+kvgzvgq7wij/OXJCs79uU7V8Lq7VEoFEqg8LshcvHiRdxzzz1444038Mwzz/h7d5ZhRHpbDHuQCJb50rNErJYhtUGMhAaMhHzU3vZJBOCMGlFKqBkqGewRj3CM0r5TUIwM9ghyuDSvbcq/T1LDakRaEv41Ok3VMLC6Tw3t1EuhUC4l/B6amTp1KkaPHo3hw4frLltbW4vy8nKPn0DhD+ltX3qWGA2d+LOhnlrISUxale5fOh4GwPLxfXwq99WiNUp9Xm73sXPu5N6M1Hi3ZooS0kRktURTq/vU0E69FArlUsOvhsjatWuxb98+LFy4kGj5hQsXIjY21v3Trl07fw5PE6ult/VCPYB2hYvR0IlWforZSpS4CDs++Ft/7Jo9TPXNW08TY1TPFEwcnOqX5n1nEefzcsu/Pe6u3NmSX6Qp2ib2sVEz9Hz9zv29PStQupYoFArFCH4Lzfzxxx945JFHsGXLFoSHk03Wc+fOxaxZs9y/l5eXB8wY0QszGK2IMBPqkULqeblvYHvcmJ6smjOg5dbXU/hcNK4HBndK1B2DXr6MlpqoL+RyXXGaj0cSSrxyRAAhJFSEBORyXTW3U+TqoKzlDQEEhdkRaUnq4/HxO/f39nyFhogoFIoV+M0j8uOPP+Ls2bPo27cvQkJCEBISgu3bt2PZsmUICQmB0+n0WicsLAwxMTEeP4FCL8wAGKuI8DXUQ+p5uTE9WVWDQs+tD8AyhU89TQw1z4kvcGAx33Gf8P8y60b8fb7jXo9EVSXEVfUk7EurHB6qqXLvQFG5teG9YOrUS0NEFArFKvzmEfnTn/6EQ4cOeXz2wAMPoGvXrpg9ezZsNpu/dm0Zan1m5BURJPga6vHVQ0NaBbRr9jCi6h8rqjaknpOv8grxXvZJQ+srsZnLwGTHDEFHRFLCW4QEzHfcq6gj4gvipK/kHYiPImsHYHUY0N+deo1WlFEoFIoWfjNEoqOjkZ6e7vFZVFQUEhISvD4PZqyS3vbVkPC1OZpRt76Wa99Kl7y00sgKQwQQjJEttVcjgz2C1ijFWcQhl+uq6wkxQ+vocFUhuJJKbY+K0fAeSVVSUkyY3wXUgi1ERKFQmjZU4p0AK6S3jYR61BIAfWmOZpVb318ueV+ayynBgUUOl4aN3CDkcGmWGyFixcxV7VsSVTNZEd7TuoZEauo5bMkvItqeWYIpREShUJo+jSrx/t133zXm7oIOklCPnrfBrIeG1F2v1XfFyfGY88khv7jkfU1g1ZJaV4NxrWOWeWPS8OPJC0TVTC2jQlFSWef+3Wh4TwyF1dZzmDG8C97eXaDYC6isyuGWyPdXwmiwhIgoFMqlAcPzvjyK/Ut5eTliY2NRVlYW0MRVq1HLr1Bz8YtTui+Ti5PjMWTxNt0OuUkx4V59V8TxvpddgK/yzujua82kAaZd8mqG2Nheye7mc0phqQeHpuL1HQXEhsjQzono2LoF3t59wrDhwzLA8vF9MapnMjYcOIVH1h7QXWfJnb2QFBtBZDzKr48LlXVY8IXnOdEShhNDPrtmDyPeh5Fwo961RLJ/CoVyaWNk/qZN7wKAkgKrvxMAST0OYt8V0ehRMgz08MUlr+Txuap9S/x48gIcTh6fHTjt4VloGWXHrb3b4ror26DXZS3x+KeHNLsGi+z49Tx2/HoegHHPCMcLHg6A/K0/KTYCAzsmuA2Az386rWgAkJ5vLbkOvRwNX3N8fM1XolAoFCnUEAkSGiMBUAwNPb3xZxSV16ruRzR6OA6YutpYN17Ad5e81FDLyivEtc9961WN0qddHPb/UYaSyjq8ufsE3tx9Asmx4Zg4qD2WfnPM0P7MaHCJxpaRJGQ9A8BM92OSMUpR24e06zGJMWJlRRmFQmneUEMkSGisBMDM9GREh9txz//2qi4jGj1PbMgzPCnGRdq9qjbkYQDRw6EXFtCqRvnmyDmv5YvKarD0m2OIi7R7NcSzGtHYIvUObMkv0jQAXrm7DxZ8cdjSMf965iKyjxe7z6/VXjerKsooFErzhhoiQUJjJgCev6jsDZEjDYGQ8sCgVN1Qgzy/QSksYLS3DtAwmYpYqdoq3aa85FbPOzAiLQlDFm/TNACe2JCnW+5rlOXfHsPyb4+5z29sRKjlXjeSRo8UCoWiBTVEggSrJeW18Fc1Q1ykHdOGdXL/rubRkIdClMICRnvriIideWcO74K13/9uaht6KOU/aHkHso8X6xoAVhshUsTz+5fBHYiWp2W3FAqlMaGGSJDQmAmAJEZPyyi74clx0W093OMz4tFQCgv4Ohl2SIzErtnD3IbB+YpaLPjisE/bjAkPwX9v76ma/6DmHfDnxK5VPSMint9PD5wi2iYtu6VQKI0JFTQLInwRLDMCibjaMzenEwuMJceGY6VsfEY9GtKwAOD7ZNg6Ohw2lkFGajxaR4cjPioU8a5Kl8bGHxM74/pZPr4P1kwagGnXd9RcXvS6xEeFqn6nokibv5VZKRQKRQr1iAQZjZUAqJbX0CYmDOMzLoeD43FXv8uxdOtR1VyLvw7ugOFpSYrjM+sFkFejGA2t6FWp+EJ5Tb0psTCjx0KS2yKvTiE937f0TlHUTqFltxQKJVBQQyQIaawEQLnRc+J8Fdbk/o4lW391LxMXKTRuk3aiJdGcMOsFkFajPDm6G6as3k+8LkmVihXoVZYoiYXNG5OGh10djvWQq7Amx4bjydHd0DIqTNU4JT3fI1yGIy27pVAowQI1RJo5otGTlVeIpVuPek3cYhnszOGd0SExithDQ9KgTYpSMm5LDbl5JUiqVHzFF7Gwvw7ugDd3n9Ddx5OjuxGrsIoYSXa2sQwtu6VQKEEDNUQoRPoSa3J/xwt39kZRWTXe2V2A+BZhaN0iDGCEcmD5ZGakd4xaWIA03HDfwPa4MT2ZuErFCsyIhc0Y3plo26IKqxwtWXajyc607JZCoQQL1BChEKm6FpXXeoigseCQwR5Ba5TiLOKQy3VFTEQYHhjcAdOGdYaNZVTzUOSVHmphAdJww43pyR6TamOUn8rHRmrMJcWE40y58RJtEll2qnZKoVCaItQQoRieuEeyuZhnfw8pTIn7s9N8PObX3oclWx14e88JLLqth2q3YFJlVbPaKmbzU6LDbbitT1ts+qkIFyrrDO2T1JibObyLYgKwVrKoEVl2qnZKoVCaGrR891KGcwIFO4FD64V/OafiYkYm7pFsLlbYlyIJJR6fJ6EEK+xLMZLNRamrFX1WXiGAhjDAzb3bYmDHBISGsB6/q02SJGXGShO3aMCQcm2XVoiPCkVFjRPvZv+OEg0jRG2fpMZch8RIQyXaep4WQEiedUpcTPLz3dhGiJPjkX28GBsOnEL28WKPsVEoFIoc6hG5VMnfCGTNBspPN3wWkwJkLgbSxnosSppYyoLDPPt7wv/L5jYx3DLP/j621F4NDizmfHwI0eF2DLjC/GRoJtwgGjCkVSrbj3r3rVFCvk8xZ6OorBr7fr9AtI3W0eEY2DGB2GtB2gwx53gxWJcQXCC9IL529qVQKM0PhueNNEBvXMrLyxEbG4uysjLExMQEejhNh/yNwLr74J0i6pqY7nzPyxgR3f9QWEtkAJuPtaHP6O7+rronkMOluX+3YiLSStRU48ufTmPamv2ayqN6yqTxUXY8eVN3JMV47tOoRokY0tk1e5ghA2HDgVN4ZO0B3eXiIuworTZWYq2EmfMsohZCEte2UpSPQqEEN0bmbxqaudTgnIInRMuZnzXHK0yjpuoqpTVKiYYgX07MZRBDNWYwE24Y1TMFy8f3VfybuLZe1KCk0oGkmHCPfYoTrhEjBDAnFkYaNpMaIYC5c56VV4ghi7dh/Bs5eGTtAYx/IwdDFm8j2oaZEBKFQqEA1BC59Di5xzMc4wUPlJ8SlpORmZ6MXbOHYc2kAXjprt744K/9kRTTMBGeRRzREOTLBXIiGtUzGSsn9PXKGUmKDcdfTTSBM9MV2BeJfjFsZjTIYvScqxlXpAYNaQhJlPCnUCgUEZojcqlx8YxPy8n1JZ4em+Z2t+dyXXGaj0cSSrxyRADBu1CEBORyXb3+ZqbFvFWoVZLkFpQQCYxJvRJGe+j8a1RXpKXE4vzFWmQfLzacu2FEj0UO6TknKT3WU5MlTdalnX0pFIocaohcarRoY+ly8mTR+Y77sMK+FBzvmbAqvnTPd9wLTsPRFqiJSEnAy0x5cFFZtaH9vvLtcZ9zN9QSdknRO+dGvBlqBg1pCIl29qVQKHKoIXKp0X6QUB1TXgjl92dG+Hv7QcSblHoUisp6YVvBZRj063OIrGnwqhQhAfMd92Izl6G5rWCaiIR+NmmYstq7ukYtr0PaA4YEqRHCgkP7in34cvU2xA/vh4zrxgCsTXE9edLoiLQkjEhLQs7xYkx6/wdU1SmXYiuhd86t8GaY1XyhUCgUaohcarA2oUR33X3w7uPqmlAzF6lOgGp4eBT6TgK4vwh5JhfPwBnVGgWOK7F37UFAljQp3XOwTURZeYVY8EW+4t/axITh6bHdvTwX8S2M9b8R8RKB2wHwB1LAKJRTa5XARofbiY0Q0nNuhTfDqMQ8hUKhiNBk1UuRtLFCiW6MzP0fk6JYumsK1gakXgP0uB22K4Zi8JVtsGhcDzAwJj7mD0gEtfQqX2rqOcXPpcm7pKiJwKH8NPh198H58wbdcYlJo6tyThraN8k5z0iN1zwuBoIhpGfQqFVe+ZKsS6FQLn2ojsilDOd0ey3Qoo0QjjHoCTGKGUErX7QrzOzfyfEYsnibbr4FA2/tC9J1RVhw2BU2XTPB9yyTgAPjdmBE97aa22YARIbaUEngEWkRZsPzd/Qimvyz8goxa91BVU+L0nnQwsrvk0KhNE2MzN/N2xAJwETdHDAyEVmpxEkqqJV9vBjj38gh2maygggZifibiBERuIHDbsaSrb8SjUuP9x/IwDVXtgKg/H0AQpLqlvwivKVTOfTQ0FTMHZWmuQyFQqFIMTJ/N98cEQMS6BRjkLaYN9LMTQ8jJahGKncKy2qQe/wcBob84jZYM9MGEVexGBGBe5uglBgQvCJaeSJxkXYM6pwIQNnQi4u0AwBKq5TzeeRsPFiIf2Z2I/ZqUI8IhUIxQvM0RNQk0MsLhc+tyqOgqGKFdoUUIyWoRpv89f54JiCpEEJMCjIzF2PE7DHILSjB7mPnsPzb44rrGxGBk6ujqvHQ0I5YsvWo6t/H9WmL3IISXKisw9TV3oYeqQEiIp43UXtFy8CgvWYoFIpRmp8hoiuBzggS6F1H0zCNxUjflM9X1PqsXSHFSAnqTT1TkBwbruvNEJNMGfliLoPVdud7GJg2Fhmp8fh43ynF0lWjInBxEXaUVTs0S2CnDeuEK5Na4OmNP6OovNb9d7Fvzpu7T+DN3SfAMsYE0LTYkl+EWesOaBoYVnq4KBRK86H5Vc34IIEOQDBkCnYCh9YL/3IKLnKSZZoZ8j4mC744TLSeXF5drRrGSAmqWGqqhbvTMONdBSTv2SPdnnxZDizmO+4Do9BcT0kE7oHBqYrbkVceZaYnY/ecP2HNpAH4i0uqXm37VvDW7hOa8u+01wyFQjFL8/OI+CKBTpJXYib35BJPmlV7UyZBNDD0XP5GBbUy04UeNHM+OaQYqshgjzRofigiMVhTr1FVP02ODcetYx5GPfqieP1MJKHY/TepCJzc2zF/Uz7OlFUhgz2C1iiFMzIR9w9qjwxuJ5B9DohqBVt0MjLaD8SsdQcMnFHjqHUolobQosPtlnq4KBRK86H5GSJmJdBJ8koA47knl3jSrJkmcYCn4UDq8jcqqCUqxi7fdgxv7y7wyNHoElkJ1BMMVGKwqvW02ZJfhKGbWuBMzUtuw+Is4pDLdXV7QnjX+AAgNiIUS3v8ju6HFqJFrWv79QB2eO++PjIJPSvuQiG0FW19QcuJIRoY2ceL1ReSQHvNUCgUOc2vfJdzAkvT9SXQZxxq8Eq411EL6TBAdLIw42ktI9+umnEjTp2XQNKskVJZEWm57Yi0JF1tjSRJia3ZZEmvSg/mZ9jeG6M/2Ps/F4TdVLZ14nwVlm49SmSIPTQ0FRsPFqJnxQ6ssC8FAMW8Eik8AJ4HJjtm6MrrG6VlpB239WlL1Bhw2vUdVRN2payZNIB6RCiUZgAt39XCjAQ6SV5JhdbfXctIXPmXTNKsTljJzBtwksRwyD5ebMjlr+aV0Ku88So55gab6tmjZAiR8tqOAiE3JUzwrpFUvIpX8Dz7+9hSe7Vmw0ESRqW3wRWtojGwYwIGXJFA3KF44BWJqgm74jiDTeKfQqEEB83PEAEaJNAVQyKLvL0QpHklJIjbMpI0K3vj9jukOSsEYSUjpbL3DWyPG135HqLhYKYhG6mOiSYmDFZfcmFE9HNTFIbKACkoRgZ7BDmcdxKuPMdDSUdEzWtEmnvTLzUed/W7XLGsmPaaoVAoWjRPQwQQJsquo8kmXNK8EhLEbfmSNOtPSHNWCLVYMlLjER9lR0mlvnbFjenJXgZEQNvLGzBYzebCyCEVQCNZV5zyl4/vg5ZRYYrKqnpeI5JmdmN7JePa575V9QIlxYbjydHdEBsRig0HTlGRMwqF4kHzNUSAhsZterQfpO+md+eIELryzSbN+hNSoTcDYSUba8MzN6djyur9mrtWa6pmtBrGKlVP93bqrkLrMduRYTsCW+VZVYNVT1CNFFIBNCXqo1oDFQ2/x0bY8cDgDhiZnqx4Dki9RmoVQbERdgzpnIjXdxSoGmAzh3dG59bRWPAFFTmjUCjKNL9kVbO4J2lA8b3Qo2pGYxnxLdpM0qw/IUnIFcdzcg/w7k3625Qkci78Mh+v7ShQ27Km2JVabxd5DxmrVD3NbGfDgVN4ZO0B4n2oodckTxnhu3FO/wnLvyvwqgAyO+nLjbqr2rfEiu+Oe21fY1SIjbSjrMpboE3+3VEolEsLI/O3XwXNFi5ciH79+iE6OhqtW7fGLbfcgl9++cWfu/Qfops+RvbQjElpMDBIlhERcxAAqMpXyZNm/QlpzkrBTuC37WTblISV5o5Kw6t390V8VKjHIskKLeLlwmUj0pJ028uLxoqW6BYJZrdjVWhIFEADyATJ3ItkLsKWI+ewdOtRLyPB6DkAvAXoxr+Rg4xnt2KJwva1xlaqYIRIx01FzigUil89IpmZmbjrrrvQr18/1NfX4/HHH0deXh7y8/MRFRWlu35QeURESBI5jQiUKeZktFVOmvUnh9YDH/9Vf7mIlkD1BaJN/jxiNboOHOURFtALnWh5I9SqYZwcb6jEVw1ftiOuqxZCMspINhfz7O/pJ666rhVn1zHEYwe080OsSLo1Ai3ppVAuPYKmfDcrK8vj93feeQetW7fGjz/+iKFDh/pz1/6DJK+ENPcEMJY0609Ic1EIjBCxf8qYTRza7NjmERbQqmgx26sk9/g5tK/Yh36st1AYQK7qaaRxnnw7WkmdakSF2lCp0kV3M5eBLbVXuwXQzkG4kVujFAlMOYr5GFSFt8a4EXcgM+0y5BKWOS/fdgxrv/9dNexkVdKtEajIGYXSvGnUZNWysjIAQHy8spZAbW0tamsbmniVl5c3yrgCjhHDxV/oJuSSIe+f4mFEpLVWNbhMd+PN34jeG/+BtaENYaDTfDzmO+7zEvjSm/BIJ8SismpkHy/28iioJXXKEUd/V792mhodHFjFclw3VcDWDw5ixQQbaus5orErlddKv6PYiFBLkm6N4JeKJwqF0mRoNEOE4zjMmDEDgwcPRnp6uuIyCxcuxPz58xtrSBQpmroZ5Ej7pwANRsR3n72FkV+vAqNSFmzKG+FKIA6XjTUJJVhhX+qlNqo34ZFOiAu+OIySyjr371KPglxQ7cT5KqzJ/R1F5Q3HJgq2xUaEEomF6TF/Uz6ev6OX6fWlht4/M7v6PB6g4QqKU0lWFZcJFpEzq6qtKBSKcRrNEJk6dSry8vKwa9cu1WXmzp2LWbNmuX8vLy9Hu3btGmN43lzijegUUdPNIMwLWea4BUudt3upe97A5uJZx1JA7uCSlAWfrbuKaIhur4WkhFg+XYgCXqLaKA+WaMLTKxUWkRohgHfoSB5+mjask2puC8n+tBANNPDwaVvids5bFCYRjS0Ahvr/+IyJ+9aqaisKhWKORjFEpk2bhs8//xw7duzAZZddprpcWFgYwsLCGmNI2lzijeg0UcpZ4TngPf3j3sOnexkhLDjMswulzd7TTYPmSOsx3xENz+210KnykaqN7uXSiCY8M3kegKdHYVjXNvjx5AUvo0MpN8Xs/pQ4X1mrKTxGum2lTsR6iNufObwzOiRGeXkUlMJVSf6Y6E3ct0bzkqjnhEKxHr8aIjzP4+9//zs+/fRTfPfdd0hNTfXn7qyBVNTLKrTe4ALllZHnrHBOzfwRHgwK+Xjkct5ufX3JcqEsOMN2xJBwGanibJfISky8hVyrQi3PIyrMhspa5cRS11GgsKwGAxZ+oxq2MbK/5NhwpLeNwdb8s0RGxPmKWiRGh2HG8C6KoaC7+rXDkq2/6m6HYYxPqnpGhZn+P4YnfBP3rdG8JOo5oVD8g1/Ld6dMmYLVq1djw4YNuPLKK92fx8bGIiIiQnf9Ri/fNSLqZYVBoPUGBxj3yvjTcNEQdOMBzA15DB9e7O31UB/L7sGy0OX62x/3JrKYwUTCZQAEPRMCUTXnfZtgu8J4hZZ0IkyMCsOU1ftQRqifIYVUuEs+8V6orMPU1WQltPJeMkkxYRifcbmHdwKAZnkvIEyqz9/RC/f8b6/yfsC5q3jE6qSIMDueG9cTo3qmEIy0AS1Dw/CEb/K+Je0MvWbSAJRV1yl6TqgwG4WiTNCU765YsQIAcN1113l8/vbbb2PixIn+3DU50sn74pnGa0Sn+QZ3r/I6Sm934vh/+RL4aR1Qdb5heSvDSRp9V5jMRbiO64cPFcICxJLlLdogM1XZO6D4xk0iux+TAluHwcSHqDY5Zh8vNmWEADoVPxKk4RtRk4T0DUGuB3amvBZLt/6KFRP6eoSExvZKVlW3Ff8+4IoERc+Ukq6JWJ00dbUTK1xVQyRoGRoAjJdwm2wgaaRK6r+bfzFe0UWhUIjwe2gmqFHySJDgayM63V4tanj2ccGRL7THb3U4SUPzJBPKuQB/tOiFalsSIqrPqBybZw8eYje+ie64WmhNjqSlsWoQ6ZhIDOIj5RE4U8ZBT/hY7gmR7g/wnBydHI+NB7WVVTceLMQ/M7u5c01ERrK5WGFf6rW8tDrp0Y9siAoNQf8rEhRzZES0cjIeXrUPcZF24xO+yQaSpFVSJZV1pvVlKBSKPs236Z2aR4IEXxvR6b7BaeF6u9vxPPDdQhgyXLQmZdKwjobmiaoRceQ5QwaDjWUwMDWuYTwn2zQ0C5SOseto4u64WuglLM4Y3ploO0pIwxnO3+qA1LHe51VmEHcHsCtMWQtFvs2zjLeAm4g4OWakxuOd3QW6+iDi8mLeypyPD6G8utadbOxlC0qqk4bUXo1738r1+oZJxdLEz7SSZVUnfJMNJEkbKsa3IEugp8JsQUZzrHxsojRPQ0TTI6GFrIOuWXz1qADA3hUgGz9BOMnCKiHFChGNsI6iwaA0noiWABigukS2/mJgRp7pBw5JwuKa3N+RFBOOM+XGSmO9whm7Af5QChjpeVUxiNW0ULRCJEpGy9f5RZi17gCxSJk4mWamJyM63I6X33pbM9lYWp2Uw6VphlSsEkvzmvAJw3TOdgORKxOi06o0AuDWe9FCNAy7nT8LFHSiE14w0JwrH5sgzdMQMe2R4K1pRBfVyrf1AeJ+L27UjB+rqoT03j70pOyluS45r3pvX+l4LQg9kQipFZXXYubwLoqqpGqohTP48tPAuvvA3PmecD5UDGK5FgoHlihEIjdG3jYomCYNVwy4IgGbIyuBeoL1UKr4uT/E0rxCKrpifDz2d5+NKc9tVwy9KYUUYyPseGBwB4xIS3Ivq+Q58TAMd0H4oRNeYGnsykeKz/i1+27QYtYjEREvTB6+8PNnwLqJvm1DQZFDFyX3NUmuStYcYTkt8jcKVQvv3iQ0znv3JuH3/I2ey4lhnR63C/+KRoh0fSUjRBUDY1SB1J3eITESMwlDNFLtFK9wBoTcqbJPH8XPe77U10JhBG+D5jZdv8+zvw8W5vJZGAiTrVT0zcYyuGlQb6L1tZKSxZBKycVa1WXMjtGN6HWL8B5HXWgcXtv+m2pHZQDYNXsYZg7vgrgIOwCgtNqBJVt/xZDF27Alv8idSCs99aJhmASZx0ic8OTXP8X/WPVMozQqzdMQMZvjUV0ivLWb5esngY/uB2p0OqrqYiRAwAgdWpXCSUaqDdQQ3z7k2xGrf75bLHT2LdipfPOrrU8MwRg1IE1YbB0djg6J+h2jgQbtFLUCCpYBYh1n8U3WerJ9o5Rom6LRYgYeyiqnGdeNQXVEkqp5w/HAaT5BUUNGTnxUKJJjw1XNaAaCJDwDb1ObWIm1utTro5C6UrxqX4qRbK7H59Kk3s15RVi69ShKZdVRUmNlxYS+SIoVrhe3Ych4G4Z0wgsgVjzTKI1O8zRExJiyGc9CwXbtiVWNvM+APcsM7szXUkCd6hGT1QZuSN4+vntW3UtiOlfHwBh1EBMWtSZH8S2c1Gi5rTNh6I7wsAf37q4a+pBDupwSnFIJDmtDxJjnwLj0YjyWlzU41CMpNkLRsyD9fdFtPTwm/IZ1w7W1OjSuJXFkSh4j0VvzxIY8zSRasVpn1+xhWDNpAN77U71gGKocK53wAoSvz7RAwjmFecXM/NLEaZ45Ih4xZYPseK7h/0ljwZwT+HKW9jKK+DhB61WPmKw2cGM018aVH+GO0fpUPUQ4RkAzf0VLZl3+Fk5aZZF8WSpwUn/I2Xwabud3IAlqng4hyfLyPsPx6YFT+huEdohESZBMakBMW7Mfy8FgVE/ZZJ82VshpkSX/yRscapEUE+YOqcwY3gVv7y7w8D7ItWKMKrEakfxX6mgs7x8kRV6tM7BjAlBFOEkcdhneNIG1cfD1mRYomnlybfM0REQi4ownfUopPy2EHwZMAa4cpf6wObELqCo2ODayRnNey0UmAj3v1B6PCGG1gWqVkKm3Cr6hnNiStxKdMRLc4Goy6/LJkdRoCQmz4fSueFUDg+OFSXwvl4b5jvuwwr4UHO/p4ufBCNvMXISMjq3wR4teOF2rv81criuSY8Px5OhuWPDFYbfRRFJtw/HAlNX7MPNsZ0wb1tlz4pckGx88fAQLd5Wqlg0rUVPP4b9Zh7HxYKHHOY5zJYXK96fWn0cVwmvJF4+RRz4R6USW+7rw0xiTSqDLVQO9f8D3Z1ogoMm1/pV49xW/Sbznb1RXL/WFyARg1ItA+i2e+9r0d8XYtSbXzgG2L9Jf7t4Nws1u9ubXkG4HoH0TEMqsK3L/58K/ZtcHoDlGzunSWnmWeD3S/iZ6EuROjse/nn0Wzzr+C8A7h4Dngdfqb8Ii590AlI2EIiSg1R1LYOt+s3ufn61eiVddVTPSbXI8wDDA9xkvwXnlGPe4RX2UkWyu6noAFKttkmLC8fRY9R4qWXmFmLXuIKrqfHMfWyaRTngt3lX3hIdHhAHQMsqOkkp95dw1kwY0GEduWXm1CU8Owf3kC3oGt7+NhGB6o/flmdbYNHZbkUbEyPzd/AwRzgk818lTj8ILH3uhDpoO3LDAN9G0ezcAGyZrP+gi4oHHjvl+gSo+RNrqi4IZfhhLuO0NIH0c+frhLQG+HqitUB6j9EFbfBz48W2gQktJ1LcbXM9oycorxIk1/8BDIZ9D3keO54WjlRoASmGTDyYN8vAKZOUV4rvP3sJ0x/88jJbqiCREjHlO8bvKOvR/6PPxULTiizU9KUNqX/LwbojjmTskDr26dVWcuJwcj5e/+RX/2/UbLmo0BNRDDGntmj3MvES6zrWodpwA8OrdfTy8R8TjU53w1PDTpKL3YjVoOpC33n9GgupzLoATv9lnWmND+jJ3/+e+txVpZKghosVv24la2uOG/wjJZvveB+oq9JeXk/EgkPeJZ+8XI4x7E7CF6ntu7nzfmhvL7BuT4Yexi5HPAgOn6q8/YAoQHgfse8fzoSL1PpmV6gesu8Hl569df1S/0ANh1UWKwQutiVHkL4M74Kkx3T0+c3I8co+fg/PEbrRmStHxio5CPx2178qEp0DJQ6M1cYlG2e5j57D82+O6+1LDw+OggqYBqNOY8VHmUXxS3ddje3GRdiy6rQcAkDdclGLm2rNyUiF6sVLCIiMhmN/ogyFUpMeh9UIyvx7j3hRkD5oQQdP0Ligp2Em23B+5rkQzk3Za7uvm1hNxTWYIi/b0AnhAKN9OAmsTblS3rPoe/RuXcwo5KgMmezfc0yPCNeGoqq663l4A5betqhJg/UTg9N+BPS97/50UaW6BL8aYfPyRCYioVs8LEpMnJ9qy8I4zU9EY2XDgNP41Os07d6Jza6DzrUSHZzR3Qk00TSteLeZz+CpxvvvYOc2wmG5XXg0F3wPdZ+PTbxO99llW5RCUX+/phQ9vcODzPQdwtCrKnf8i5gmNSEtCtkyV1cYynkJ9hzeS3fdWVmyc2GXCCAEMtX/QwmTDwUZBox2FZfhq7DTV5FqLaX6GCKnn9/g3sKSs1DCuN4iqYuDFrhpGCOC+yb9dCFxxrfpNQHKzqEym6Pln5cRXteUTuwK/79Y/zFPfA7aQhp4xSqqrgPC2pVVYmb1c5e+EiDe42Ri3mluaMDn5Kfsq/C3kS0WJ9uLKOsON1Lw8BuePgeSxmMiUIgT1qqJpAA/eNXExKhMXaXmzGlJvSrIsUVjaD8gjjFURhymrqvDI8CuFhFcFBV9nu4GY8tx28PA2lHgAmWwu+nz8d7RBMTIAIBSoDm+D3/vPQ6dr78aW/CIMWbxN3QCSTngkhoiVkwrpi5UiFhgJTblc1lesyItpism1fqD5hWaOfwe8f7M127Ic19N/4DQg+2XjqyvdBCQ3C0kui3QdzZiwictJ7eb1JRlWF4nL+MgX5mLcpt3iss1oJI2+dFdv3Ny7LdF25B4DFhyyw6ejNUqI7O8yPgKxTLXucrlD30XGsFu8PndyPK56Zotm4zpSpCGREWlJbkNAq/rnYIuhigm22ceLMf6NHMX9SD1AnsaX8Mv+gS/htm8T1a4Mz5CNbs6UH8IU257xlBQwgy9uf9J7dOSzggEWrCESo1iZF9OUkmsNYGT+bn6CZqnXuBqoBQGM7PTHpAh5E9nLzW1PLi2tqXrqWo5UVExcJ+8zfREzX8ct4u+3KDH0QygJ7eR4ZB8vxoYDp5B9vBjO7c/5bIQAUon297wEt0i9DKLHQPrWnsEeQRtCIwQAkRECAKu2fo+sPCERWHpOlm87ZokRAsDt+di4YR2OffM22lfsw43sXkVJdbHXTq+LO/Dwqn3usYmohYy0ZPMFDxCQnD0fjIKurFTozClakqI+EQBVyTYrelVJaT/E92344qEhEYdkWGDz49rtH5oSVsvIiyHFGFkOUkxKkzVCjNL8QjOsDRizzD/lu8S4btpxbwNRCQ3hiKpiQQLeNJK4b5dMnZvFtVx4LGGinWs7X8wCNHIfzKESr/ZXXDSmLXDDs4JB+t1Cohh37neb8MjeaA9vw6HwJSATfddHyBkpwVTbZ3jZeZu7UkOxr4oMJ8djwcZD6M/me1Td+KKZocVZxGH+pnxwHLDgi3zijrqRoTaE2lgvGXUl3J4PRwmwG1gbCjh5QVtFXoUkbxA455NDGJGW5M4xUTPmRNl8NRjwSNLI45ELnQEw3mnaV8QXKxXNIdHfLT9nAMABYGLagvHF7a/bcBAALzPkmro+hj/yYvSagl7iND9DBHA9LN4HvvqnTomnn1B6KHFOYEl39XWIcd0E379BdrMYjTFbboSIuMazd2WDC7ft1cLblPxB5gu97gHCY4AvHzWUXPvB1r0o5BrePqfaPkWUQs6BIpGJxPuaFbIev/KXYTOXod9XxcWx7avxUe0TSAn1DFesqb+ebHyESEXTuLIaTFm9z9D6VXVOVEH/LVEtYdbGqHvcPJRTq9KwfNsxPOJqUqimiEtqqGnl8QAKHpfGnFQ0XqzEMnEG8BLME504R/v8C1f6Oi4140sVixJlA4W/8mIaI7k2SGl+oRmRtLHAzJ+B6x5vnP1FJgraGfd/LsSI5W8C2/9rrVF04QTZcr62s1HjusddLluDeLhwu1tnhETECz8HPwD2rjBcVv2U/X130zQWHP4SkkW+31mHhRg5ATyAp0Pfx4p7epEJfOVvRJftUxXDFTNDPkYJ3wJKLWSMYrSvjFm0wyX6iMbF23sK3CETUREX8LzcteTw5YjhH3njPEDF46LWadofiC9W0Z7XSyHiMdkxAw87ZqAInp61IiRgsmMGjrS8zroxTD8oPOeIaMK9eGili+U0T4+IlH3vWLxBFffkqBc8FVelfP2kiYZ4OrTsQLZc+yFAzAfmRMkUYYQH4uUDgPhUoPIcENVK+HezQaPPqCy+EqIOyXcL4cvxtUQFVtiXYrJjBsrQAi2ZSrIVO1wD/LEX6DdJyP3ReWNkGSAJxchsUQDgMu1tS2LV8klbDFe4F+XNTewiRvrK+IJeuEQP0bgorXJ4hEyUZPxzua4oRTRiUaFrj8vDPxxYQ+EzvyPzwvxcHoExmzi30bil9mrFPkMTfax08uCPvcZ1k5piNQ2tdLGc5mmIiOWsBdtNNl1T6TQy6O/eCoYiX88FWNbbE2KmK29YNFB7EZo3AeHEh5pS8w0AlfYNHqiv8RSNi0kBblioc/P6Awb4+TPX1+PbPqUT0WLHn8lXPLxB+IlJAdJvJ/+uSR7Qrli12iTKMkA8LuJFxzg8EvIJjJ6Dfzsm4Dwfp9ggz1+YzWuRho1E5CGTzPRkj2Z6XS98h9jt5GKF0vDPXpf4G0n4jLR1gM9IXPtdOR5tdmxzh6M4sF7S9slWG1FmjIqm6DXQzIvxU1LyJU7zC83kbxSytt+9yUTZGyPIJatlN9+wABi5UHlVpcoQM115I+KBsWJVjUZmfkioMPnrsflx4U3qzveMh1Lk1Ufi7/JKkvJCQXwsvbGVAXmg4rRlHX5ZBkhhipHAlBtfubxQEF7rfhvZ8iQPaMIHfwicmvkVSlRHJOFdZyY2cYOQw6W5jRB/RfJEjIRLRNTCRkohE1F87eaeSbhy/zMAjB9Ta5QiKTacqD9OVl4hhizehvFv5OCRtQcw/o0cDFm8zauyx2rUwlHS30lzkIgxZFQwQtJ4U/Ua0EoXS2leHhFfer9ExANjXhIusOFPKyeicU5g81yVDSgkaJ3cYzz8II6BIcjMjyIQwhLjtFLXbu4bwlu8Hre/09BwLzJR6I2jWAHqOvb9q3zveBwEFPMxOM2rd8JVxnUOfs8BolMEA0mNiJZCbgzn1H6rIn3wG55rGESMeQ6vcFcrdiSWd/bVQx4mUiM63IYuvW7AxSNvIKr2jOqwxQRMEXnYiChkouNN0uKh0YOwZKB+XxypCJuUwrIaPLxqH169uw9G9TSRR0UIaVdpy9ANWYhcIl6DZl7pYiXNxxAh1ctQ4/a3gY7XCf+vlt1stKzLqCvzuscbjAySm4B0+7982ZBQl3qNsB2S/hHSJLyCnfrHboHmhpvIRKD9YDKDyWLOQBDQWmFfajD3wuWhue5xV86K6zM51ReE0JaeSqPrwc+XF7q6qXgihityuDRMx2dkQ5Q0BssEPEIZ0rACyzKYvGqfomOaBzBzeGd0SIzCzqPnsX7f/wFQbuwn9WBU1Djx3t7/w1n2z1gRuszL4JBSG9oSsy+ORxHiPbZD/LZvNjchtAW61/wInGgBdBiiOuk4OR7zN+VrPm2mrdmP5WAwqqfFBoEEeTjKKzRkZT8WklJewH+lzHIao9dMM650sZLmY4joGgkaxLQlu9iMlnUZjY8mdPT8Xe8mIN1+zqvA5QMbHgweDxSAKAb6y5dk+/KFoY8Brbp6S8BrJY1FJwtDtiA3hQNQxCe4J77H7f/EPPt7iKguMrahhI5k5Y56eguu74lZdx94MB7GiOiB+LfjXuzl0oQOvdVnoN7JuSVwx7tek6sYypBD8radlVfoNkK0FFHlCbCliNH0VDAAwuou4O7h/fHI3mhwZt72Dd57bqOo7iKw8wXhR+ollZFbUKKrr8LxwJTV+7CS1Q/x+ILad2iJRLkctVLeyESg553K7SL8gT+OjeI3mo8hYjo7myF3IRot63K7MgkNJKOGC/H2GeCr2YK4WeW5hv4vpMJM+RsFY8bfpF7raXhxTqDvROA7pdJY11R2o0vp0nAyrve7PgOg4roFWNKyr+vNchRsmNPw1nXxDFllUIs2wnF0HS14ktZPVAlXEegtuB78jOx7EsMVP0UPxStj0hDBPqedXDdmmdCvyABab9uiRwBQ1wURS2Ll0vakCautT2/DrtkvIed4MbJ/Ow9AmHAHXEEQktTxJvG8TARMyT1TXSLodyh0wDbSAHD+pnwPAbZGQS1MbYXYmJGQhT+8Fv48NopfaD69Zsz0LRHd1EZuKqO9JvI3kqm8RqcAM/OM36Sk25cjvj3oHbtuG3ArUDlvWh4FSYgBgFCd9PED2rokjA24/S1BRE2tG7DWA8zM9096Xeq1jnc90LmKIhyuiMSxyB5oHRPl6YZXfEskOC4TiP1dWHDYFTZdNZ9GDB8NqX3JHV4ZwOZjbegzuvsoQQxybs3Ggi9/UW9Ip4VrwnK18/MYEwAsrb8ND4RsRhwqFZVJ3cS09eofo9XfRok1kwYYam7oE7r3rMJ16g/84bUIxLE1RgioCWJk/m4+HhHiRCoICZX9pwBD/yE0RJNf2Go3i5myLlGMaNN07STOmjJgx/PCmIxc5GljBS0Nox4L0rcHX0JexPBA2s3CvtoP0mhS5+K6x73PU1SCvjga7xQ6CIveCqMPFzPfv1Uqja4wHQugu+vHCx+S64yWoIoeAT1dELEkdqIty10q/APXBef5aCQy2qW18SjHex+uQaGkLBUAispqMHnVPv2qFpc3qe7zxxBW1RBeE71JZWiBWcwnmmMAoCjnLaq5ksrfi+erUUp9/SFRbhR/eS0a+9hoCMgSmo8hQppIBQDVZUIyYd1FoeTSyM1ipteEOEHseB7Y8xJQpyCW5agUQhB7V6rGpVW5cpSJ0AmhDDPpRBoapXxceogS7zmvCj/RyUB9LdS/PwbY965giAANbyuHCZtsicdjNgmN9PsXx3XuCNl21cJy8rexdv0FYamKQreYnLNFEnKdXXG20uGa3IYYmtzkXX0BoG2MHUsGVCGjVb2iQSOWzhqRURc5zcfjgLMThofs111PaftiFIUo5JE2FiFdRmHK4lcQUnnWI4l2LGtA9VN2H4jlsw+v0pbBFxN4u50/i9xtLTEzJxKnyht68RB7d4zgL4lyUnSbxvkg/96Yx0ZDQJbRfAwRwEBPBNeFlb0cxDeLfEKYflCYEEjfPFmbMHnue0d7wq4uMX6RG/EGyY9T7+2BOG/FpGSN3IuhK4MvGXP1BQP9L1xcPKNfNquHnudBL6zkgbdKo/jWbPtlE3rlLfR4m1fqzWMD0J6PxzuuxFDdyU1yLeeeC8HUr21wSr6/kWwu5tW+h5QdDZ4OPiYFjOQtMCM1Hkkx4Th7MY7gGD1JQgmSbGQVVmq6I4oN6URk96qt/SCMvflOTHYZDeIdYkjTJDJRCLNJvu/M9GS8encfTFuzX7F82SOBd5fw2Ud8POazDQm8xN4dI0S1IlvOX2Jj/vRaNJb8uj+NqWZI8zJEgIZJYu9K/cRCTVe+zoQnuud6GBDxIg5z8MYuciPeICUqCr0esu79kho5deQKlgB8b3b3y5dAzgrtMSmx+XHBADXrWpUbpN1v9fyODGjZiJkLR/v8C53AwoYG70TPih0NCaAeSZXK5yxZkhj6dVmG6uTm/HkD6r/4p9u4yQCwM6yhukUt8ZQvPw2suw+My0Dekl+EGkc9crmumporXkmhaNAdcfIsGHCauSVSJVUlvJJGVVzpmZmLsWJCPy8J+DOIR2uUaOuNRMQLGjoK9/+onmOxHIxXg0DSBF5D3h0S8jcKzT418bNEuT+9FiQJ+lYIqQVDeOsSovkpqwLCxFD2f9Zs65cvhYlFflG6HsweSqp6GLnxjDaMUlMCJCFrrpBQ6W5Gl95wXKKRA8BS3U1fm939tA6my3WVVHBFOKdglB1aL/zLSbrJSlV7lc6VQS2bQj4eD9c9gpGb4zBk8TYs/DIfk1ftw5myKsON4cTJfp79fTAQzu38TfnuxnAAsH/zu2A/ug/2Ss9yZHFyzGRzVPfLAuB5HhWf/QMLNv6Eh1ftQ2l1PTiwmO8QKpaUvAJqSaAsA9gYzt05VopcSZUFhwFsPsayezCAzQeLhmvnxPmqhhVFI9DrXhW+70z2e+yaPQxrJg3AS3f1xgeTBiHxjqX6V3V1ieo2kb8Ro3omY+WEvkiOFcJV7sZ+jMJ5lHxP4nFIvTs+IR6/plexEcTG/Om1YG36Cs7p43w/NrPGlNbzoxnTfKpmpHBO4PnO1jRV02vxrpBRr4rRyp5xbxrzuACeb+yiGqrhkI3rYSUNDym9aeqdGzXsUUJOjFkiEoBqX79bwkod0fMFqHg6JOcqoiXR97us/hbs4dJV+7uQVpWocVfdE+6+I2K1Rtah/0PP9ddoVreUIAaJBPL2Sj1qRrK5WGj/H+KZi4bG+qZjJG4M+V6mP9KgpKqnT5IcG45ds4fBBs58NUX+RuVk8vCWgiWlKtTnuU0xpOb8bQeG7J6oe+zS7wkAXrqrN27u3VZ3PUVIq9v8VEWlPBYD1WWGt63jEfG1asZMtZva8+OGhUIy/SVWdUOrZvQglVZnWMF3rHazRCboT7RG3HNGdUWObfN2/eshT8I0FbJRiIEq5UVUFAKfTCIfm4gvRgggNN3zGZlrVTMx7V7BPa8XLx7+NNGej3GXeUxAImJiY6ZCK3ojSBM8z1bUwMnx2LjxY2TqVLckgqzHjjzxVPSIxOGiYihGi1NohSG1yxQVWYnCG2UZQp4Im2/elS5e2wU7gZO7hK809Ro4OR62VTcTbdPZfoi7GqYbU0p07PJEXKXeOZpIXzouniF7rtz8aoOCtL/wZ9M4kvC2FSETox14VZ8fp4H193t+1gyrbpqnIULqVus0HPj1a4U/uG6WHrcLuSZ66CZYunDfoIS6Hwc/EEJDAyYLap1mrGktJURNI0vhwS03cgp2ko9DTkRLoLoUqjd5REvhb0olz74aMlLE5FXNxDToyNe7zlXlOaJdKiVJKr35m0W6/RPnq5BbUIKQyrNAqM+b9kI0CkrRAoAxIwQAWkLILZIbZu7wBpTDG2Kn5C21V+NsRQ0Ons5HL5Idqj0bWBucqdciFz1wtqIGJ36rwvnsVVhAsMmDh4/g4bV17tyTAex5rCU41+L3RNQ7R46hhGgJv3wh3Mf+fis3U11IQmNVzRgxpoy2F2mGVTfN0xAhjT2eUim9E2+Wsj/ItqM3AckTHO94F/h8BllzuJoLnsqiZqxpX7wZWje06WodAP0nS/qxSHHd5KOXAF/PNdlAj9CbBQjnwiqtlKhWmueDB4NCPt4rAVM1QdSgd0EMwoqTOwCs/f53XJ4QSVwhUsxHoyUqDCeeGg3JiPzdvgHjQnZ6ScGT6pNksEdgO3IabQ8vIEthUnk2KJUwD2BbEBlvC3eVopBrWE8vgVeaiEvcO0eKL809c18XfpSeIwrCXU6w5nVP/NE0rrGqZgByY8rw88OHqpsmKq7WPA0R0glSbaKqcyXAkZbBaS2nFjccvVTwxhz8gGwfIuWnBY/K7e8C6bdoL6t10ZJ6M7RuaDFxbM8ysm0BcLs0W12p3Kk3oqWgoxLR0qRx4HpIjnpBMGRIXKs/f2piPwpEJ+u+Rclb2Wu9+TOM9+SvpEQuX/5J+ypsru0HDiwKy2pQcrGWeHJc4JiAV+wvKTb700o89YVkBSl4Un2SUaH7MPrIl7pTMg8GjEqliFoXXSMGhcfnrgRepaaJYpqteB2ollqr3bu+NvcUkb+VKzynqiOSMN9xH9Ze7O3+zLDuiRG9HpJJ1mjIxFesbD7qgYmqmyYsrtY8DRFfy1lrLgjrXjeXbPlzR4WJXX6B6sUNL+tnbFxSPn5AOLTutyj/Xe+iteKGzt/oEoQzAi9ktX80UXm/YgiE9OaOaOlpzEjfVliWzLXq89uT5FyxNtW3KG7kQvy0sQWYshr3aPTe/OWTP6NzPTMuT8GMkPXuhNg/LlRpT46SKpXNXAYmO2YIYSL4HiYigXEdkhhq4cASe3BG8zvBQ9sY4kRjTupKd00szqjWWLCxRvGMkp4zpYRjtfPIxLTF0T7/wqiW12GimodB6941YaArG6+St3KeU7wfw6qK8Cz+iwvsDP/qngDkk6w/80/UsKr5qBKkz7kmLq7WKFUzr7zyCp577jkUFRWhV69eePnll5GRkaG7nt+qZkTMxlFFolNcnV0J15feOI3SowWKDbnUXbeyahj3coDiDa11cZs9vvCWQGiEfnXDLSuA9whurHs3CA8KufKo+HtVMbB5rnb/Fd0sfy0k50r65hSZKMx+YpNBl5Hy5U+FHpoTY9k9WBa6XHcvJzveg/ZDxgNlp4DPHiIe3Wk+Hi/a/oL1VX0BiLko7yKFueCxjDw0IibOtkYpBrM/4c8hO3T3peRFMcr4usfBg0UblOAZ+9togWpFTwzPAxUIRwyjn7h8no/Bb/0XIGPURMVnglqXYBHlyp2Gyh4tpOfxodGD0H1gpvYkqXfvDphsfQNKjXwxpV5BYk7LrtnDrJGnJ31eyddppL5Kuvjy/NDrMeWxfRMVYX4kqKpmPvzwQ8yaNQsrV65E//79sXTpUowcORK//PILWrdu7e/da5M2FuiSCbzYzVyZacVpoa+JO5dB5yITtUXEUk6/92iBd5zRiCKgWgw0Ik7I4eg6Wn2/ZvMqai4IP6q4XJY8T+axSb3Gs/x2WS9j5XPi23HaLa4HvEEPmuiBAdR7FrkeNFl5hVjwRb7H6qRv/u2HjBe2891i/YUlJDEl+K/zeVRI3moZ2ftxGBxu7RERDixyuDSw4DDH/oFmvgrPAxfQAnG46LMx8qp9GVpK8k20XqNYwu9pgWMC7rpyjOqEp9YlWGQzl4EttVcrVvZIDQ3p5yLieQSAxJIO6K41UZDcuz+tIzpmQ2g8G6W5OOJxMODQvmIfjm/7HV06dvItT8Gsgqk/8k/MYsoDbyCEdAmIq/ld0OzFF1/EpEmT8MADDyAtLQ0rV65EZGQk3nrrLX/vmow/9pozQkQSOhoUCuOBz2cKb66NgVz4zMhFCwg39Iw8weCKaCl8Vu1KkJWKdcnxV58KkarzGkJqCi5YLTGr9ROFY+pxu7fhIgqUiW+ZRrJDr/4L0Gu8IF607l5N0SsxD0HeJE3MQ+AVnOfuYxWVIjkn8OPb5ONDwwNgnv193MjuxQr7UrSRhVwSmAqssC/DHNtqr/WF0NEFzdPCMEDBFfdismMGShBtaHxy4uCZ9Kq2X4YBWjC1RNusj2yNjPaxqhOeksiYHNGg2MgNQg6X5i4v3hU2HWtDn8Gy0OVYG/oMdoVNx0iV8usNB057CMyJODke2ceLseubjfr3btV5wYNhpbggAWLOjvSYu+ya4S3qZxTS59W3C70FwsSQify+tgoj4mSGBCUNhpAC3TvIAvxqiNTV1eHHH3/E8OHDG3bIshg+fDiys7P9uWtyfP1yWrRpmKzv/xwY+pj+OlXnga8IlrMK6TEauWjFG+3rJwTDQ544qqVA6q8+FdLtq93cMSme7lqS8tusOd4qqUqGixHF1x/eAnY+DxzeoLKAoFHDfz4T2Z+uQH+ZKiggTHALHPcKy3mtL3tgndxDXiougWWAFKYYz9jfcv+uxEMhn+NGdq/HZ6RJo336XIWfoofiGQdhaboCRquESLl3wOU4snez5oQnnqMMlqxJoVjplCQz6kTvipIxUlxZ56WempVXiCGLt2H8GzlY9+0PRPtGzztd/+PryWJcRo0+ZxGnesyazwk9SJ9XO5/z3egxgp6KshpyF154nEuDSIL8+aVHY1YK+Qm/hmbOnz8Pp9OJNm08T0CbNm1w5Ij3DV1bW4va2oa3mPJyMgElnzD95chcZ6L1TToR1DbCsYlIj5H0eIuPE+R4aLhG2w9yVb2UGhtrRAIQEuY6jwRJslouWDGsUrDdmOvSqsoDQpiq85iPl4BQ73yEkWwunrS/rzylyMoEuYoin94sEhj1fkCiAbDA/ja21F6Fq9mjaI1SJBKKc7HRSZg3phPekfVcIUE0QPxhhADAZ7sPoqrWiWUEpbgkhpcRjRN5Iqu0N468Wqc9Q/hsuXIUcPlAn/Lf3AmsOtVlYo7ID1wX7AibAUDJkPWhHNXo87kxkjPNJIaqrVNTJnx23ePmtaAau1LIDwRV1czChQsxf/78xt2pKa0LDdcZoWiVJaTdKrxtq76lK1yAR7P0txsR78p7ITkfKvFH1gb0n+KpcUJCdXGDWBlp1rtS1rqZRGTx7csq3RATSPMRACjqh7i54Vn3Ay8rrxAbN52GxWmKXiQy5dgbNtXDaBFzIZRpuAYzWRswfjzOfLwCrfhiZS0SWBNUMCJJf6KWPFyklbMTF2lHaZXDkMaJXKhNVE91cjzmb8p3X/0j2VzMDPlYxyskq86SGujFx4HvFoLXCPJJcYQlIPTmpZrVZdLKoKvZozpieybzFAw/n30wekgwk7NCss6+d80nkwaiUshi/BqaSUxMhM1mw5kznu61M2fOICkpyWv5uXPnoqyszP3zxx+EgmG+4NG0TYXQKM/ftVxnpNoiUiISjC0f01aohrnzHeB2tZwAhQuwvo4wo56HYW+ANJQjxkyHzPR2O5IgelHEnBQRUpelWlhFD/Hty1C4ztrX9IZ8hPfwtGZjOwb4+nGAc7rfnLMqrsBpPl6xuZw2DGpDW+ov5iIenp4TTSMEaEjWLdiJTOQg8doHBU0T9TXcOOzROHLlZOKxAQ0T5BOOiZr5NRwvVLfkcl3duThq5066rJQnR3fDS3f1xppJA/DjEyOwckJfdI4gE2+TelcYCBoconpqbkGJO19I6mHR9Qrd8Kww2R9aL/zbfpCQI3HdbOHeidbOURAMuGjYHj3ccJ+phEBrI5PwuP2f2MxlEIfoDIfCTTXV5L1z46zCaI6d2XVESPNQSMPUQYpfPSKhoaG46qqr8M033+CWW24BAHAch2+++QbTpk3zWj4sLAxhYWH+HJI6iuJZ8YJ4lpHsa50bXZEbFwElBSreA5eFq+a6634LwLxPJpX8/RtkOQ5m1EqVQjkxKUCfCS4tESOzo+stISQcuG+jV4mrJqbCKjLPEak7uPttwB85lntPhDdmPY0O4eHlPLEb8zc5XKZjg66F0XyKsLFLwX85CwxBDybV7TKs5/WlUjGk+14WFg3UCsaO3VGBboWfCfdi9QUoK9J6TlFFkJTOOli8GiqcDz2dDzOaIInRYR6N6DLTk9G2tB+wVe8gG7wrNnDoxx7B3F5xwAk7sp1d8VX+Wfdy/dl8Mmn/7re6wigqWhtpY8F0HY1f189Dp59fVtRXYRmgRagNtmObPZ8d0hBoRSFQeQ4RUa3wnxZJuNnZFc4TdcBu/SGS5px4oFa9p4c/kjMJt+kRJjWbTGpUoCyYKoUM4vfQzKxZs3D//ffj6quvRkZGBpYuXYrKyko88MAD/t41GVpyyKJ4lppgjZLSn9HGdYBgvPS8E2jdzVzvha6jgbAYj4Zc6DDE+wK8cIJ8TMQwgudCKZRTXigYIYP+DuStN97LpuK0MLkZ6TBsOKyi4DlqP8hbCE2Jnz8Fbn+nofT34hlg8+MG9u07x387jsKyhjL4LdzVKEULtIQBSfVBfwfSbxHOhLwBlxF4Dhj5rHAviPfDkS8U7y/NEEytLFelokiyvqfrmQcDnufxYv04nOSTvUpks7gMTK7zFg4TjZUt3NUYwOa7y2unOh7Bk/b3FZdVKt1VakT3W1RPJBAqro5kc/Hv0PfRBsVALoBcoD0fjzOO+wAI3YVfsK9QO1Oe/PyJ92fyvAXWhs53PoP9mzsjNftxryokAAitK1POdWBtwj2xdZ6HUTlQLIEnCaGsnwiMWWb8DV06yRZsB3Y8p7+OVcmZ8uaBBEzbdBpj2UJB1M1MMqlZgTIjSrVBhN8NkT//+c84d+4cnnrqKRQVFaF3797IysrySmANCLpvzxqxRi1r1R2v03srN5B4qYbSOA5+oGw1t+ygMx6jSCcFjfhn3sfA9IOeQmK+9rJRk3s2+hakaugRuhO+frwhtss5BcPLROWKWc7ycR6/Z7BHjPd1yftY6AycfgtwahqQrS+gpkqLNg2Go8b9ZSyg5bqOIloC9nCZzHgbzCy7S1M4TE3nYwT7A3aFTZcJkcXj344JKEWMqvaHOH61RnStY6KIvCtLep7C2KMvQU235PX6m/BgyOc+Bv+U8xb6jJgAPm8R+IqL2qqq0mef1uS4fqJg0OopKVdfEErZlYQW9RAn2faDgAMfNE5yptLzVe75kyAamZsrrsBXosJsmsFkUrPaKU0Yv+uIAMC0adNw8uRJ1NbWYu/evejfv39j7FYfs7E7LU0KUYn0zveEi0sVncRLktp3vXHIS8n6TRJuIk1YQTGW5PEXkyKEjEg6z/6x1/O4SENYSm8TSqVzz3cG8j4jf/u45jGh3HrGIe8H4sk9OsckIrs+WBtw43/1V+v/sKbWAw8GVeFtUBuZpKsfYusw2ONT4li9FOkxdMk0vr6E3HOSdxtLk3554Tu5eYXwvY17E7j/cxy8baeueikAxEWFY69E52ME+4Nqee2r9mWIxUUPTRCF0WBwxwTM3/Qz3tz5G+rqGyamjNR47A0fjMmOGSiCp6FShhZYWj8OP0cOQOb/LQEUvmHRcJkU8gUYWFEt1BDGyz5ejA0HTuHn7CwwFac17nLZtU1SAp/3MXD7WyB6dsjL5cV9kORDaOaNWJic+fNnyvo/LiNEfiakRqZTDPdtyhf+38h4fckpaaIEVdVMo2Mmdkdqrc441ODd+OVLQfFQGorwtd21Gas5JBQYOE27Cd2gaUKPGy0VwAFThBJBIw3h5OfabMmZ2ltZVbEQVhg4jWy7189Vf1AZ9apIl08bK7ztbZqunnOUNhZoP1g1y50BEDn2eeFXnUz4jI6tkBwbjiJXfxpSJVbVYzAZVxffBMd/bcMrrV0uaX/E6KvOe4TqMjje4/jliJ6LJ0enYerqfcLETlBe+x/7W/imti84sF6elNCQENQ6Oazf1yBK+J8vD2PSNamYOyoNW/KLUFrlwGYInpipts/wl5AstGQuoiVzEbPsH2Ni/RaE1atX9AjjsrZ8fP7qbXjvohD2EloHEKxEXEnmmhxVy+5llJ8C9q5sCOMptlpQyIcQPaHOOuC6ucC+d4yHsknI+0zo16WFzDMiD+HxAArLapBbUIKBep16u44WjK+LZ4CzZFo1wSxQZpTmbYiYid0ZldMVf254xtokItJxFOwEOl7X8PENC4R/s5d7uhcZGzBwasPfFW8ahV4NZsV0zJSckSSiZi8HBv7dFV4wWcpmtPJJrBgStymG2Ap2quftaMnnZzwEhMcKSbo6D1sbhBbxk1cJk6xeR1hVxO/HRFxdfBPcz12BR0LW4/PPjmFE17/D5g8BJdk2bSzjcfzyK4MHMCo9CS2jQvHK3X2x4It8tK/Yp1tem4hy7A97EA6EeIS6Cvl4PO24D5t5Ty8MxwOv7SgAx/P4/Kci9+cj2B8wM2S91z7i+PLGFj/F0aqG6j9ig9VoJZmRPDS9fCqCDsCITvZNg0OJ/I1EuVIMz+Hfjgk4z8ephvAAlzYM5xRCi8PnC/d1VCth7GIelZm+XEEsUGaURml6Zxa/N73TbUbEeDcLOrReCAfocdsbwoXmr+xl0nFEtFRODquvE6poLpwQckf6TRI8JlJI2m6bOYdSjDSnKtgphGH0iEwERr+g38xOifyNwMa/AzWl+vuRYrbdNucEdjwP7F2hnhwbnQxc9YDmwzYrrxDzN+WjsKzGrXAJhiT2Kvt+TDQrdPIMbIznd++wx8LeeRiQr+4xk1f26Ff6MMAd7wDdxnhdl1n5ZzHnk0MorXIA8GwmJ04SbWIj8eTobuh9+L9IOaxW9u45HsBzTKLR9ZYzE1u5q70mH6kxxILDrrDpxo1CExTz0WjJVCh+3xyAIt6zMZ3+2GTXBem91+PPwKEPfTgSlXGMfFalI7dr8FaVqBq8/qfXTcNGTjsXZfPIUly5/xllbw9AmE8oReeZGiQYmb+btyECGO8wa2Qy9ArFmJio1CAdBwCAaSSlQYDoHMohMXgAcuMLEPII2g8ynvi7zrwEOQDjSXhaVVtuyM6jk+ORW1CCsxU16HrhO3TZ/wwYzQeqynYJzgPHA1UIRxQErQu5AaFZFQPlSZ6YiHjPHJ6YFOzvPge3fZsIHmrdcOPxb4dwja4IXWqZM0KrM+8ANh9rQ58xtV2OF7JHWPCa54jngUK0xNr66zEz5BOvklyxqkipYZ/bYIU8RKVwXfjUgdoCNKvsLJyYDT1XgSn2f+Orik6qYcE/tziAhfXPgVE0oHjva1kXiw0vP2Jk/m6UZNWgxqgQjJjboPcok980vvRbUIJ0HCJKyWFW4auYDmmCrhFX5MUzwnbaDxLWu3hGMErUzgHnBL76J/n21dj0CPl5JtY8EVRC9BL8bCd3YWBqHG7u3RZXXn8PGLH/0bg3Bfe1PHla7fsR81zkgnLiLl3DrXMpgihNlHpXpSjZ/m/HBGyr76WztAzZg5svP43e2dMxks3R7PHyqn0pnrX/z9JpVKt3DGnisPxVUDy/b9SPFr55lQGLn4fDgVn2T8Aw3jkvPBi8Xn+TatdgpYRaPiYFv1z7CjbUXYXs48VCIz5TwmIWolfqb1XyppG8i5i2GDt2HADlFFRRiM7bCAHc97whIwRNRqDMKNQjIkL6Vg5oeAD0sNilRvQ2LeH+zz1rzI0cMwlWb09p+893FhLb9Bj5rBCKIUmAAwy/CWly3eOCkqUeZvYp/Q6NCh4Z/X44J7D9v0K+TV1DnkQRErDacR1m2T82NnYFHqmbgift7yNRo88NKU6eQTmiEIeLisaRv5rmiYm6YugjOjwEVTV1uN+Whafsq3TXL+ajPSTzT/MNSY8j2VwstP9PsSS7gg9HC9QoCpOJiIaMkkdEhAWHTWNYdI+pRu65EMzMicSpcof778mx4Zg3Jg2Zaa31w4iBZMAUIHOhb9swck+6vJ/SsKhIcmw4XupfgYwd+rkmugx9DGjVtUkJlAHG5u/mnawqxYgQjFqiIYlIl5l+C3rj2PR3suZyUmvf6CRGgr/FdFgbMOpFMtEttUS48tNC2EFa+WNGf0SLvSuBof/Qf2CY2ecvXwrn2IzgkdHv58gXwP73PIwQRCagsOeTOLHjmPGxK5DAlFtihACAjeE1hdz81TRP2jsml0/DWxmFaLt3vq4aqmjADK1d4m4iKE96FDVQnu5RAuex7YipL8JpPhHZXDe8YH8dUajRzD9hAPCM0GTvm9q+XvvhwaJNbCS6DhyGrPwiTP56H3g4PLZRVFaDz1avxLWxaxFR3ZCIi9AooK5S/wT1+DMQd7mQiP31v/SXN0vOq0KzP1+8BSS9bRibUKbs2k9mejJGpCW5w6KtowV9GdvPvhvqAIDUa5ukSJkRqCFiFiXxMV9FusyOIzwWeI/g5hNDG2ZV+4KB9FuA09O1S5BJyHlV+BGNLysz0KtLyIxNM/v8aZ2Qee9vwSPVMukS9MmZiRa9pwH55jYtjJJBXWQSRnXrAfxofjvBRGuU4rnuJ9Ev93HwsuRduTdGqjlRjxCv5ndSOLB46lAigHHuzwaw+UgmkX2HEH9PYYqxP+xBRDMNb+1i3swtYx4GACzYeAgD2DwMZPIBBsjm0rDXpbnyqn0pUC3bMIkRAgBdboCz+zjkHj+H3uHLEF5zViVcoUF4HFkCuXjdA+a8s5rVfC7GvSW01pBgYxkM7JjguZzPzxQLhdmCHGqI+IL8DbNgJ9l6VpdddRhCrslxKaj23bAAaHsV8MWjOh4oAkTj6/Z3yB92JJAYm2Y6P1edF6qdjJSQG4XgGun8x8fgWyQDFwtNZQww4BF2039xdUTLRjdE1EI0voZuBvS4EuMKhVYHXjkDsg+0ZOPliNomUswI10mNEABIYkqwIvQlMOxV+GV7BTbV/hPxoQ0epen4DCV8FMQMCLMJhbnnQvDI4m2uiq7xQi8kooquBpxtesB2kuD5Wn5KCB8plrwTenvTxgoqsdnLPRN0GFbQKUq/hWzQpjq7u3cm/BPkXXOtgiarWoluAqmghmm5hWtEafBSUe3rfgvwj6NCLohPuB4Qm+da67snMTZZG5B+Oww/pEi1Gkg9b3JFyxO79K+RitNgrn7AlBHCA0K1QNfRxpOuLUDpazbesbgBHgz4mLa4u397orLPJbYHMKT2JSIjRG1spoXrJLBwnfVNj6DL9imKYa2WqEQ8c9F0+XFtaEus3roX7Sv2gQXXkCDLk3Xl5nighG8BlsQIEfnuWRW16XuB7xbrK7fmbxSk6uUy7jwnfE5acEDS2V0NfyWlkqrXNjLUI2IlZkS6rEJPuU+8oM12ggxGWJtF3iVhYrUGA+5U8YFnFNKeQS3a6CeoKuUKRcSRbT+ho7qKrAYM4Bm+0nOFNwJFEHrMlKEFXrUvQxyj1INFCUEJF5mLBKEqAmw1vid6mhau84J3V24oVj/5sG0eQFjdBSwNfRWAZ6mz2PunQ1gF/jM0ErbtiyRrCUgNMN8TjV0bk3Y4V1Nu1atkM+IxNprHl/Eg0G2sf5JS8zcKlYHSXljRyUJbigCH4puvR8RflqGvpay+7ltasqnUS8WsEmogIPmOgmGcckiMTeLSXQWik8k8b1XF3j15lqY3vNGp9SoieWACwrlPGws8dhy4d4OQ3X/NY8KDlICDh11S1mr3TCMimEAscrh0LLZPcX2iP/NJS11/Lo8g2td0+2fYFTZdseSXFA4s5rt0UXzx5og0hj9KWurMgUUOl4a11f2x3DkOuPM98LLvvwgJWFI/ziePjCZKkgr+8BinjQXueI9s2W5j9XuMmUHUBpI35KxweYqskpUwSfMs3/VHxYgcf5eymqW+DnixW+OIA/kC6XfU2EJL1z3uHX92j49AuVXEl3LhmLYSpUlA0fPm7oSqokR5+zvA13OJQgmK2KOA8Ws8ZetFCI9tiv3fWDr77/jx5AWh2iDKjgzbEdguFgFZc1WvUYWjNYxa8ugUxwzccvfDyGS/V1b8veFZICoBuHjGq9SVBYfs8EfQGsW64xL3p1VWS4KSeFswIy91BoC4SDt+fGIEco+fw0tvv+tR1XMTm4NloT50g9ZF9rwjFU0c96ZHzyNdfFWglm7H6LzCOYHnOmp7LSPigceOWfrMp+W7WjRWxYi/S1nNIE7uWkYIEPgEKSPfEUmWuy6M4GVgoP+gGPoP4efkHuFtQto3ol1/ocvwofX6DwlfQl/lp4DIBPVQ3A3PCkaGVkLylz4m+joqhUotJeOw/SDURibBXlmk+CYrTkZZFVdgwMJvUFJZ5/6boL8QigyNsYmbrEIYIlFravhyNz/LCFLoS2LXIiLtKYBVqIqTfJ9ZeYVepa4j2B9g52uJQghiAuoi+/9Q7ojEXpUuv3pIwxytUYpzEB74A5l8TLd/prs+x6trkMgxLsnvjVjq3J/NRzaXDgAorXIIpa+VDq/qIStyYbSRJXZb4TFWMxZ8DdubfYEu2KkfOq0u8e5L1og0L0PkUqgYMQuJ+JlVnSt9wcx3pJofI3mD/eVLoVxX7SFwo7TvA8GDQm5k5m8ElvUif0j4GlK6eEZ4I1OaLEncy75WG4moGIcH0+fi6r2PeE100rJVDqyHEQIImhWrtn6PDILOsGaNEDVYQNDJECcllZcJJ8dj/qZ8jytEKpdOvD8GaImLWBP6LM7z0XjC8QCyuAGGxy2GOaTsRRpuD9mhmUMi+sJL+Ci0RKWulLwcX3I2XrUvwxzH39zeIFF/Q94j6Aeui0W5MDqILwZmu4KL6BkLJHl8ats1+wJ9cpf6duXLUUOkETDaOTfYMBvuIclHiEwEph/wbHwXiPCS2e9ISddFOt7UawSxI6XEzP6TGwwbMw8KMw8Jn0r70GDIKE2WjZporGwcOq8cg8m7CjDP/i5S0PA2VgT13izi1vz2FhwaDdQRiKfpnL/cghIPFU1Ryhsg9y7ISWQqsMK+DK/V/4ZFzrvNbUTGmvphmBWyXtXrcQEtMNfxNwAQjCgNDwfj8uBU8BGIdgmK+GKIxOIiVtiXukNTraPDkVGzC9nhM9EGDcrJp/l4bKwfhAdDPjfkvTGM9H4y67lQfQ7IRBSnHxQ8p0YUjn15gSZ9vAQwSaN5GSJNuWLEl7wW3ckdwhvyH3vNy4dbhS/fkV44TDRWpDLV1ReETPp97zQcm5ZBI8fsQ8J0SImgKofU26KrBEyKt3GYkRqPDZGhYByeMwfJPCJWhCQzF4iEr4hDBAOmAjsW6S+nc/7OVnjqcWSwRyzL0Xgo5HMc5DviK64/0fJKXYZHsD945I3IT80FvgXeqh+JV5y3usNBkx0z8Jx9JWJQAzVYBohBtSVS+WJoap79feSFDUZGzS7YProfrWXfdxJK8GDI53i9/iaMDdmDFFhznj2ITBTCrAU7hfvKjOeC5GVPLqJImmPi6wt06jXAzuf09xPAl+/mZYgEe8WImgfC17wWo5N7IJVX/f0dHfkC+E4QnfJAfmykN6UvDwm1B567I6fJWDKpe7n7bUC2ifJhNSTXme3IJiysfw68bP9tXJUTWkmaYkXIytCXwIPRNUbIJkVGkKv3xe3uonV0uMfvI9jvSQagP0LXcSywv4VSRxRaodxL8l2KUqJqCd8CLXHR6+jEkNiS+nEeBojIZi4DGc4j+GtIFvE4fUXMF1nS/yJsm/8FJSE40WC5xZ6NA7d9h9/P/ojT2/+H22y7rRkEIBjjoiK29GXLyAsJycueiNHnqK8v0B2GCA0s9ZJVOwwh248faF7lu4ESHCMhf6NyqWXeZzpv3NDvrGtkctd9wyfYny/48zvyx7H5+pBQKrl+7Jigz+FLN2M9gbsbngWs6oUhIl5nrvPMgPdypbOuqth59vfBgvPahMhmLgNHr30FdZFWvRS4tGL6TnT9riP8p0FGajySYsIACB6J2207LBqjQCJTgTWhz2JZ6HKsDX0G2eGP4LaIfR4jVusyLIqSKZ53AONDvlPcJwsOd9iU/+ZvMph8zUmcZYAkFKPjkTdw+c5HrTVC5EhLekm7ggMGvegGnzW+vpwd+UJ/3TEvBTQvsnkZIkYUSBsTNT2H8kKhwZuvde1GJvdAK6+STqIn9xjXgPHHsVnhwVF64JFowmihp2cTlWC+dNcLmXGoc57F3icZ7BG1rSE5Nhydrr0bIbN+xhLbAxaNEy4RNt90fmwsg/EZlwMQwjKxjLwJi7W0Rgle4F/ASDbXo7084G1wMIy6x4Jl1M/7VNuniGHUwzJ+hTAq2Sn/ZS/Dy3rxCZMvJIY9tAaeNb68nIlzi5o3JCLe3UU4kDSv0AzgW+ayPyB5SydByyI3koAVDHk0Wt9R+jhv/QvS3BV/HJuvWfZa+FoCruVePrSefDuauSQKBjzh+WuNUrWrEfPGpMHGMgAbgm63/AOn129QrZzgwYCJTCDLd2nRRjinRtzuCnRIjAIADGd/IF7HLIwr12hJ7FoMdw5Gu4sHfcpJmXHFaawpKMUZXgj7AMBfCEIygBg88Q6hAGZ6+LjuDdIcBoVkVf90VHYZCd8uBK64luzaMJt8TnKvmEmgFcUgN03XHk9IeEOTwADS/AwRwHj8z58YiS1qoWeRkxpgwZJHo/QdVRW7RLxM5q7449gCJetPWtGkZswYOcbMhYJOyi9fCt1/pRO+kgFPuO0Jw/vh+73hHhUoSbHhmDcmDZnpDR6LzB6XYf/pp5GcPd2rcoIXJdZHveAyUMkMQidY5HJpOOu8Aq25cGSAhdfZ0zjHraPDMZLNxV9sZBO47/CIqC7CjvvCcfy3RICwIlOJAf/3FgbYhf8/zcdjTf31aMkQdtIFL/7nJQinZpyI/3oaDZJ7Q7dpp2sNHaPDiiRaD3Y+J/zIX3QM64RoQHofkjy/xXEp3adqVJwOiirR5qmsGkyQKvmpQqjIJ6I3gVmlAGg17nGpGW2ScQHKx+jPY1OsMjKgtOrzvgxWNHFO4PnOgnGnx/2fNzyoSAwgA+fZCVYQs3LpSGSkxgueEAWcP29A/Rf/RFhVUcOH0nPsTrIGFA1Cl6GalVeI+ZvyPQygZLkBpHSOIxOAUS8C6bfAWV+P8890QSu+WLOklIfyBG2acW8K592EKi/vGox0PByg6GnQguMFOXwb05Djc5pPwMb6/rgjZCcSmArZ5wOFihepF0d+b6h+d+SIM5n1XhLJ9QNo33tK143aNs08a7QKGoj2q4BRlVhCjMzf1BAJNIakvlXeuK2uYiF8oDcqpOdJSYJd/qDw17E1hu6KqjCdifHnfSbkIGkR09a8YeaP8yyeY7mqrdYDOToFuGoikNARuedCMP5rG5yu9Dh5+evE8eORyf4AfKRxXgZNBzrfQHQ98gDqbZEIcVYTlSLrcv/nQPtBqH4uDWFVysq1gLIKqtwIkY7RzNz9b8cEnOfjPCp7lMqJpZ/PHRKHXt26Kt8b+RuVGyiS6r8QHZvrGRoR79qPgbJ5d+WJzr0n9Uwoiii6EHVFfHlOcE5BjkDazM8o0hcNC6GGSFOC9O1x5LNCq/rGeOMGGvcNnwSfPEeyB0WwHRspRrxCpA+2r58E9ixT354vhhnJeTZjvOl4hJz19TiydzOqL5xC67pTaFewDoyku7LYBRaAV/lrKaIQiyp9o6H/w8Delbqn4E1HJnL5rm7VVVZuHIBMNp0HA0biRfrXs8/iWcd/vbaptx0tjBok0+umYSNHnvvEQAi97XrsWtj+yBa+88hEYaCV54Di48ql9TrjUzqPYrlyfVgcQutKG/4gXn+Azx4YT1TuPaVrlWEBXlIxZlafSambrlHMvmgQQA2Rpgbp22NjK50GU+M+X5rEAfB6UATTsZFCeg6MvuH8/Bnwhaz3jFWGmdZ5NhNi0vEI7R/4EqbsuwyFZTUNsuuMZ3mgOEmJ76ly44BoAg+LAWrLdRe7q+4J5HBpipofpPviXDPw8W5T0fmOBcguKMX4N3KQyebgFfvLsDHKj3COB8rQAqucf8LfQzbo7ofnvc8HybEZYSSbi2Vxaz3Da4SIRykdnranhwETnQzculIwdEiuP19Ruve8PCRyTHgJSVp2kDBoOnDDAt+2oQJtetfUIE0kbexGeo25Pz3DwFdJdLmwWDA2JdTDXxVN3W8Buo3xj2Gmdp7NiObpVJjxYNBmz3ycqX0JLNBQ4iofEtPwFm26CqO23FVNVKw4HrGxn1iVIm1ON4jJw3T7Z8T7EsfY+fArqPrP+zjb8V8A2qEUMapGiLheS1xECkOmnvti/e0YH7JNV71UfmykiIYhU2VoNTdKAQ6tc8iI2jEMq5wDIU2I/+1bYOcL5gYmRe3e45zAwTUqK7msKdI+ZyQqrqTkfQwMfzrgL2HUEAkWgqmSp7EheTPWrU4hvCmDUb6fFH9U/cgNwO63+v+aMyuLr1NhxoD30MnQKnG1JKExpQ9wbAvk15+8sZ/7c1dzutZsKdHmlTwmEfXlGPvLbHzJzkAY6om2M84lAKbmgRENi1ect+AV5y3IYI9gOPMj/hrylZeHRO3Y9JBqn/h06nngPGJwqv8T6BV2jqzsV8s4EK/9sFhfRtWA/N4j9rrIXpS0sKrSEgia3mrUEAkmguktvbFCF0bejLU8R33vJ0vYCpR8vxVYrVkSqH5CZmXxDeiTNArHtgj/MhIXC4RJfb7jXlUJe9KmfkpGg7irefb38KjjYWPjZbzzLJQMixwuDTlIw/f8lUI4SeIhKYPQp2YLd7XX5pNiwlDncKBLbZ5XsqpV/XgYBkhEOZ7aX4OXxw+FjcQQUbrn/RGWkYuKmQmfkFzjVr9MBcHLGTVEgp1A5DI01gRl5s1YzXMEuKpl/CAsFixYqVkSyH5CZkNMhEak37r3qiEmHg6Ygp+jh2DMJk7TWyA29TPb2p5h4DYOjGxHyW/IMkJ/GiXEcNJU22f4S0gWWjIX0ZK5iEftH2N8yLf4t2MCnOHxuLE9cGWnLugaW4G6L+Yggm/I/xATg0m9N6SEVJ5FrrMrBpoxzH/+TLsqSgPe9SP/dnkATPq4hnvPbPiE5Bq3+mUqCF7OmpfEe1NDrf9M/kb/7lNNbl7swWAVZiXXlSTRg1W+32r0pNtJjIdA9xMyG2LSlboGnDyLlqjAD1wXOHlGVQKch9Xy4AyQvwFd+49Em9hI3fDDmvphPuuLtEK5u/qHIzwWpX3G4SJW2JdiJJvr9bcR7A+YGbIesa4eNiLJTAlWhC7DG9zTuK3gaXTfcjds6yciotozCTXJ1eSwPeNDZYcC5xAD54ndQNotUK6nUbnn8z4B1j9ger+f1/eHYloOD/B7Xm54PhoOnzDkPbQI7gPL9+lnqCESrDSmQSDS2BOU1cmXVkzSjYkow2y0Z46vfWgC3U/IbO8MD2NTGRYcXrG/hMm2DbAxvGouCANXmMPo2FURzpntj2zMG5Pm3oeckWwudoVNx6P29T7nqZxFHDZzGZjsmIEixJvejuhNkTci1OxpA7JpsKHZ3rco5OOJDSYtyvkIvGhfiSG7JzZUochPptI9//WTghEiLZ0lhAdQiTAMsuUr+14YIV2aF5+PZsIdYlmx/Jkgf04AGi9dpLjWM9u3y2JoaCYYMZvM5yu+tLQ3gz+SL5tK0q+v4S9f8okC3U/IlxBT2ljg9neAj5UnFDGH4i8hm4mGwsjbo0e4JvRqST5DZKIkMVWHi2eQ2eMarJjQ10u99a4WB7Cw/iXI72sjeiLi3woRr1mRYxSWAVIgJPqKJblW5XWwrlDSi45xmBnysc9S7NGoRgt5o0H5tSD/Pe8zDb0cfRgAUahFFFOrugwLNDwfjYY7rpsr/CvXCYpoKexdej2Kz4k731MWgCPB175dFkMNkWCksQ0CkcaeoPzVMC6Ykn6VCGR+BhAc/YR8aT4ZlaD5ViuWrRJx+zsNzR6l+UZyQ/bkHjJDxHXOMtOTMSItqUG+PsqOAZv+Aabc+zqX5bq6UZqwxeXmO+4DDxZxkXaEh9hQVF6DHC4NueiK20N2mM4/SQ2rQLe+HbDhwGm0ri41vgENQuC0TH5d15VfUdRwL3UdDXw5y5odk3DxjFB9FpNCHp6pKVV+JigZGeJz4vZ3AHuEMUPkmseERn6+9u2yGGqIBCOBemNt7AkqUA3jAkmgvF1S/Nkx2AhGvFfSpO2z3m3slaizx8LuKFdRSWUaOr8q7U9uyJo4ZzaWwcCOCcIvBTu1S49dl/uy+luwh0tHS1TgP/Y3ES8zqC6gBeY6/oavXRU5i27r4TZ4isqqseCLw1hQPQGv2peZ8jzcek1fZAzrjidGp+HUhl3AQWPra0I4Fi0FVYYhPSbJvRQeS9ZTySpatJE82+4lW+endSAPFLqO7ctHyRrbSWntktdfmq6yv0Z6BsmghkgwEqg31kBMUL68GTdFAuXtkhJMBiCJ98pkqWXo4KkuyXALjlHjnPGu7R3t8y90UuriCxC/NBzjLnOHRr6u7YcMNh9TO5zG0TMXsaW6C/ZyaeDAIj7Kjlt7t0VsRCgAuA2eiFAb3ll9wLABwgGojUhCxnVjAAC2I5tw+cGlxjaitm2XTkk2l4bp+IxoHSUjyrg3RbiXdm39FEOMrmoCDgAT0xaM+HxMGwvc/q5qGFGAEZopGjUowJtYB8J1eGJX4J9BMqghEowE6o01UBNUU8nrsIJA52eINBUD0JSUtev+GPoPoNWVCvL1Jo9R5ZwV8vGY77gXWzbHIHPPMjzUJ9K7sZuJ0uPWsZG4f8x9GJKejIEcj24FJdiSX4RP959CSaUDb+4+gTd3n0Cb6DDMv7k7MtOTkZmejOQhcYB3AYwqPBgwAH7PeApHfioSwkhZszUdGOo9cdR1SvZyaQTlxozgwbIohAMA+05ewBC7ddtTguMBhmHAyJ+P6bcIx6JYLuw6yJ53qki/+4HNjwPhcWTLNqK+CO01E6wEsgNuU20K1xTwV78YswRzzx3dJn9KSO4PwPs6jkwARr0oTBA+jCv3u01YtfV7t2jXCPYHr14yHol/BM0t+ZgU5Iz5DmcrHWgdHY6M9rENzeFatEHWxVQ8/IF6rGTlhL7ITE823JepOiIJ8x33Ye3F3gCAAWw+1oY+o7ue3Bjh+IZqJJHTvKe4Wyabi1ftS4UQi9I2YakNAgAYX/c4XrCvNJ03Q0J1eBtEjH1eu0eS2jM1oqX5PloabQZ8xsdnUFD0mjlx4gQWLFiAbdu2oaioCCkpKZgwYQL+9a9/ITQ01F+7vXQI5Btrc/JQNDbBkp8hEsyJvWakrMX7A1D2pFSVAOvvB84/DiR0JLu2Zcaas91APLI3GoWuzrPu5noy+PJCMNLEPx1vI5O5CAM7txY+yt8ILPO89/vx0chkH0AWN0BxmI+uO4gRaUmwkfRlikwEMhci93woxn9tg1OS/kmqTFuKFh5JwUVIwL8d92DC9X0xJMmJ3HMhmJkTiVO1DvcyB6OH4mCfDuizd5Zy1RPRnskMFjEktJdLw3zHfVhhXwqOJ2/qh7BooPYilM6hfP8RoTrPRq1nKuc0ltgKwP2cGPmsK+lUSa7OLI0v/ug3Q+TIkSPgOA6vvfYaOnXqhLy8PEyaNAmVlZV4/vnn/bXbS4tAGgTBPEE1ZYIpPyPYIXUND30MaNXVs+pFMxkPnu0AtEoWFd5k6yOT0LPiLhQiQ0drQ5b4R/pyoRKOSmAqsMK+DK/V/4ZFzru9hlpZ58SeY+dxTZdW+tfYTUvg7DoGjyzeBidqPLZDqkw7xTEdPFgvOfd7O/QHOiciA8CO6/iGyqHocGSkxsN2cheQY1zLQ4QDAzYizqNaRE+6XtRbkUvWK8HzQCnTAjFjXoZt/QNQmuS9bBmSahO1Z+qRLwBHtffn2qME0m4WPHx3vANslpXhEnaH9iYwz6BGDc0899xzWLFiBX777Tei5Zt1aIZyaUPDX/qYDWMZDE2ohjtVDAIeDHiex2THDJShBVEYw2OMWuEwnXCU+LSe4ngEX3H9vf5+S+8ULL2rT8P4Na6x7OPFGP9Gjtc2WHDYFTZdNZQhehqG1L6kKGWfFBOOp8emCWEiJQ6tF5SiddD1elzn8moVH0dt7lsIq5JKyyv3+2HBETX1m+yYgYl/nY6BtbsNJEq7PAkzDpFP4kQ5UDJDiGE9vUkxKcANC4WydvGaqigEPplENgYpkYnATUsseQYFRWhGibKyMsTHqysA1tbWora2QTCmvNyMRUehNAFo+Esfs2Esw0l2CiWLGmXWDHjwEJRIFzv+TLYL6Zi0vI16HYZdk+YC+9vYXNvPyxAoOC8p99W5xs5WeHpCRDiwqqEMku67Z8prMHnVPqwQc1bkECbucjwDm6KeOgAwwL53gRmH4ASL5TVj8P2OL7y8M0rHptXUT9qwcFRFDdBbcg4LtgM7tJrsGaw2qa8DPp8J/ZCK6+9dRgJHN3uHtMoLgfUTBUO6x+3CZ6ICq1EyFwbkRajRDJFjx47h5Zdf1gzLLFy4EPPnz2+sIVEogaUxwl/BnIyqh9kwlqmydtkkomMQiEqkCQzhyxLpmAiNqESm3EMFVaTgfBWcHA+baD1oXGOto8OFRVxeAukkrhbK0OssDDR4MuZvyhdyVuRulfaDUBHaGlG1Z1U9LiWIQaLmuRW+r9zvNgn5OmU1ANI0lvdGqkirZMCI58d9Dq2seMvfCHw+w5i+ya9qgnqu++Kr2Q2GNEmekBLRKl4sP2O418ycOXOEMiWNnyNHPAWHTp06hczMTNxxxx2YNEndXTR37lyUlZW5f/744w/jR0ShUAQC0TTRasz0D/KlKdgvXwr/Ek46xXwMTmv2UGGMNRYzYEQpJZWW19Qjt4BMlj0jNR53tTiAXWHTsTb0GSwLXY61oc9gV9h0jGRzsZnLwJDaZbir7glMr5uGu+qewJDalzSNEBEeQGFZjddYnByP7IJSrGo5BYB3sz7x98+cZOdr1dbvPWT0jSJ6SDZyg5Dj0mhhACTHCvksHhB+Nz+XR2DDgVPIPl4Mp9KFIYZjjIqs6fXIqTgN7HC96Gs2AVXC4HVqMYY9Io8++igmTpyoucwVV1zh/v/Tp0/j+uuvx6BBg/D6669rrhcWFoawsDCjQ6JQKHICLSNvJUbDWJqeFB1yXgUuH0g86TiikjC/Uq0iQzvxz8kpJHK2H+QSuNKfpM4hBgPYfK+3ebWQixzbkU1YWP+cK9DUgNgxd7JjBjZzGV5eFyNIx5KVV+juvzOSLUWpvQXiGU/l2FKXcmwZWuBvyNLfPmFirRQlD5DoBRG/vnlj0hQ9OVpeBh4MziAeYzZx4HAAgGDQzBsjyZfRVFa2gO+eBVp3E+4ZteRoLwKfJO/XZNVTp07h+uuvx1VXXYVVq1bBZjN2kDRZtRnTlEMKgUZXf8NEUl1TxJQiq+vcTD8ALOulm5/inP4Tck+WwfbLJvTKW+iRMFkVkYQ/Mp5Cp2vv9prUpJOyiHvSwl6hxFgFnhek3msRimSJbslpPh7zHfcJSZaitLwaOtcIB+AMn4DBKgmppKyZNAADOyYgK68Qk1ftAw/Pcme1RNEt3NXYE/4I2qBEUaKfB4NCPl41YVaNkWyul96LeN42cxnehoMcFX0naQKz1GMkHt4Kkxovpohp63lvS5+lxceBfe80SpK8kfnbb4bIqVOncN1116F9+/Z49913PYyQpKQkom1QQ6SZ4mtnWqNcakZPsImmBRL5Q1hatqvF/Z8L5aFGRAVdQmef7zmAo1VR7jdt+eQmnZThvVWsmNAXI069Ajb7ZS+nOg+XkJjr/+UTOcMA3B3vwdb9Zu3jI7xG7qp7wpRHhAGQFBuOXbOHAQCGLN6GwrIaQxU5H19fgj7Zj7j+4nn+eQAP1z1CFCYSUTOA3BL9176iaDR6ofB8KkIC5tUp585Iz4Xt54+JKoYUkVfLaKF1bzfS8y4oqma2bNmCY8eO4dixY7jssss8/hbEYq6UQNPYIYXGNnoag2CRkQ8G5MmaNaVkctoXzwgVCAZEBbPyz2Ly13bw6OfxeVFZQxXJiLQkzN+Ur9VuDHM+OYSnQ65HnzoWz9jfQgJT0TD88Daorq5EHC56TeQsI0yqts1zgW43aU8uhN99h7AK5OhIXKikEbvDG9nHi92enwz2iKf6rAwxCfjr3rvQqctNwGXveGtkxKTgaJ9/YfPmOKJjAECk93Ll/v8A194FKHcLakAWKvy5PMIVjlH2zEjzZQaaSqR2DXjgNGDPMrJVLp5RNziCUCPKb4bIxIkTdXNJKBQPGrsz7aWURyElUE0TmwJXjiIzRMRzQ5if4uR4XQNj/qZ8RIfbNZMreQClVQ4ADnyF/thc288jn2HW0I7I2PGA6voMaQkp4Xd/2zV98eHX3nekOJc/ODQVGw8WehxTkswDJM0TIVVt7XRkJXBkpRD+uuFZHCkNQcjvuxAZGoKU3iPQqcMQJOdsR1FZDVG2hZ4BZLj0VjKZHztwyp0TosXZihqgJ0E1i5JOiGj4hrYg8+oVH/cOvQXxCxZtekcJHhqzM21jGz2NSbDJyAcTZs4NwRtkbkGJroFRWFaD7OPGKiXEqg7XyPD5nu9BFIzQ83gQJF7WRSbhfMLViI3MdxlHDcRF2rHwth7ITE/GPzO7eSfdStwO7jJYGE8u5csLwa6fiGRektiatxzVEUl4te/juO3bRKJ0ZFIDCIddFWUGwhXS49PixPkqskTqjAeBuMuBqFZCOa10LEP/4Z3j4QEj9K75bqH3toP4Bct8FhKFYjWNGVIwYvQ0NTRL9wKfIR8QOKeQF/Hzp0Dfia4PrTs3pJUqvlRL8ACOVkWRLSzzeDg5HtnHixvKSsGqXiMcL4TPp5f+GVPWHPQyQgDgguQzGzgMZPNxsy0bA9l82OCZx3BV+5aIjxL6i+VyXXXKnT1hwAM8PHraAEBYVRF6Zz+CT64/j6RYfUOA2ADKfd1wmXtGajySY8N1i2SXbj2KrLxC9ZJ0xjUd710pdMndOk/IU5Jei+57m4Hy9SueWI32BllzhPshiKAeEUrw0JghhUs9jyKQTRODDaU8oIiWABigWt4t19y5IX0rHnhFIj7ed4o4pCAnl+sqdHqtOQtSj456hU4/ZCpcIySiZW7BMiYXts1zVEMA4r5LKusAaKu2qu5LYRmWATjw6P3zYux6TKhcEj0yFyrr8O/Pf0ZReYNKt2gAEXfgNeA9sLEM5o1Jw8Or9ulu1i3yJg35/fKlEC5UUkxVGoN4b3/1T0HKXSQ6Gbhqok7oxkKvsoVQQ4QSPDRmSKE55FFQGXn1PKDqUuEzsV+Jj+dGfCtWMzDEyokBHRMwb0waJq/aZ6pfKgcWv/efhyu3TwWJ2qxahU5DAm0/jJh+CH9f/ApCKs9qyqNL4QH0rNgB9qOXvI/CNYHuH/gSJn+b6LVvIw3otGABoPwUbH9kY2BHz0l1ZHoSlm87hiVbjwIwYwAZD89GhdlQWavuafBIWu2Y0KCA+umD5sYgt9AYCMnYJATZCxYNzVCCh8YMKeiqbwZWadAyxPyGHrcL/zYnI4QkD2jfu0D3W9XPjRjSObRe+FfFpS2+FQOqV667iiQzPRkrJvT1CikkxYQhLtKudUUiOTYcna69m0htVi+BFhDe0HNOlOLLik4e6qJ6NFShKG+dB5CcPR+MLEwjspnLwBj2VdQPnau7Lz24iiLPsJNL4v6R4Z2xckJfJLvOs2gAFUG935n8OEjCs6Kxp2WESPEI45kJEYvGtXy98kKyRGwg6F6wqEeEElw0VkjBbB8TStPB1+Rng6XdooEhD4PIq0jEZUekJXkleW7JL1L0lngpfhJ4u0gTaN/dc0LjHCmjV4XCgEcSihX74YhcqK5Hdc6biDa8d0+mbTqNLysaughLdVvE8yx6R6T9ZTLZXEwM+Vp/BwXbVc+xlrGnhkcYz0iIWDSKN02HZg4Iw7raNDedRHVqiFCCj8YKKdA8iksbX/KAVEI6vCvs8H3GUjivHONVIaJmYCiJZNlYxksB1Ygxo1fNQ5pA+3W+cTc9aRWK1nIZ7BFE1501vG8pF/gWyKq4wuMzqW6LeL7Wfv+7++/SSqSJIDBEpB13ZYaonrEnRQzPefSwIfVMKJXjquHONWk6L1jUEKEEJ40lukPzKC5dzOYBaYR0GPDgeOCyvf/GkB0JaBMb6WUgKBkYRjBizGhBmkBrBtIqFK3liEtqNXirPtMrlCTv/qtmLBhOYAW8EkjJq6UEvHrYkOTFqZXjajFgCpD/WZN5waKGCIUShEqDFAswm/ysE9IR1T8z2CPYW5bm9fZtBb4aM4B+Aq0vtOv1J1QXvIHwmrOqvWDOIB65XFfVbZhpWNewfcEb8orzFtW/i4mhasaCmQoe0czhs+Ygxz4Av56p0F0DABKiQvGfW9O9rxHdELFWOa4GV44Cbnimybxg0WRVCoVyaWI2+ZkwpNMapR5Jn4ot3wOIVgKtr3y0vxAzyseD53mFdFQGDIDCgfM0E19JNUV42ejFxec6/qabWCt6lNQwnsDqGlH5Kbz09rtY/u1x3aXjo+zInvsndUNVTVckJkWo6qo2UlkkSbJvQonq1BChUCiXLloPeTWNCMKQjvhGL337DjbUKnSswD2J87JJ3HVue464D7f3vUx5ZTR4JAAoGCMuwa5B01ET4fl9FPIJeIz9B1HDOzGspSU49jWXgTvCXoPzvk3AuDeBax7T3S6gH1oSJceevbUHQkN0ptq0scCMPKFZ3bg3hX9nHALiU4nG0rBHBGUOiB40NEOhUC5tjOYB6YR0xA6x8rCD0XyBxkKac7L72Dmit3hSpFUoXSIrMe/uYbB1GIys/LOY7+q4q7e+oqaIK58hi+uHqdsy0E/Sb0dL54QF5+7NUx/VGhntR7o9Q1rVSE+O7QHbFS5jtWAnsPM56KEXWlJMMNZCKURceY5sXSCoc0D0oIYIhUK59DGSB6QRtxff3Oc77vWaDE+cr7JmrH5AzDnJSI3XVHZlAMRG2lHmknAnCTaJVSg5F4Eb+e4oyz+rKKKmhtSY+fewRHTp2AloPwhOsJi/eBuckioXJcRvaCSbKxg0YlmxA8CylUDmYmSmjyWuRsq6mIo+SEArvlgxb0TNEBW5MT0J9w3sYCrB2IuoVmTLXfMP4PrHvY1rtQ68QQY1RCgUCkWOSmm3lvz52u9/x7RhnXyffPwIiXdg0W09AMBr0iahqKwa/938iynF2BwuDYcTe6Nj+xS394Zk/y2jQtGvehdW2Jd6/1FS5ZKZPla3GikrrxCTPziIG9h7FZNYtQxRke1Hz2HCgPZGDl+daEJvyhXXeRsYBnVwAgnD83xwZVhJKC8vR2xsLMrKyhATExPo4VAoFH8SjG9vrjF9lXMA7x6q0ZU/XzNpgM/VLo2Bev+ZBu+Ak+OxfNsxvL27AKXV3o3vlHhydDcs+OKw6XHNHN4Fa7//3ZABtOSOdIz65gaEVhWp5IG4qqNmHNK8npwcjyGScJKXhwXAaV6/D4+I/HyagnPq64fEtPU+NrXWBuIZaoQOvEbmb+oRoVAogSdY395cIZ26siuQc/CA7uLBmicih0SrZEt+EZZuPUrk3RDFuuJbhJkajw0cro84huPb9qA94nAG+v1uRLrU5CGsqkhjCbJGb3K9EWnIiCQ/RY6SsJphPMKEMnE9AAADRp6cStLawEAPncaAGiIUCiWwqL29GeiA6m9IxcH8KSJmNVpaJU6Ox4KNh9CfzdedhKXy87ERoYbHkcnm4in7e0jhSwDX6qf5eMx33KfbATgpNhzdogmrlXTKspWMSDFkJCbB3sTmGGoMKBVWMx2yc4UJqzc9hojqBoOrkE/AMvtfcR3XD5nS5X1tbRAAqCFCoVACRxN5eyMRB4uPsqOovAbZx4utSVQEAhauOrZ9NT6qfQIpodKwhLJxIE34dHK87nlimYZci5FsLlaELvVaJgklWGFfismOGYrGiNT4YaOOkR2UTlm2mhGpHKLRN5QAhY67Jsni+mHqhee9qof4WhYfrtqHFff0QmaLAuE6OXuEbKNB1IGXGiIUCiVwNJG3N60kT5GSSgdmfngAgEX5AYEKV+VvRJftU109dBtQMg6mXd8RM0dc6Ta6SJJhl4/vg5ZRYThbXonMLbOAKm/BNdFYmWd/H1tqr/byPnhUu3CtzSnounByPHILSlBUVo34qFCUVNa5/zaSzVVMgtUzlORohux0jE1nfT02bliH0exZnEUcPucGeJyPTDYXfT7+O4Bi3XF4EEQdeKkhQqFQAocvjekaGbWGdEr4nB8QqHCVxEMld+goGQeDO7Xy8vwQN+4ryAc0cjukUvpi+e606zthcKdET4+TD520lZJ23fsHh3n299xj0TsXWqiWdusZm/kbUf/5Y3jVUaQYthrJ5uJV+9KGOBARwdeBlxoiFAolcJhtTBcgpEmeRWXVWPDFYY83aBGf8gMCGa5yeajURis1Dk5G9/XsJCuBqHGfASl9MR9k5oguyufSRCftrLxCTb2TDPaIRzhGjnguhth/wQ5HN81jUCzt1unwfKzTA+h07G2Eqnimpjim4yn7KvdYyAhO9VVqiFAolMBhtjFdABGTPLOPFysaISKm8wMCGa4yYBxMlHeSlSFPhnVyPLKPFzcYJlGtQTIVigqmXp1r5RhQ0HVyPOZvytesCCLtDhznvKD6N7fSa0UpjmTXoPvATGE8BB2er/j1HfAanqln7O8gkSknGqObIFVfpYYIhUIJHD641QMNaamu4ZLeQIarCD1PE4b3Q4aBkJNSCKRtjB1bI5IQUX0GWlL6f7TohRVje5CFuAgVdHN+K9YNr5F2B1ZbzivJdctyYK8QdnGGx8Gm0+EZCu0EpX9PBKERMvQxoFXX4NHmUYA2vaNQKIHFTGO6IMBvJb2BDFeJHiqV4AwPBnxMW2RcN4Z4k2IIRD7xny53YGbZXW49DPl+GIZBxXULsGPOCN+SfhXGM/WDfbrL6XUH5iAInClJvYtJrkmQhXbKC8Gvuw/rVr1mYuQmSb026DvwUkOEQqEEHrXuo0FqhADQ7erKQKieUcujUEXHGPBo9W41oodK3I9svwzgLaClgVYIhIcgGjY35DHwMiOUiUkBc+d7uPL6eyyVzBeNIhKlWK3uwBwPgFeWetdKcgV48DyPEc4dJo/AkwuIAR+I68RiqCFCoVCCA9GtHuRvbyJiqSqgNGUL6OY1KKFjDADwb7jKQg+VXK1UDg9g7cXeyBmz3W9GqJib8um+/8Pjn+YZ6oMjdgcugqcxWYQE1dJdMclV7WtnGSCRKUcxH63ubeEBJ8+q/p0Hg9rIZMTcvsx1RQTgOrEQmiNCoVAoJiEuVTWKiSoQSzGQ+KkFcR5NpQPobb1OjFZ5LilGpd5Jk1w/rR+Cv4R8pdpY7436UXgw5HOvv4ueqbCb/it8T6wtcNeJRVBDhEKhUHyAqFTVDBYZA6YhTPzUgjQ/RqqzIQqM+Xou9cpzjSBKvZNAmuS6lb8K3zuuFBJaJbkk0g7P+/lOXn/3MjLMXCdB1mCSdt+lUCgUil9wcjwGL/oGReW1msslx4Zj1+xh2JJfpNsVmHS/0k66jQkLDrvCpiOZKVHM3hCrgYbUvgQObEOJr4q3Rfx7algFnrl3OGwdBvtmNDSSYq+R+ZvmiFAoFArFJ8Q8jA0HTiH7eDGcrviCjWUwPuNy3fULy2qwfNsxxeoaUaU2K6+QeAzv7C4IiBECNCS58rxCkqvrX2mSq+ht2cgNQg6X5hXyEf++pro/cvnuvhsh6+7z1qkRFXvzN5rftg/Q0AyFQqFQTJOVV4inN+ajqFySIxMTjqfHCl6MDolRRNt5e3eBlpaspkqtFbkgViImuXqFXXgh7PI1QX8aJQxr0kgJ4gaT1BChUCgUiimy8grx8CpvTY6i8ho8vGofVk7oS5wnolVSq6VSa0UuCMsA04d1xtJvfvVhK56oJbmGh9rRJtzuYbjFR9lRUqlfUmxYk0ZKEDeYpIYIhUKhUAzj5HjM+eSQ5jJzPzmEvY8PR3JsOIrKatRE/BEbYSfS9pB6BJwcj5zjxZjz8SGfE1I5HujXIV5znIBgMDx5U3f8XlyFpVuPAlD2L7i3q5DkWlXnxKRrrkBGh3hk/3YeAIP+qfF4bP1POFOuve+i8hpkHy82l8AbxA0mqSFCoVAoFMPk/FaM0ipt4+FClQPfnyjBvDFpmLxqn5qIPx4Y3AFLtup7I0SPwJc/FeKJDXmavX6Mcr6yVnecz97aIDV/ZVIL0+GgN3b+hg+//8PtFVn+LRAZatM0akoqHZj54QEAnqEvKZoVR0HcYJIaIhQKhUIxTPbxYuLl/jHySk29lRFpSVj7/R+aXpMkl0rtwi/z8dqOAmsOQsKJ81V4ZHhnYl0Yedn2+YpaLPjiMNG+quqcqKpzen1GijT0JY5JKU/Go+IoiBtMUkOEQqFQKCYgDYgIy+npreh5I+aNScPmvEK/GCEAsHTrUVyZ1MKQLoy0w7CT4/HGzt90S5WtZO4nhzAiLQlb8osU82TEiqMVosESpA0mafkuhUKhUAwz8IpEw8uJE/fNvdtiYMcEj8ldVKlNivVMyEyKDceKCX0xIi0JT2zIMzxOI6kU8zflw8nxmuOUI5YNf/7TaYzPaG94fL5wocqBPcfOa/bzARqOK1gbTFKPCIVCoVAMM6BjAuIi7Zp5InGRdgyQVblooeWNyD5eTFRZIiK+86v1a5GjVZmjlnuhFA6JjQhBeXW9JYquJHy87/90+/l4HFegFXsVaBRDpLa2Fv3798fBgwexf/9+9O7duzF2S6FQKBQ/YWMZLLqth2L5rsii23oYru6QhjukGNXQSIoNx6j0JLy5+4Sh9eT7Ucu9GNsrGa/v8NY+aUwjBACq6uqJlvM4Lgvk+62kUUIz//znP5GSktIYu6JQKBRKI5GZnoyVE/oiKSbM4/OkmDCPREorINXQaBFmwwd/649ds4dheFoS8fZZcBjA5iP08CdAwU6Ac7o1SuQeh8KyGrymYIQADQJsUWGN42Ho14HM4+STBomf8btH5KuvvsLXX3+Njz/+GF999ZW/d0ehUCiURsRvTf9kZKQKOh965bL/HdcLgzsleqyjpQ0CACPZXEEFlSkBfgHwC8BHp+C76gng0dvwWHkAlbXkVTBmiYu04/5BHfDW7gKiiqNgxa8ekTNnzmDSpEl4//33ERkZqbt8bW0tysvLPX4oFAqFEtwYSe70ZR/zxqQpNpITeWhoKkb1TPZaB4DqeiPZXKywL0WStMMtAL7iNJ51/Bcj2VwfR+4/xNDXXf0uVzW0eAgVR/74TqzCb4YIz/OYOHEiHn74YVx99dVE6yxcuBCxsbHun3bt2vlreBQKhUJpYoiVNcmyypr4KDtevbsP5o5KU11HXo0DCOGYefb3hP9n5H8TmGd/H6y7XZ0xWkbaTa036ZoOWDNpAF66qzdmDu+CNtHKoS8AGLJ4G5a4VF6ViHONQa0xYTDA8DxvaDRz5szB4sWLNZc5fPgwvv76a6xbtw7bt2+HzWbDiRMnkJqaqpmsWltbi9rahhrs8vJytGvXjqiNMIVCoVCaB5oKohrrvLO7wEN0bACbj7Whz+ju7666J7yk2rUQwyFPjk7DlNXqybxqJMeGY9fsYe5jUjpeNe0QpbHwgFeFU7KCSJuVlJeXIzY2lmj+NmyInDt3DsXF2op6V1xxBe68805s2rQJDNNwcTidTthsNtxzzz149913dfdl5EAoFAqFQtHCyfEYsnibO59iLLsHy0KX6643vW4aNnJkiqPijCeKiGXlFWLWuoOGlFMBYM2kAYrVQ0DDcfjSbVg+TqsxMn8bTlZt1aoVWrVqpbvcsmXL8MwzDZbm6dOnMXLkSHz44Yfo37+/0d1SKBQKheITYs6IqOB6FnFE65EuBwgN/B4Y3AEjXBU7YjLvS1uP4uVtx4hLe7XKlXN+K/bJCAEaqnvmb8rHiLSkgOaQ+C1H5PLLL0d6err7p0uXLgCAjh074rLLLvPXbikUCoVCUUWaM5LLdcVpPl5V9IzjgdN8AnK5rrrbjQwVynVLqx1YsvVXDFm8DVl5hQAEA2jWDVfilbv7Eo9Trdw2K68QUz8wHu5RQip2FkioxDuFQqFQmhWZ6cnYNXsY3v/rQDzP/AWAtwKr+Pt8x73gCKZKeehF7PMiGiMAMKpnMl69u4+m7DwDIX9DqdxW1DUprSZXmCXBqFic1TSaIdKhQwfwPE9VVSkUCoUScGwsg8GdE3HD7X/DFMcMFMFz4i9CAiY7ZmAzl2Fq+159XlyM6pmC5eOVPSPSBn/yUImT41V7yvhKoMXOaK8ZCoVCoTRbMtOTwd31MMZ+NhCdag6hNUpxFnHI5boSeUK0UOtfM6pnMlayffH0xnwUlTd4I5I0KllyC0p8zguREyxiZ9QQoVAoFEqzJSuvEAu+yMf5KifOwyV+xsBSz4N66MNzL9IiVnnJrtRgsQIt70tjQw0RCoVCoTRLxJwLudFhTNRCH3noQ22/Z8prMXnVPjw4NBUbDxZ6eEDio8yJo6mh5X1pbKghQqFQKJRmB0nOBct4J7EahWWAC5V1RPsVP3ttR4HX30oqrUlQ/evgDhieluSXfkBmoYYIhUKhUJodJDkXHA88ObobTpVW463dJ9wqpSLy39W2MXX1PqxgBeEwf+R6kOBvJVVfoOW7FAqFQml2kJasJkaH4akx3bFSoV9NUmw4Vk7oq1uSywN4/NNDqKvnLCmVjQ435kOYdn1H7Jo9LCiNEIB6RCgUCoXSDCEtWRWXExVSlXrcZB8v1g3hlFQ6MGDhN7h/YHtfh46nbkrDwq+OoEQS8tFicKdWQROGUYIaIhQKhUJpdmSkxiM5Ntzdd0aOUmmrjWUU+7+QejlKKuuwZOuviIu0o6zKYboyp7zagWdvTcfDq7QVVrXKc800DvQX1BChUCgUSrND3ndGnvsBkJe2mhUEI8kxUSI+KhSZ6clYOaEv5nxyyKOrrnTbgPIxZOUVYv6mfI9clUDmkNAcEQqFQqFcMjg5HtnHi7HhwClkHy/2UDWVI+07IyUpNtxQV1rRu0JKaZUDM4Z38dovaYluUmwEAGH8Pz4xAjOHd0FchF22jPIxiKXD8oRZJUn6xoLheasrpq3DSBthCoVCaY4Ek4s90Jh907fiHGblFeqGSqS8dFdv3NQzxWO/V7VviWuf+1azqiY5Nhy7Zg9TlIDXOwYnx2PI4m2q2xdDOUrbN4qR+ZuGZigUCqWJEmwu9kCiJhImvulreTjUcj+MkJmejL8O7oA3d58gWr51dLjifsVwkVreilq4iOQY9EqH1STp/Q0NzVAoFEoTJBhd7IGCRCRM3nzOHwxPSyJaLiEqVLW/ixgukod6kg2Gi5QgTapt7G681CNCoVAoTQy9iZeBMPGOSEtqFmGaYHnTF3NF9ATLFtycrvm9iKXCOceLkf3beQCCt2PAFb6N/cT5SqLlGrsbLzVEKBQKpYkRLBNvsGDVm76vuSLSShw138tDQ1Mxqqe+V2NLfpFH2G35t8d8Crs5OR5v7faWjpeTHIBuvNQQoVAolCZGsLrYA4VRcTIlrMq3EUMr8m3FR9nxzM3pGNUzRXcbvuS7qLF8268oq67XXe6ufpc3uheNGiIUCoXSxLBi4r2UMCNOJsXqiV9LhVUPf4TdnByPtwmTaDskRhItZyU0WZVCoVCaGOLEqzYNMQiMiz1QiCERAF7nRE+czF+JrmIVy82922JgxwRio8FI2E0PUVNlyZZfUFpN1r03EMYrNUQoFAqlieHLxHupYlaczMqJ3wqsCrtl5RViyOJtGP9GDpZ/e5xom3GR9oAYrzQ0Q6FQKE0QtVyEpGaqI+LkeMRGhOKfI69ESWUd4luEISlGPyQSbPk2pJUtv565iOzjxYrHpxZq0uOBQakBMV6pIUKhUChNFF9yES4ltBJN9c5FMOXbZOUVYsnWX4mWXf7tMcVKGq1QkxZxkXZMG9bJ4FrWQEMzFAqF0oQxm4twqeCrsFuw5NuIBoRR5MepF2pSY9FtPQJ27VBDhEKhUChNEisSTYMl38asASE/TqMhpOTYcKz0UbHVV2hohkKhUChNEquE3YIh38aXHBTpcZKGkKZd3wmDOyUGRSiPGiIUCoVCaZJYmWga6HwbK3JQzlbU4KaeKZqaKoAgrjb9T50RGhIcQZHgGAWFQqFQKAaxOtE0kPk2erkqJIgdfdVCTSIllQ5c+9y3QdMYkRoiFAqFQmmSBEuiqRWQGBBaSDVA1DRVpBSW1eDhVfvw5U+nzQzXUqghQqFQKJQmSbAkmloFiQGhRmmVA1vyizy2tf2x6xEfFaq53rQ1+/HlT4H1jFBDhEKhUChNFrOKqsFKZnoyds0ehidHdzO0ntiDRloh9OPJCyiprNNcj+OBKasD6xmhyaoUCoVCadIEOtHUamwsg4mDU/G/XQWaSadSlCqEvv65SHslCdPW/H979xsTV5WHcfy5g+0AFRDc/mPbUmhIGsJWulTGpCai6drGZiOmqSbrmtIQkpKpoamJUnXFxo00gn8Stqm8QiNtaqyrpGnTSGJsX6ymjVOzSxUMUSyBIqjbmQkq0Jm7L8iwEgodoDNn7vT7SXgxl0vvryekfXLuOb9zUf+QpYc2xD+4MSMCAHC8ZGvsNt81I5EdQg2nv1Trv3qj/rnIzIiJBawEEQAAEtB81owsy0jV6X8PqOXct/N65nxOGl4ogggAAAkqsmbkaJVHd6QtmvG+yA6h0rxsPd/eOe/nxfOk4QiCCAAACSzFZWlz4e90aMcfZGn2HUITC1THF/S8eJ00HEEQAQDAAWZ6VZO9ZJEO/2WjthWvvCkhIh4nDf8Wu2YAAHCIbcUrFQ5Lz7d3Tm7N/WlkXC+d+koul7WgEGFpYttzvBvAMSMCAIBDnOm8Iu8x37T+IIP+X1XT5tN/R0a1ch4N0Uw2gItpEDl16pQ8Ho/S0tKUnZ2tioqKWD4OAICkFQrbOnjyy+v2FYlce+nUV/rb9qJZt/z+qWjZtLBisgFczF7NvP/++6qurtbLL7+sBx54QNeuXVNn5/xX8gIAcCs7/+1PuuKfeQ1IpKlZ9pLFOvLXP+rgyS+n3J+zZJH+/nCxHtqQq1DYTpgGcDEJIteuXVNtba0aGxtVVVU1eb2oqCgWjwMAIOlFuxB1KPirHi75/azdZiMN4BJBTIKIz+dTf3+/XC6XNm7cqMHBQZWUlKixsVHFxcUz/tzo6KhGR0cnPwcCgViUBwBAwrnRLEW0C1Ej9yVS2JhNTILIN998I0l68cUX9dprr2nt2rV69dVXVV5erq+//lo5OddfkdvQ0KCDBw/GoiQAABLWmc4r016lrMxKVf2fiybXbZTl52hlVuqM58+Y2vWyUHNarFpXVyfLsmb96urqUjgcliQ999xz2rFjh0pLS9Xa2irLsvTee+/N+OcfOHBAfr9/8quvr29hfzsAABLcmc4rqmnzTVv/EdkJEzn/5Ubnz9gys+tloeY0I/LUU0+psrJy1nsKCgp05crEoP12TYjb7VZBQYEuX74848+63W653e65lAQAgGPdaCeMpYnzX/5UtEIpLmuyqVndP/+jqz9P7aB6R/rMLeAT2ZyCyNKlS7V06dIb3ldaWiq3263u7m7de++9kqTx8XH19vYqLy9vfpUCAJBkot0Jc/7bn6as9/D/PL2Nu//ncdW0+Yxtw52vmPQRyczM1J49e1RfX6+PPvpI3d3dqqmpkSTt3LkzFo8EAMBx5rITRoqul4iJE3QXImZ9RBobG3XbbbfpiSee0C+//CKPx6OPP/5Y2dnZsXokAACOMtedMPOdQUlkMQsiixYtUlNTk5qammL1CAAAHG2uO2HmOoPiBJw1AwCAIbPthLne+S9znUFxAoIIAAAGRXbCrIji/JfIDMpMG3QtTfQfcVIvkZi9mgEAANHZVrxy1pbsEZEZlJo2nyxpyusckyfoLoRl23bCLq0NBALKysqS3+9XZmam6XIAAEgI0XRiNWku/38zIwIAgMNEO4PiBAQRAAAcyCmH2t0Ii1UBAIAxBBEAAGAMQQQAABhDEAEAAMYQRAAAgDEEEQAAYAxBBAAAGEMQAQAAxhBEAACAMQndWTVyDE4gEDBcCQAAiFbk/+1ojrNL6CASDAYlSatXrzZcCQAAmKtgMKisrKxZ70no03fD4bAGBgaUkZEhy3LeQT43WyAQ0OrVq9XX18dpxDHEOMcH4xwfjHP8MNb/Z9u2gsGgcnNz5XLNvgokoWdEXC6XVq1aZbqMhJOZmXnL/5LHA+McH4xzfDDO8cNYT7jRTEgEi1UBAIAxBBEAAGAMQcRB3G636uvr5Xa7TZeS1Bjn+GCc44Nxjh/Gen4SerEqAABIbsyIAAAAYwgiAADAGIIIAAAwhiACAACMIYg43OjoqEpKSmRZlr744gvT5SSV3t5eVVVVKT8/X2lpaVq3bp3q6+s1NjZmurSkcPjwYa1du1apqanyeDw6f/686ZKSSkNDg+6++25lZGRo2bJlqqioUHd3t+mykt6hQ4dkWZb27dtnuhTHIIg43NNPP63c3FzTZSSlrq4uhcNhtbS06NKlS3r99df15ptv6tlnnzVdmuO9++672r9/v+rr6+Xz+XTXXXdp69atGhoaMl1a0jh79qy8Xq8+++wzdXR0aHx8XA8++KBGRkZMl5a0Lly4oJaWFm3YsMF0Kc5iw7FOnz5tr1+/3r506ZItyb548aLpkpLeK6+8Yufn55suw/HKyspsr9c7+TkUCtm5ubl2Q0ODwaqS29DQkC3JPnv2rOlSklIwGLQLCwvtjo4O+7777rNra2tNl+QYzIg41Pfff6/q6mq98847Sk9PN13OLcPv9ysnJ8d0GY42Njamzz//XFu2bJm85nK5tGXLFn366acGK0tufr9fkvj9jRGv16vt27dP+b1GdBL60Dtcn23bqqys1J49e7Rp0yb19vaaLumW0NPTo+bmZjU1NZkuxdF++OEHhUIhLV++fMr15cuXq6ury1BVyS0cDmvfvn3avHmziouLTZeTdI4fPy6fz6cLFy6YLsWRmBFJIHV1dbIsa9avrq4uNTc3KxgM6sCBA6ZLdqRox/m3+vv7tW3bNu3cuVPV1dWGKgfmx+v1qrOzU8ePHzddStLp6+tTbW2tjh49qtTUVNPlOBIt3hPI8PCwfvzxx1nvKSgo0KOPPqqTJ0/KsqzJ66FQSCkpKXr88cf19ttvx7pUR4t2nBcvXixJGhgYUHl5ue655x699dZbcrnI7wsxNjam9PR0nThxQhUVFZPXd+3apatXr6q9vd1ccUlo7969am9v17lz55Sfn2+6nKTz4Ycf6pFHHlFKSsrktVAoJMuy5HK5NDo6OuV7mI4g4kCXL19WIBCY/DwwMKCtW7fqxIkT8ng8WrVqlcHqkkt/f7/uv/9+lZaWqq2tjX9QbhKPx6OysjI1NzdLmnh1sGbNGu3du1d1dXWGq0sOtm3rySef1AcffKBPPvlEhYWFpktKSsFgUN99992Ua7t379b69ev1zDPP8CosCqwRcaA1a9ZM+Xz77bdLktatW0cIuYn6+/tVXl6uvLw8NTU1aXh4ePJ7K1asMFiZ8+3fv1+7du3Spk2bVFZWpjfeeEMjIyPavXu36dKShtfr1bFjx9Te3q6MjAwNDg5KkrKyspSWlma4uuSRkZExLWwsWbJEd955JyEkSgQRYAYdHR3q6elRT0/PtIDHROLCPPbYYxoeHtYLL7ygwcFBlZSU6MyZM9MWsGL+jhw5IkkqLy+fcr21tVWVlZXxLwiYAa9mAACAMay6AwAAxhBEAACAMQQRAABgDEEEAAAYQxABAADGEEQAAIAxBBEAAGAMQQQAABhDEAEAAMYQRAAAgDEEEQAAYAxBBAAAGPM/iNnJCI5L1AQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "X, y, a ,b = generate_data(1000, 2)\n", + "fig = plt.figure()\n", + "for group in X['group'].unique():\n", + " idx = X['group'] == group\n", + " subset = X.loc[idx]\n", + " plt.scatter(subset['x'], y[idx], label = group)\n", + "plt.legend(title='group')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Sequential sampling (1 chains in 1 job)\n", + "NUTS: [mu_a, xi_a, mu_b, xi_b, sigma]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [2000/2000 02:04<00:00 Sampling chain 0, 0 divergences]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 1 chain for 1_000 tune and 1_000 draw iterations (1_000 + 1_000 draws total) took 124 seconds.\n", + "Only one chain was sampled, this makes it impossible to run some convergence checks\n", + "Sampling: [mu_a, mu_b, sigma, target, xi_a, xi_b]\n", + "Sampling: [target]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [1000/1000 00:00<00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model = HierarchicalModel()\n", + "idata = model.fit(X, y)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": "\n\n\n\n\n\n\n\nclustergroup (2)\n\ngroup (2)\n\n\ncluster1000\n\n1000\n\n\n\ntarget\n\ntarget\n~\nNormal\n\n\n\ny\n\ny\n~\nMutableData\n\n\n\ntarget->y\n\n\n\n\n\nx\n\nx\n~\nMutableData\n\n\n\nx->target\n\n\n\n\n\nmu_a\n\nmu_a\n~\nNormal\n\n\n\na\n\na\n~\nDeterministic\n\n\n\nmu_a->a\n\n\n\n\n\nsigma\n\nsigma\n~\nHalfNormal\n\n\n\nsigma->target\n\n\n\n\n\nmu_b\n\nmu_b\n~\nNormal\n\n\n\nb\n\nb\n~\nDeterministic\n\n\n\nmu_b->b\n\n\n\n\n\nxi_a\n\nxi_a\n~\nNormal\n\n\n\nxi_a->a\n\n\n\n\n\na->target\n\n\n\n\n\nb->target\n\n\n\n\n\nxi_b\n\nxi_b\n~\nNormal\n\n\n\nxi_b->b\n\n\n\n\n\n", + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model_to_graphviz(model.model)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# zero-out all data\n", + "for i in model.idata.constant_data.data_vars:\n", + " model.idata.constant_data[i] *= 0\n", + "for i in model.idata.observed_data.data_vars:\n", + " model.idata.observed_data[i] *= 0\n", + "\n", + "\n", + "model.save('temp_model.nc')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "new_X, new_y,_,_ = generate_data(a=a,b=b)\n", + "only_group = 1\n", + "idx = (new_X['group'] == only_group)\n", + "new_X = new_X.loc[idx]\n", + "new_y = new_y[idx]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "loaded_model = HierarchicalModel.load('temp_model.nc')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [target]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [1000/1000 00:00<00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAPHRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMHJjMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy9ytYEsAAAACXBIWXMAAA9hAAAPYQGoP6dpAADm7klEQVR4nOydd3gU5drG75ndTdmQ3oOUUARCQIgQqopIiSiI4lGxAPodK4iIRwGPihyUoh5FReFYQVEsqDQRpAhIDRBAYigCoUh6Qnrfme+P2dnM7k55Z0sSyPu7rlywu1Pemd2Z95mn3A/D8zwPCoVCoVAolCaAbeoBUCgUCoVCablQQ4RCoVAoFEqTQQ0RCoVCoVAoTQY1RCgUCoVCoTQZ1BChUCgUCoXSZFBDhEKhUCgUSpNBDREKhUKhUChNBjVEKBQKhUKhNBnGph6AGhzHISsrC4GBgWAYpqmHQ6FQKBQKhQCe51FWVoa4uDiwrLrPo1kbIllZWWjTpk1TD4NCoVAoFIoLXLx4Eddcc43qMs3aEAkMDAQgHEhQUFATj4ZCoVAoFAoJpaWlaNOmjW0eV8OrhojFYsGrr76KFStWICcnB3FxcZg0aRJeeuklolCLuExQUBA1RCgUCoVCucIgmeu9aogsXLgQS5YswfLly9G9e3ccPHgQDz/8MIKDgzF16lRv7ppCoVAoFMoVgFcNkT179uCOO+7AbbfdBgBo3749Vq5cidTUVG/ulkKhUCgUyhWCV8t3Bw4ciK1bt+LUqVMAgKNHj2LXrl249dZbZZevqalBaWmp3R+FQqFQKJSrF696RGbOnInS0lJ07doVBoMBFosFr7/+Oh544AHZ5efPn485c+Z4c0gUCoVCaWR4nkd9fT0sFktTD4XiQUwmEwwGg9vb8aoh8t133+Grr77C119/je7du+PIkSOYNm0a4uLiMHHiRKflZ82ahenTp9tei1m3FAqFQrkyqa2tRXZ2NiorK5t6KBQPwzAMrrnmGrRq1cq97fA8z3toTE60adMGM2fOxOTJk23vvfbaa1ixYgVOnDihuX5paSmCg4NRUlJCq2YoFArlCoPjOPz1118wGAyIjIyEj48PFae8SuB5Hvn5+aisrETnzp2dPCN65m+vekQqKyudFNUMBgM4jvPmbikUCoXSDKitrQXHcWjTpg3MZnNTD4fiYSIjI3Hu3DnU1dW5FaLxqiEyevRovP7662jbti26d++Ow4cP4+2338Yjjzzizd1SKBQKpRmhJfFNuTLxlHfLq4bI+++/j5dffhlPPfUU8vLyEBcXh8cffxyvvPKKN3dLkWDheKRmFiGvrBpRgX5Ijg+DgaWuUQqFQqE0D7xqiAQGBmLRokVYtGiRN3dDUWBjejbmrMtAdkm17b3YYD/MHp2AlMTYJhwZhUKhUCgC1F92lbIxPRtPrkizM0IAIKekGk+uSMPG9OwmGhmFQqFQKA1QQ+QqxMLxmLMuA3LlUOJ7c9ZlwMJ5rWCKQqFQrmh27tyJ0aNHIy4uDgzDYPXq1U09pKsWaoh4GQvHY++ZQqw5cgl7zxQ2yuSfmlnk5AmRwgPILqlGamaR18dCoVAonqCx76UVFRW47rrr8MEHH3h1PxQv54hciXgyubOpcjTyypSNEFeWo1AolKakKe6lt956q2I7EopnoYaIhI3p2Xh1bQZySht+7DFBfnh1jP4fu5ij4WizZ5dU44kVaXh2WGdMGdrZKxUsUYF+Hl2OQqFQmgqle6mY77bkwSSafH+FQ0MzVjamZ+OJFWl2RggA5JQKhoOe5E61HA2Rd7b8hUELtnklaTQ5PgyxwX5QMnEYCE8TyfFhHt83hUKheAqa79YyoIYIhB/7zB+PqS4z68djdj92tXilVo6GSE6pdypYDCyD2aMTAMDJGBFfzx6dQPVEKBRKs4bmu7UMaGgGwL6zhSiurFNd5nJlHfadLcSgThGa8Uo9uRc8gBd/OoahXaPhY/ScXZiSGIslDyY5jTOG6ohQKJQrBJrv1jKghgiAvWcKiZcrq67TjFfqzb0oqqhD//lbMe/ORI8aCCmJsRieEEOVVSkUyhUJzXdrGdDQDACoZnM0wPEcUbzy+nahqjkachRV1HotTDOgYzju6NUaAzqGUyOEQqFcMTRlvlt5eTmOHDmCI0eOAAAyMzNx5MgRXLhwweP7aulQQwTAgA4RRMuFmn2J4pWHzl+25WjohSZeUSgUikBT5rsdPHgQvXv3Ru/evQEA06dPR+/evWmvNC9ADREA/TuGI8RsUl0m2N+I4qpaou3llVXbcjRignyJx0ETrygUCsUe27002D78EhPs59XS3SFDhoDneae/ZcuWeWV/LRmaIwLB6l5wVw88sSJNcRmGYfDBb2eIthcRIBgfYo7G+1v/wqKtfxGPhyZeUSgUSgM03+3qhnpErKQkxmKpjAcjxF+w1bSqaqQ89/1RW67H5owcfHvwoq6x0MQrCoVCsYfmu129UI+IBEerO8zfB898d0T3dnKt+iCP3RiPj3ZmEqbCCoSYTVRojEKhUCgtBuoRcUC0un2NLJ757jCKKsjyQqTw1r+Pf9dnhADOCVkUCoVCoVzNUENEBrG3QVEFeThGDleKXy5X1tFkVQqFQqG0GKgh4gBJnxhvQ5NVKRQKhdJSoIaIA6R9YrwJTValUCgUSkuBGiIOeNIbwTL6cz5C/E3geJ6KmlEoFAqlRUANEQdIvRHhAT54/MZ4MJBX/GMAPHpDvO01KcVVdXjgk/0YvHCbx+XevY1aR2IKhUKhUOSghogDWr0NACAswIS9s27BrFEJWPJgEqIdtEeC/I2YNqwzXkjpJqsISILYRO9KMUY2pmdj8MJtGP/xPjzzzRGM/3jfFWlMUSgUipQPPvgA7du3h5+fH/r164fU1NSmHtJVBzVEHFDrbSByZ6/WOHT+suSJ337Jkqp6vLPlLwxeuA0A8PJt+vvOSJvoNXfPglhl5Jhbc6UZUxQKpRnDWYDM34Fjq4R/OYvXd/ntt99i+vTpmD17NtLS0nDddddh5MiRyMvL8/q+WxIMz/PNdpYrLS1FcHAwSkpKEBQU1Cj7tHA8UjOLsDkjB6uPZNnpiLCMfUluiNlEpLjquBzL16Nn+R6E1RaiyCccf7QaCI5R1pZb+Wh/DOgY7toBeRkLx2Pwwm2KCb4MhJ4Qu2YMpUqIFEoLo7q6GpmZmYiPj4efnxtJ+BlrgY0zgNKshveC4oCUhUDCGPcHqkC/fv3Qt29fLF68GADAcRzatGmDp59+GjNnzvTafq8U1L5fPfM3VVaVsDE9G3PWZdhNqmEBJvRuE4KtJ/KddEFIZd+ly91w+Wc8dmgHIso523sFrdbjo+tvwu+ht8muL02gFQ2l5tJvQavKSNrIr7kaUxQKpRmTsRb4bgLgKKpQmi28f88XXjFGamtrcejQIcyaNcv2HsuyGDZsGPbu3evx/bVkqCFiRQwvOLqHiirqsPVEvkf2ccPlnzFrx29O74eVc8L7N0HWGBETaOUMpdhgP8weneC1DpRakFYZUW0UCoWiG84ieEJklZ14AAywcSbQ9TaANXh01wUFBbBYLIiOjrZ7Pzo6GidOnPDovlo6NEcEjSNixvL1eOzQDgDOuScshEvqsbQdYPl62/sMBEMjOT6s2eZhkFYZUW0UCoWim/N77MMxTvBA6SVhOcoVCzVEAOw7W+h1EbOe5XsQUc4pJsCyACLKONxxcS1YvmE5MXFWyVBq6qRWrSojqTFFoVAouijP9exyOoiIiIDBYEBurv22c3NzERMT4/H9tWRavCGyMT0bk79K89r2GQjJqmG1hUTLP5a2B8s2vY5RxSew5MEkpCTG6srDaGzUqoykxhRNVKVQKLppFa29jJ7ldODj44Prr78eW7dutb3HcRy2bt2KAQMGeHx/LZkWbYiI4Y7iKvea26nBA5g4oB3K/COJ14moLsGUHZ9iYNYxAM0/DyMlMVZWLyUm2M9mTFEoFIpu2g0UqmPUfK5BrYXlvMD06dPx8ccfY/ny5Th+/DiefPJJVFRU4OGHH/bK/loqLTZZ1ZW8EAb2KVPia6Uy3hCzCQDw7tbTYP37o6DVWoSVc5rWHwOA53lcfGk24qqqEcf5g+U5cIz6mhEBvth7prBJKmpSEmMxPCGmWVX0UCiUKxzWIJTofjcB8ndgACkLPJ6oKnLvvfciPz8fr7zyCnJyctCrVy9s3LjRKYGV4h4tUkfEwvFYtjsTc38+TrQ8A+CxG+Ox9mi2bMWKOAHnlFShqKIWYa18cb6gAou2/mW3HbFqhod+V1SROQQfJt6B3XE9ZMcXbDbBz2hATmnzqaihUCgtG+/qiLQWjBAv6ohQ1PGUjkiLM0TkSmDVCDGbsOCuHkhJjCXW8NjwRxamrDzspDsCyOuIkCBu6vXkiXbGiOMzghRxZDQ8QqFQmgKPGSKAUMp7fo+QmNoqWgjHeMkTQiHDU4ZIi8oRUSqBVWPykE4YniBkSBtYBgM6huP2nnEAgPV/ZDk1d9uYno2nvpY3QgBBJ2TiLfPwUZK+mKZoVDyZvgYs32DERAf52kJAjjR1RQ2FQqF4DNYAxN8A9Lhb+JcaIVcNLSZHxFWtkNc3HMdnuzNtIQ41UbHhCTGYsy5Dc5scY8SaNmNxZ8afCK8uIbYGGQDhlcX4tr8fsuITEBXoB47n8cAn+xXXocqmFAqFQmnOtBiPiFYJrBqiaNj8DRmqomKLt/1FvA+OYbG051jV0IoS15pqcUev1hjQMRwF5TWEx1Clcy8UCoVCoXifFmOIuFPaylv/Pv49U1VU7PPd54i3GeJvwuRX/om4d98FH0Fe2gsAbESE7f/aiqUcDOYzeHnLCnywdyMsjdCxkkKhUCgUUlqMIeIJiXG1NAse0KVHsmBcDwzqFIGQkSPQ5bdtWDhyKt64fjyKfQKglMbKAcjzD8HIraU2SXdR2VQOY2A6AjothLndx2Civ8LSU8/jpm+GYcv5LcTjpFAoFArFm3jdELl06RIefPBBhIeHw9/fHz169MDBgwe9vVsntKTIGwuWAT68376KhTEw6HtfPHZ1N+DDfoPBAE7GCAchR+R/Pe5Adlmtrb+MgWXw8m3dnPZjDEyHX+sVYIwldu+X1BZg+vbp1BihUCgUSrPAq4bI5cuXMWjQIJhMJvzyyy/IyMjAf//7X4SGhnpzt7KQSJE3Bk8P7YxRPRuMkC3nt2DkDyOx9NTz8Gv9DY4M3oq3xrRCodlst16BfwheS56IPXE9nKphQgN8HfbCwTd6HQCAkTlYHjwWpi6kYRoKhUKhNDlerZpZuHAh2rRpg88//9z2Xnx8vDd3qYooRe5Y9RIT7IeXb+uGuT8fR05JtbIuBwO4q7rSITLA9v8t57dg+vbp4B32eKB7NQ5249EhbSSCL0egyDcQf0Z0sFNWlVbDOOa/GMyZYE2CJ4TheHS7yCO0HLjcCjjehgHPMsipzEFaXhr6xvR174A0INVeoVAoFErLxKuGyNq1azFy5Ej84x//wI4dO9C6dWs89dRTePTRR2WXr6mpQU1NQxVIaWmpx8ekJkXOsgyeXJGmKOXuCek3MVfFwlmwIHWBkxEiwrMM/rruICpOz4Ca42r36XwM6Bhh9x5jLAMAJJ/kMGkzh4iyhs8KAoFlw1mkdmGRX5nv3sFooFbqTAXWKBQKRT9DhgxBr169sGjRoqYeisfwamjm7NmzWLJkCTp37oxNmzbhySefxNSpU7F8+XLZ5efPn4/g4GDbX5s2bbwyLlGYTCyBFZ/QlZq3RQf5Ithf22ZjGdXWTIgNFoweAEjLS0NupXrratZUAoM5U3WZxb+dwXPfHbEbH18fiOSTHJ77kUN4mf3yYWXAcz9ySD7JIdKsr1pHD0ricWKps5hsS6FQKBTvsX37djAMg+Li4qYeiiJe9YhwHIc+ffpg3rx5AIDevXsjPT0dS5cuxcSJE52WnzVrFqZPn257XVpa6jVjRClkIOcx0RINExGrahRaM2H26ASb0UPqjWCNZdDK5MgtrbHbH1/RDpO22u/btj0Iia+TNgO5/4gEYoiGoQs18TjeOqY56zIwPCGGhmkoFAoRFs6CtLw05FfmI9IciaSoJBiouupVgVc9IrGxsUhISLB7r1u3brhw4YLs8r6+vggKCrL78wYb07MxeOE2jP94H5755gjGf7wPgxdusz2lO3pMSEXDAOCRQe2dPCoxwX5O/V5IvRF8faBmMq04uYeYTTD7GNC94BwiyjnF9VgAEWUc/rd4DeZv0FaCFbFwPPaeKcSaI5ecpO2laInHSfNbKBQKRQsxqf+RTY9gxu8z8MimRzDyh5Ferf4bMmQIpk6dihdeeAFhYWGIiYnBq6++ardMcXEx/vnPfyIyMhJBQUEYOnQojh49CgAoKSmBwWCwVYlyHIewsDD079/ftv6KFStUH7YrKiowYcIEtGrVCrGxsfjvf//rtMyXX36JPn36IDAwEDExMbj//vuRl5cHADh37hxuvvlmAEBoaCgYhsGkSZMAABs3bsTgwYMREhKC8PBw3H777Thz5ozL58sdvGqIDBo0CCdPnrR779SpU2jXrp03d6uKKyEDPRokt3SNxlt3X4cpN3fElJs74at/9sOuGUOdciKSopIQbIpQlFVlwCDGHIP37rzLybCRgwdQXFmHyloLwmrKNJcHgLCaMvxvZyY2HPkbFftTUbL+Z1TsTwVvcfbBaBlvUkjF49wRmaNQKC0DManfMZSdV5nndSmC5cuXIyAgAPv378cbb7yB//znP9i8ebPt83/84x/Iy8vDL7/8gkOHDiEpKQm33HILioqKEBwcjF69emH79u0AgGPHjoFhGBw+fBjl5eUAgB07duCmm25S3P/zzz+PHTt2YM2aNfj111+xfft2pKWl2S1TV1eHuXPn4ujRo1i9ejXOnTtnMzbatGmDH374AQBw8uRJZGdn49133wUgGDnTp0/HwYMHsXXrVrAsizvvvBMcp68hqyfwamjm2WefxcCBAzFv3jzcc889SE1NxUcffYSPPvrIm7tVxNWQQXJ8GGKCfJFTqu4ZCTGb8Nz3R5FT2jDB/pD2t2xy5hsbTyInMwV+rVcAvH2ZLc8DYHjMSJ6BYe2uwcjurfHO5lNY/NtpouMs8g0kXm5g1jEEPfIaLlQW2943xsQg+sVZCBoxAkCD8eZ43kTjzdHbQ2q4eUJkrjlDK4YoFPdQS+rnwYMBg4WpC3Fzm5u9Eqbp2bMnZs+eDQDo3LkzFi9ejK1bt2L48OHYtWsXUlNTkZeXB19fQULhrbfewurVq7Fq1So89thjGDJkCLZv345//etf2L59O4YPH44TJ05g165dSElJwfbt2/HCCy/I7ru8vByffvopVqxYgVtuuQWAYBhdc801dss98sgjtv936NAB7733Hvr27Yvy8nK0atUKYWFCXmJUVBRCQkJsy44bN85uO5999hkiIyORkZGBxMRE906cTrzqEenbty9++uknrFy5EomJiZg7dy4WLVqEBx54wJu7VcTVkIGBZfDqmO6a2y+urLMzQgB5T8uGP7Lwv52ZqC9LRPWlB8HXB9uPoz4YfkUP4+Y2t9j2P6iTfWWMGn9GdEC+X7CmQmtwbQVeSl2OMIkRAgD1ubm49Mw0lP76q6bxBjh399USj3NM3L0a0eNBolAo8mgl9fPgbVIE3qBnz552r2NjY21hj6NHj6K8vBzh4eFo1aqV7S8zM9MW4rjpppuwa9cuWCwW7NixA0OGDLEZJ1lZWTh9+jSGDBkiu+8zZ86gtrYW/fr1s70XFhaGLl262C136NAhjB49Gm3btkVgYKDNw6KUAiHy119/Yfz48ejQoQOCgoLQvn17ovW8gde7795+++24/fbbvb0bItwJGaQkxmLpg0mY+eMxFFfaS7mH+BsBhnF6H3D2tADAS2vSbZ/XlyWiviwBBnMmGGMZ+PpAWCrjUQHWrmOuOLmr6ZyIiA31XkpdDg721qao0PpR4mg8fmwtAJlKH15w0eTOm4+C9r2IjTdxrKJ4nFIpNGCfuCtytXgQ9HqQKBSKPKRJ/d6SIjCZTHavGYaxhS7Ky8sRGxtrC71IET0PN954I8rKypCWloadO3di3rx5iImJwYIFC3DdddchLi4OnTt3dnl8FRUVGDlyJEaOHImvvvoKkZGRuHDhAkaOHIna2lrVdUePHo127drh448/RlxcHDiOQ2JiouZ63sDrhkhzwt2QgVhRs+9MIfaeLQDA2CZftaoaR09LUYWjwcLCUtnRaT2pQaQ1uTtOenvieuC15Il44o/ViKxukHkv8A/B/3rcgTKTv937zoPmUZ+Tg7IDB5SXURgroC4eJxequlo0R2jFEIXiOUiT+r0pRaBEUlIScnJyYDQabd4ER0JCQtCzZ08sXrwYJpMJXbt2RVRUFO69916sX79eNT+kY8eOMJlM2L9/P9q2bQtAUCs/deqUbb0TJ06gsLAQCxYssCW9OrZQ8fHxAQBYJLl/hYWFOHnyJD7++GPccMMNAIBdu3a5diI8QIsyRLS8CgyEiVItZGBgGQzqHIFBnRtCJWuOXCLav97kTEeDSK8y7J64HtgX2x3dC84irKbMTqH1pr8PE40hrLoMgHbOiZzxpiYeJ8UVD0Jz9Z7oCf+JRiyFQpEnKSoJ0eZo5FXmyeaJMGAQbY5GUlRSo49t2LBhGDBgAMaOHYs33ngD1157LbKysvDzzz/jzjvvRJ8+fQAI1Tfvv/8+7r77bgBCeKVbt2749ttv8cEHHyhuv1WrVvi///s/PP/88wgPD0dUVBT+/e9/g2UbfNxt27aFj48P3n//fTzxxBNIT0/H3Llz7bbTrl07MAyD9evXY9SoUfD390doaCjCw8Px0UcfITY2FhcuXMDMmTO9cJbIaFGGiKshAy28kZwZHuAjaxCRKMNK4RgWxyI7OW2HNKG1S/d4xOaVq4aEYoJ8FY03sRRaCVc8CM3Ze0IrhigUz2FgDZiZPBPTt08HA8bOGGGsd+0ZyTOaRE+EYRhs2LAB//73v/Hwww8jPz8fMTExuPHGGxEdHW1b7qabbsKiRYvsckGGDBmCo0ePKuaHiLz55psoLy/H6NGjERgYiOeeew4lJQ2e7MjISCxbtgwvvvgi3nvvPSQlJeGtt97CmDFjbMu0bt0ac+bMwcyZM/Hwww9jwoQJWLZsGb755htMnToViYmJ6NKlC9577z3N8XgLhuc9IVzuHUpLSxEcHIySkhKPaop4eiKzcDwGL9ym6mmJDvLFf+/phbzSasz9+TiKKtTjcB/en2TXHI+UjenZeOabI6ipVy/BYnkOyza9jvDqEvmMZYaBMToanbZuwabjeZj85UF0LziLUAfPCiBUCy24q4fuc2fheCzbnYm5Px/XXHblo/0xoGO4ovdENB2bOv9i75lCjP94n+Zy4vFQKFcz1dXVyMzMRHx8PPz8XK+S23J+CxakLrBLXI0xx1grC4d5YqgUF1D7fvXM3y3KIyJCGjIghSR/o7qeI1JnBYDHb4x3yQgBAI7jNY0QQD2hVawljn5xFhiDAQOzjmH1rjdhLGxICMv3C8bSnmOxJ64HSirrdCdhyhmDauSVVV8R+ReeCP9RKBR7hrUbhpvb3EyVVa9SvFq+25xR6jfjKsMTYjBt2LUI9rfPsg42C6/lKmocCQsw4cP7e2PWqATNZeWwcLxdRY4WYkJroZ99+bAxOhqt312EoBEjUPrrr7j0zDQ7IwQAwqtL8FLqcgzMOqZYxquEkqicGucKKq8IxVbRKAWcq5HcCf9RKC0dA2tA35i+GNVhFPrG9KVGyFVEi/SIeBq5p/sQfxMmDmyHbw/8DUDZCAkLMOHl27sjJsj9hMvUzCKZihx1HBNan7qrH5LvGArGYABvsSD39XngeV6xZ83jx9ZgX2x3cAyL7JJq7DtTaJfI64iaV0ONRVtO4ZFB7YmWber8C70VQxQKhdKSoYaImyjlLJRU1eHdrdpKqEUVdYgJ8vNIvoCrE7A0ofXkCRavXpuHlMRYbP/+V8Tk5qr2rImqKkb3grO29Sd/nYYF43oohr60vBpK8AC+OXCRaNnmoNjq6fAfhUKhXK1QQ8QNSFRHSfDUE7wnJuCc0mo8sSINj98Yj5PrD2EGwTrS3jbFVXV4YkUaQswmu3CUmAxMkr+iREWteh/i5pZ/oVUxRKFQKJQWnCPiCVx9uneE1IDQ6n4rJkpqEeyvbX9+9HsmCnX0rHHEMSdG1AQ5V1BBtE290PwLCoVCuTKhHhE3cNeToecJnqTkWFq9o+SRefzGeNx4bZRmBQ/PN/SsUSrx5SAotf4Z0UFz/GJVy8rUC4gJ8kNuqbZUvR5o/gWFQqFcmVCPiBvoCYW4U0GhVGUi11BPTJR09IxIK3IKytW7CIuIJb4M4NRAT+xZ878ed9j0RORgeQ498k/jpr8PIzH/NPJKqjA+WZAr9oTfYsrNnbDy0f7YNWMoNUIoFArlCoR6RNyAVDPi5dsSMPdn1yooSPJQXvzpGIZ2jYaPUTAI1BIlLRyPgjIyQwTQ7lmzJ66H4roDs445rZfvF4y6jtOw5MGbnCuNrHklcr1zlOgc3YrmYVAoFMoVDDVE3IBUMj4lMRYjE12roCDJQymqqEO/eVswX6JuKpcoqVdETESuZ83xyA6wqDjUBmYdw0upy53eD68uAfP2HFzT/l3smjHc6ZxszsjRNcbmUCFDoVAo7tC+fXtMmzYN06ZNAyDIx//0008YO3asy9v0xDYaC2qIuAmpZoSrFRSkeSiXK4VqlaUK6qZKZcakiCW+oun02I3x+Ghnpqz3guU5PPHHagDO4RcWABgGufPmo9MttzidE2mH48lfp6G4Sl4XpblVyFAoFIqnyM7ORmhoKNGyr776KlavXo0jR464vI2mhhoiHsCbmhF6n/hn/njMSeLcVRExOaQGVu+2obLhlTbnj9uFY5zgedTn5KDy4CEE9Et2+ljscLxgXA9bEz9PNSikUChXJrzFgsqDh1Cfnw9jZCTMfa4HY2g+6qq1tbXw8fHxyLZiYmKaxTYaC5qs6iE8LRkvIuahkG6tuLIO+84U2r3nqTLjID8jdjx/s83jkpIYi10zhuKr/+uHKTd3xJSbO+GD+5Pwr+vJPD/1+fmqn4vephiHxNuYYL8mb25HoVAaj9Jff8XpW4bhwsSJyPrXv3Bh4kScvmUYSn/91Wv7HDJkCKZMmYIpU6YgODgYERERePnllyH2iW3fvj3mzp2LCRMmICgoCI899hgAYNeuXbjhhhvg7++PNm3aYOrUqaioaJAtyMvLw+jRo+Hv74/4+Hh89dVXTvtmGAarV6+2vf77778xfvx4hIWFISAgAH369MH+/fuxbNkyzJkzB0ePHgXDMGAYBsuWLZPdxrFjxzB06FD4+/sjPDwcjz32GMrLy22fT5o0CWPHjsVbb72F2NhYhIeHY/Lkyair06fW7QrUI9LMkeahkPL9oYvoLzGGPCWYVlpdj0PnL9uFUxxzOhb/dhpDqsqIhNBO1fkg68glVQ8SVSilUFo2Yr8rODSKr8/NFd639sXyBsuXL8f//d//ITU1FQcPHsRjjz2Gtm3b4tFHHwUAvPXWW3jllVcwe/ZsAMCZM2eQkpKC1157DZ999hny8/Ntxsznn38OQJjws7Ky8Ntvv8FkMmHq1KnIy8tTHEN5eTluuukmtG7dGmvXrkVMTAzS0tLAcRzuvfdepKenY+PGjdiyZQsAIDg42GkbFRUVGDlyJAYMGIADBw4gLy8P//znPzFlyhSb4QIAv/32G2JjY/Hbb7/h9OnTuPfee9GrVy/b8XoLaohoYOH4Jp8ERc/Ac98fRUWNurooAKw+koX9mUW2EIonEzqlRo1S3snvftfgEb9gRFSXyHpyeABF5hBM2FcNbv8RAM6aKFKoQimF0jLhLRbkzpvvZIQIH/K2fLPAW27xSpimTZs2eOedd8AwDLp06YJjx47hnXfesU3MQ4cOxXPPPWdb/p///CceeOABW9Jp586d8d577+Gmm27CkiVLcOHCBfzyyy9ITU1F3759AQCffvopunXrpjiGr7/+Gvn5+Thw4ADCwoScuE6dOtk+b9WqFYxGo2oo5uuvv0Z1dTW++OILBAQEAAAWL16M0aNHY+HChYiOjgYAhIaGYvHixTAYDOjatStuu+02bN261euGCA3NqLAxPRuDF27D+I/34ZlvjmD8x/sweOE2O90OPWgpo6qRkhiLpQ9cT7y8VGNEb3hHjb9yy7H3TCFq6znFvBMLw+J/PccKLxj7vYrLf5horz+SXSJIy7+75RQsHA/eYkHF/lSUrP8ZFftTwVsEA8ydc0ihUK4sKg8eQn1OjvICknwzb9C/f38wknvYgAED8Ndff8FivR/16dPHbvmjR49i2bJlaNWqle1v5MiR4DgOmZmZOH78OIxGI66/vuFe3rVrV4SEhCiO4ciRI+jdu7fNCHGF48eP47rrrrMZIQAwaNAgcByHkydP2t7r3r07DBKDLjY2VtVb4ymoR0QBpad9cYLXm6NAooyqxcBOEU49XJSQaoxU1XG4r29bLNpyini8Siz+7TQW/3YaYQEm1U6/u636I/8+uwFsQUMuSJE5BB8mKuuPvLPlL5z6fh2eSF8DY2HDesaYGGQ9+ARm5ke4dQ4pFMqVg1Yemd7lPI10YgeEMMrjjz+OqVOnOi3btm1bnDql/x7s7+/v8vj0YjKZ7F4zDAOOc70/GCnUEJFBS0SMATBnXYZTdYoSnjJqDCyDBXf1wBM68kWKKurw7LdHFD8P8DFoNpNT2q4We+J64PS0+zGsLgf1+fk4VecjhGNUlFgHZh3DZBn9kbqcHES+9SrikyciW2LESM8hzSWhUK4ujJGRHl1OL/v327fC2LdvHzp37mznNZCSlJSEjIwMu9CJlK5du6K+vh6HDh2yhWZOnjyJ4uJixTH07NkTn3zyCYqKimS9Ij4+PjYPjRLdunXDsmXLUFFRYTOedu/eDZZl0aVLF9V1GwMampFBq8qEhxBKSM0s0twWiTLqnHUZxCGGlMRYPH5jPDw1v7pihOghKjgAAf2SEXz7bciKT9CUg1fSHxH1Sh4/tgYs32Chi2dt5o/HMGiB58JoFAql6TH3uR7GmBinEK8NhoExJgbmPuRhaz1cuHAB06dPx8mTJ7Fy5Uq8//77eOaZZxSXnzFjBvbs2YMpU6bgyJEj+Ouvv7BmzRpMmTIFANClSxekpKTg8ccfx/79+3Ho0CH885//VPV6jB8/HjExMRg7dix2796Ns2fP4ocffsDevXsBCNU7mZmZOHLkCAoKClBT46yc/cADD8DPzw8TJ05Eeno6fvvtNzz99NN46KGHbPkhTQk1RGQgrTIhWc6TRg0geFc+2pkJz6ZGcDCYz8AYdAQG8xk4d5ZxncsVtbb/ayXNdi84i0iFBFdA+LFGVRWje8FZu/d5CGXLOaXavXgoFMqVA2MwIPrFWdYXDncG6+voF2d5TU9kwoQJqKqqQnJyMiZPnoxnnnnGVqYrR8+ePbFjxw6cOnUKN9xwA3r37o1XXnkFcXFxtmU+//xzxMXF4aabbsJdd92Fxx57DFFRUYrb9PHxwa+//oqoqCiMGjUKPXr0wIIFC2xemXHjxiElJQU333wzIiMjsXLlSqdtmM1mbNq0CUVFRejbty/uvvtu3HLLLVi8eLEbZ8dz0NCMDKRVJucKKjWX8aRR40lhMhFjYDp8o9eBNTUIkHF1wajJHY36skS3tz/35wyMTBRCWFq9ecJqyoi2SbqcK2G0pqQ5VGhRKM2NoBEjgHcXIXfefLvEVWN0NKJfnOW10l1AyJlYtGgRlixZ4vTZuXPnZNfp27cvflXRN4mJicH69evt3nvooYfsXvMOVULt2rXDqlWrZLfn6+sr+5njNnr06IFt27YpjktaxiuyaNEixeU9CTVEZNCaMEUWbTmFLjGtVPM7SI0akuU8JUwmYgxMh1/rFU7vM8YS+LVeAWPBRBQXKJeVkSB6e0SRNzVNlCLfQKJtki4H2HucmnMJsCeSmSmUq5WgESMQeMstzVpZleI6NDQjgzhhankeeAAzVv2Bj3eexU+H5ctJtUpnGQgTjmPPFAtnwYGcA9hwdgMO5ByAhbN4TJhMgINv9DphDPIeT/hGr0dMsI/bZb/ScdvUUoN8nZb7M6ID8v2CFQNDHIA8/xD8GdHBrTG4irdKh8VkZkcjk4aWKJQGGIPBlm8W0C+ZGiFXEdQjokBKYiyeHdYZ72z5S3W5kup6vL7huO2141MsaYdeqQt+y/ktWJC6ALmVubb3os3RuLPtZACe6WVgMGfahWMcYRigkivEYzda8PY6yDa3I4PDZctxbDh7FJHmSCRFJdnUUhdvO413JCXFHMNiac+xeCl1OTjYW8kchDF81OMO1YRXJdwVdfOWx8LTFVoUCsUzbN++vamH0GKgHhEV2kcEaC/kgKMwF6CvZ8qW81swfft0OyMEAPIq8/C/E7MRGX3SI8JkjJEsz4IzlMqOnQRjYDoCOi3Ef9OfxYzfZ+CRTY9g5A8jseX8FhhYBs8M64ylDyYhLKChdn2PVX+k0M9eprjAPwRH/zkTZ7v1tXs/OtAHrXwFe5rlOfTIP42b/j6MHvmnwfKcosdJD970WHg6mZlCoVCuNKhHRAV3nqLf2fIXVqZexKtjhCdmkp4pFs6CBakLwMs8H/PgwYCBX/R6ILcz3LUh+XqyPAuuvpVt7Mt2Z2Luz8e1V4Jy/kleZR6mb5+Ot4e8jWHthiElMRZDu0aj//ytKLJW2OyJ64F9sd3RveAswmrKcNk3EAUdEvD79GG4B7Cdw3MFlViZegHlNbUYmHUMT/yx2q7rb75fMJb2HIsJD04EAOw9U6g7EZTUYzG0azQOnb+se/ueTGamUCiUKxFqiKhAmrSqRE6pvWCZVs+UtLw0J0+IFB48iuvy8a87TPj4VxbFVdqiYrcmRmPvmSK7ZUP8TegScz3S674DYyyRLdHneYCvD0ZyjCBhbGAZTBoUj092ZRKcD+X8E9HIenX3PPjX9UT/DpHwMbKYd2eiLYmVhxCmORbZyeb9WXJHom1iH9AxHBvTs7FoyynwEETQXpIRQQuvLsFLqcuRuj4Kg9e1cymsQuqxkBpSerbvyWRmCqW54ljBQbk68NT3SkMzKoj5HYCzwJYeSAXL8ivJZIrjozl88EAS0bITBsTj0MvDsfLR/nj3vl5Y+Wh/HHp5OL7+50AYL48F4NxPSnxtLrsL/TtE2pI01/+Rhfv6tgWgfj7E/BMlDSIAKKnLx4Svv7GJjukJX0m9FGoiaCwEQyH+24+RW2xfak0aViH1REiNED3bdzWZmUK5EhAlwysrtaUOKFcetbXCfU9JaZYU6hHRQJwgHRMVSdFTPhppJpMpjjRHIj+vFiwDVWEzcQJT8sQsvPUBTFljgW/0OjCSxFW+XtAReeuO8dickeN07CFm4eai1POGNP+EMZY5ydyTyLRLvRSiCJoSUhG0Y5ENssukiaCueiJIt+9KMjOFcqVgMBgQEhJia5xmNpvtmshRrlw4jkN+fj7MZjOMRvdMCWqIECBOkPvOFGLy12lEIRFHSJ6sk6KSEG2ORl5lnmyeCAMG0eZo5OfHYvLXhzXDRWOui1WdwFISY7EYE/DquiTk1x0HYywDXx+ISFM3/PcOQcxMrkdOSWUdeADPDuuM9hEBKCirscsdIc0/4esDZSdsLYNNei7dEUEjMRLdCc+RGqFKxm4M1RGhXAWI7ekbo4srpXFhWRZt27Z127ikhgghBpbBoM4RWDCuh+zkrAXJk7WBNWBm8kxM3z4dDBg7Y4SxPh8/3/cFzF55kmj/H+3MRO+2oaoTWYMXIsnmhbi+XSgOZBZh8tfyxykaD98cuIhdM4YCgF3uiKUyHlxdsGb+iaUy3ra97JJqLNudiUmD4jWf/qXn0hMiaGpGooFlMOa6WPxvZybRfvRuX4TUG0ShXGkwDIPY2FhERUWhrk7/Qxyl+eLj4wOWdT/DgxoiBDhKb39wfxLm/kwWqmEgPNmSxviHtRuGt4e8LasjMiN5BgLqeyO7ZB/x2Ek0KKReiI3p2bjpzd80j83xaX/26ARJV2AWNbmj4dd6BXjePmFVzD+pyR0NxxSluT8fxye7Mu28AHKy51IvhSiCFl5dIpvwxAMo9Q/A8Yj2iscSEeAsriYi9vZxB9LwDok3iEK5UjEYDG7nElCuThi+Gaczl5aWIjg4GCUlJQgKCmqSMSgJWb18WzeEBvgip6QKu08XYFXaJad1bRUfDsmWJFg4C9Ly0pBfmW8TAjOwBqw5cgnPfHNE17ZWPtqfaIIT9TL0/CDeva8X7ujVWvj/llN2AnCu9LGRnjMAiiJiAGxVNgOsVTM8HE0b4UhaD7qM8mvMmFM3AZu4ZKd9xgT52cqspVg4HoMXblM1yljG6uFROJaYYD/smjGUejYoFEqLQs/83WhVMwsWLADDMJg2bVpj7dJt1ISsJn99GCVVtbgz6Rq8dU8vLH0wCbEEFR+kGFgD+sb0xagOo9A3pi8MrPAk4UrypDcb6knH4ygAV1+WiIrTM1B5/lFUXboPlecfRcXpGarN9MT9z/zxmKqIGAA8dmM8GEZZBM1otqD1oMsIalONGBRhiWkRRrKpTvvMLZWvcCHp7cPxDaEqKTTRlEKhUMholNDMgQMH8L///Q89e/ZsjN15BL3S23pi/O50Wb1cUaNZLeOINxrqyYWc5PfDwlLZkXi7gHB+lSpyxHM/88djtqRZQDBGUmO7YVvpdARVVcDkb4E5shaiGrx4zmabvsTmmj7gJDa4UoULaenuI4Pa45f0HNVEU0931qWdeikUytWC1w2R8vJyPPDAA/j444/x2muveXt3HkOP9LYY9iCJ8bvTs2RjejZRtYyInvwUPcqdSk/7JBUmeo0oOZQMlT6GU2gbXaC4HssAcShEMnsC+7gEp22K32f/9iGoPHgIrdPPokd+Lv6M6KDa32Z4Qgz+fVuComHg6T41tFMvhUK5mvB6aGby5Mm47bbbMGzYMM1la2pqUFpaavfXVHhDetudniV6Qyd6QwN6Qj5KISc1ATjG+rd4fG+8fFs34n3pIQrFbi935oe1OD30FlyYOBEBb87BG7uXYtmm1zEw65jTslKxMdEIvaNXawzoGG5nhHiyTw3t1EuhUK42vGqIfPPNN0hLS8P8+fOJlp8/fz6Cg4Ntf23atPHm8FTxtPS2VqgHUFdg1Rs6UctPkWtnr6XwCQjS8F/9sx92zRiq+OStpZA6qmccJg2K19yXK+QhxK3lBmYdQ9Jnb6Au115mX5SKdzRGeKgbeu5+597enieQ+y1RKBSKHrwWmrl48SKeeeYZbN68GX5+ZJP1rFmzMH36dNvr0tLSJjNGtMIMestyXQn1SCH1vEwY0A63JsYq5gyoufW1FD4XjOuBQZ0iNMeglS+jpibqDqlcV2TxYYhBEeRsA44HchCOVK6r02daUvEcgMePrcG+2O62ME2I2YThCTHK43HzO/f29tyFhogoFIon8JpH5NChQ8jLy0NSUhKMRiOMRiN27NiB9957D0ajERaLxWkdX19fBAUF2f01FVphBkBfRYS7oR5Sz8utibF2oQEpWm59AMT9XrRQClWIKHlOGuBgMJ+BMegIDOYzEEwBdTiwmFM3Qfi/g3Ujvp5T95BdoqqIKBWv9G2KUvEPHN+EHvmnwfIciivrkJpZZFvG0TuQU+rZ8F5z6tRLQ0QUCsVTeM0jcsstt+DYMXtX9sMPP4yuXbtixowZV4SwjSelt90N9bjroSGtAto1YyhR9Y8nqjaknpNf0rPxxd7zAFzTHxHZxCXjybppmG36AnFoMBJyEI45dQ/J6ogA5FLx95/aivtPbUW+XzCW9hyLvLJeAOS9A2EBJqJtejoM6O1OvXoryigUCkUNrxkigYGBSEy0nzQCAgIQHh7u9H5zxlPS2+4aEu42R9Pr1ldz7XvSJS+tNPpi73kYA9Ph13qF03KMsQR+rVeg+tKDRMbI5po+SGZPIArFyEMIUrmusp4QEVKpeBExb6Tyj2ux0ThAVgiuqEJdzlpveI+kKikmyNfrnXqbW4iIQqFc2TSaoNmVjFaYgXQbpKEepQRArURQNSPAU259b7nkk+PDEBPsA9/odQDg1KNGfC18Tham2cclYC03EPu4BFUjBIBNKl57ywIshAk36LP38Z816Zp5Lp4I76n9hkSq6zlszsgh2p6rNKcQEYVCufJp1F4z27dvb8zdNTtIQj1a3gZXPTSk7nq1visWjsfMH495xSVvYBk8NMSCpadKFJdhGIAxlcBgznQSSVOTWlfbntjggGNYLO05Fi+lLgcHMgudBWDJyUH42QxkRXZSXTY0wAdFFbW213rDe2IorKaew7Rh1+Lz3ZmyXaBLKuvw5Io0lxV9SWguISIKhXJ1QJveNTJqhoRSrxfR2yBOLq40RyNtZ//c90ed+q6Ik+AXezMVFU8B913y8dEccEp7OcbYkM8hmjuP3hCvqzndjZ0j0DGqFT7ffc4W6hKl4p/4YzUiq5UNIkdI8ktevq0bYoL9iYxHx/ybyxW1Tk0Wlew8UoPQnRwfT1eUUSiUlg01RJoAOUPC2wmApCWzYt8V0ehp8NBUwmDOhDGoDHx9ICyV8VDyG7jqko80RxItx9c35HOEBphwZ6/WGNIlGtddE4oXfzom6ylwZOdfBdj5l6DCKvWM7InrgX2x3dG94Cx65Z/G/ae2aG6LJL8kJtgfAzqG2wyA9X9kyRoAch4xOdTkOrQMQndzfNzNV6JQKBQp1BBpJjRGAqAYGnp17Z/IKa1R3I9o9HAcMPnrNBgC0xHQibyKxVWXfFJUEqLN0cirzAMvYyrxPMDXByOIuRZJXcNw+GIJiipq8enuc/h09znEBvth0sB2WLT1tK79OpX6MiyORXbCnxEdMPzCAYRXl8ibXAwDY3Q0CjskgCmr1fQOaBkArnQ/VkPOICT1umnhyYoyCoXSsmF4nvfUfc/j6GkjfKWz5sglPPPNEc3l3r2vF+7o1dqtfe0+XYAHPtmvuVxYgA9K2TRbFYs0gVT81ThWsYSYTTj00nC7p2HHMMD17UJx6Pxl2bDAlvNbMH27IGonNUaU9idFfDoPMZvsGuK5w8CsY3gpdTl42Pt/eAAMw6D1u4uwJ66HTYdFzjuw5MEkAJA1AMRlPri/N+b+fFyXeq4WU27uhEGdImzn18LxGLxwm+I+RKNp14yhxN4M2nyPQqHIoWf+ph6RZkJjJgAWlMt7QxwpqqhGQCflKhaeF6pY6ssSIE7TDw+M1ww1ODa+k3oFhrUbhreHvI0FqQuQW9kgtc7Xa+uIiN4c2xjhvmqrUt6IKSYG0S/OQtCIEUgBVL0DwxNiMHjhNtWw20tr0jXLffWy+LfTWPzbadv5Dfb38bjXzZV8JQqFQpFCDZFmQmMmAJIaMwZzpl04xmlMDlUsIWYTpgxtqB5RCgM4hkIcwwLD2g2Df11PTPj6GzBG7ZwUKWJn3meHXYtvDlzwiIdBmjcSXlOGibdfjyH/GAFGIsqnloS890yhpgHgaSNEinh+HxnUnmh5WnZLoVAaE2qINBMaMwGQxOgJDTCh1ECmNipWsSy4q4dtfHq6Bcsl4xaU1zmV6OqhfYQZu2YMtRkGBWU1mPvzcZe3xzEszrfpisl398TNCvkPSt4Bb07sjt4lOcTz+9ORS0TbpGW3FAqlMaGCZs0IdwTL9EAirvbaHYkI9SVzuYf6hmOpw/j0dguWhgUA9yfDqEA/GFgGyfFhiAr0Q1iAD8ICfNzapjtj8TSM9W/x+N5Y+Wh/TLlZ3WgTvS5hAT6KYmgMhDAZLbulUCiNCfWINDM8JSlPsh+5vIboIF+MT26LOo7H/T2H4JPzK8AYS5xyRERCfaKw5Zl/wsdo/1Ny1Qsgrid6bfSFVjgYzZkICaoG4x+JDceqMHf9SY8lgJZW17skFqb3WEhyWxyrU0jP99hecXbaKdJ9ArTslkKhND7UEGmGNFYCoKPRc66gEitTL+CdLX/ZlgkOHwsucjl4XiZhFQxeGTjLyQgBXPcCiOsZWAYv39YNT319mGg9aaO8GgCPbv5SKDHmRgPwbG8jV8TCZo9OwBPWyhotHFVYY4P98PJt3RAa4KtonJKe7+EJMUiOD6NltxQKpdlADZEWjmj0bEzPxqItp5yexEsLu8FQ+yAi2v6CCq7Q9n6MOQYzkmdgWLthstslVXIVkUvGDVWRm5ciNspzCjPpaJRHijtiYf83qD0+3X1Ocx96VFhF9CQ7G1imUbxuFAqFQgI1RCiaqq6WskTwF3vj2ZEsLpbkgK8PRI+I3vCvNWP36QIUlNc4TWakSq6AcliALNzAIbTNBlTL7ECpxNgTuCIWNm1YZ6JtiyqsjqhpduhNdqZltxQKpblADREKkaprbmkd/vM9AIQCAFgcRTJ7AlEoRh5CkMp1RZC/Lx4e1B5ThnaGgWUU81AcKz2UwgIk4QaDORPVfJHi52qN8tzBcWwkEv0rUy8gJsgPuaX6S7RJZNmp2imFQrkSoYYIRXdi6Ug2FbNNXyCOaTAAsvgwzKmZgHe21OHzPeew4K4eit2C1ZRVpRCVGQdVg0SeTdooT4lAPwPu6t0a6/7IweUKbcl2KSTGXE5pDZ4ddi0WbTmlK1l0Y3o2Jn95EAkFZ3FtTRmKfAPxZ0QHWVn2xkp2plAoFE9BDZGrGc4CnN8DlOcCraKBdgMB1uC0mJ7E0pFsKpaYFjm9H4MiLDEtwpN107CpMlmzWzBJWIAk3PBwv55YStCxV9ooz5Gbro3EsUtC35rley8oLqdmLJAac+0jzLq8FhaOx7rFX+Pzfd/bKbvm+wVjac+x2BvXwyl5tqnDLlT2nUKh6IEaIlcrGWuBjTOA0qyG94LigJSFQMIYu0VJE0tZcJht+kL4v8O8IoZbZpu+xOaaPuDAYuYPxxDoZ0L/DuEuT0Ra4YbhCVH46W/tRnmCMqs8O07lE43F0VgQJ9yckiqkXbhMtI2oQD8M6BhO7LU4vOInTN7+idP74dUleCl1OV5Lnog96IF9ZwrBskyTT/7udvalUCgtD9r07mokYy3w3QQ4p4haJ6Z7vnAyRsRES8isJdKfzcA3Pq9p7v6+2pewj0uwvfbERKT2lK3UKA8QDBG1qhktZdKwABNevr07YoLs9yk34arhSkM53mLBsRuGwFhUICtCxgEo8A/BwyNeRJDZF8VVDTLxrp5zd7wZSsm60uZ/1BihUFoGeuZvqqx6tcFZBE+IYtokgI0zheUkKKm6SolCMdEQHJcTcxk2pmcTrS+HGG64o1drDOho72ERG+VFmaPs1okxx2BCh1dkjRBxbS159KKKOqsREoK0vIPYcHYDPti7EU+uOKjLCAH0i4VVHjwEk4IRAggXb1RVMUaf+R2llfaZMq6c843p2Ri8cBvGf7wPz3xzBOM/3ofBC7cRbUMrWRcQ9FcsWiecQqG0OGho5mrj/B77cIwTPFB6SVgu/ga7TxwTHSMCfPHc90eRUypMuHkIIRqC43JyvWQ8zbB2w3Bzm5uRlpeG/Mp8RJojkRSVBANrQM8wZ+9FTLAfRiXGEOl6/HZxC15O+9iuG7C5k3Y3YOm+XPFO1OeThYyeSF+Hcad3YmnPsdgT1wOA/nOuVXqs5c0gSdbV29mXQqG0DKghcrVRnqu9jMpyjomOr45JsE1QqVxXZPFhiEGRU44IIHgXchCOVK6r02eNMREZWAP6xvR1el+pkiQ1s0jTEDEGpmPl+RVO75OKpf17VFckxAWjoLwGe88U6gp1GCMjiZYDGnJGvuw6ElmtImyVNSTnvLa+Hi9vWgNDUKFTp2NSg4Y0WZd29qVQKI5QQ+Rqo1W0R5dzTBadUzcBS0yLwPH2Cauix31O3UPgVCJ+TTURyVWSaJcHczDHrpf/jFAs7YPfzricu2Hucz2MMTGoz80VdqYCC8FomHBik+09sbImr6yX4npbzm/Bf/bMQ3VEPvyt73F19t4eEiOStPKKdvalUCiO0ByRq412A4XqGLUeq0GtheUISUmMxa4ZQ7Hy0f5IuftRbOv5Fqr97Q2ZHIQLpbtcsuq2mtNEJPSzSVDUCzGYM8EbihXXZxiAtYqlKSE1QlhwaFeWhg1fL0bqttVOeTpSLByPfeeKceH+x8HLNfpRGLMU0UvS+o/9ssuLSb6Xa+1DQKK3xxiYbve+mhEpGnW0sy+FQtEL9YhcbbAGoUT3uwlw7uNqnSZSFsjqiahh51FIehTgHrFplFgCopBZ1wX7vzkKSCZeKWqqoU3FxvRszP05Q/az6CBf3DE4Al8r2xg2SMTSnETgdgL8kTgwMuXU9hU5gRiYPBGT09cgrLJYezASWAiVNcGfvQ/+gTvAGAywcBak5aUhtyIXbxx4Q7bkWcnbo2ZE6pWYp1AoFBFqiFyNJIwRSnRldUQWOE18LsEabMmuBgCDACwY10O2BLixJyKSElSl5EyR6noOQSYyo0lNLA1QFoFDaRb47yaA+8dyGLrfoTiuPXE9sD+2O0af+R2Pp68jGpMIC6A+JweVBw9hb0wpFqQusEu6VUIqjc9VdiQyIqnEPIVCcQWqI3I1Q6is6klcEbTypBInyf4tHI/BC7dplt8y4NC659sorStUFUurOD0DSlFOFhx2+U5VTfDNY8JxZNxODO/eWnVcBp7Dsl9fR1hVie6YatHMiXiS+Vr2ONSounQfLKW9dGmAUGVVCoWiZ/5u2R6RJpioGxWJ16Kx0NvrxJNKnKQlqFqlpiI8WNTkjgbCloEBYzeJi+Z7Te5oqKVaJbMn7HryOMIyQAwKsWzlSpwceofquCwMiyU9xuKl1OXgVPfqzOfZ68DH8WA4Ht0u8ggtBy63Ao63YcCrGAl8fSAeuzFe13fR1BLzFArlyqLlGiI6JNAp+iCdiNzVrpBC0v1WLEHVU7mTn9sFzw+YjZ8yFyG3ttj2fqhPJKpzb0d5WRfV9fWIwH1OoGmyJ64H3hz4MB5O+9Gu94x4jI7wAIoCWiE1pgTJJ3lM2swhQpLSUhAILBvOIrWLvVkjlcZfezQbL6R0I/ZqUI8IhULRQ8s0RJQk0EuzhfdlJNApnkWP4UAyiekR1NLb5O+R7SvxRHUu0vx8kW8wINI3FEm3TAW63YHUzCLsPp2Pxb+dkV1fjwhcsUKiryO97r8TkyK7oXvBWYTVlCGuPB8PnfjVyUsintv/9UlC37924bkfOadthZUBz/3I4b93wWaMOHp7xPMmaq9o5d7QXjMUCkUPLc8Q0ZRAZwQJ9K63XV1hmmaA9Em5oKzGo0qcegS1bu8Zh9hgP83wjJhkylQLhlHfaquMekUV8P0k4J4vMCBhDJLjw/BD2iVZPRK9InAh/iaUVNUplhTHBPthytBO6BLTCq+u9cexUmFM54Ni8cQfq+28JAX+IVja4w4ciPXDZz/vtG1DilhZ8+gvHEx1PC4HMsiICUFV/hg7obbNGTmY/t0RVQPDkx4uCoXScmh5hogbEugAyPJKrvbcExfQ2yRORGpgqLn89QhqiaWmT1grfOSwdRpm5EIe9gargTUolq5yYDGnbgKW+pCJwD08KB6LtpzSLIGV5uJszsjBZ7uBfbHdbV4SUVmVY1j0uPiXXTjG+ViB4CrgmXU8AB75fhYs7cljT1zDMp/JhI2kBsbwhBiPergoFErLoeUZIu5IoJPklbiSe3KVGy5apbJqiAaGlstfWyXVXsckJTEWSx9Mwswfj6G40jkkopVk6miwKpWuxgb74c7RT6AeSShc9SxiUGj7LAfhmFP3EDZxyU7ejjnrMpBbUolk9gSiUAyLOQITB7ZDMvc7sDcfCIiEITAWye0GYPp3RwAAHMPiWGQnp5GG1ZSrHIczohDaa8kTsSeuh2KHYqmBEehnor1mKBSKS7Q8Q8RVCXSSvBJAf+7JVZ40q5YLoobUcCB1+esV1BK9Cou3ncbnuzPtcjSuNVcA9QQDlRisShVDmzNycOO6VsitftdmWOQhBKlcV5snhLeODwCC/X2wqMcFdD82H61qrNuvB7DTeff15hj0LLsP2VBWtC3yVdc5cUQM1zx+bA32xXZXlewXDYy9ZwoVl5FCe81QKBRHWp4hIkqgl2ZDPk+EET6XSqCT5JX8MsM64+nIPWkBSbOkpbJSpIYDAGKXvyuCWgaWwTPDOmPK0E72BgQTCHzxjvZgHQxWA8vYJXUu3nYai7acso6fxT4uQXFThy9cxpx1GehZtrNBAE0jiuFTmYMlpkWq8vp/RnRAvl8wwqvJ9UdYAFFVxXghthILcloRrEFmajYniX8KhdI8aHmGiCsS6CR5JWVqn1uXkeaeXC1JsxphJVeegKWGw94zhbpc/np1TEScSo65QfoNVrieCwMA/9uZKeSm+AreNZJUCvEXPNv0JTbX9JH1XnAMi6U9XdMf6RPIAznayw3oEKGYsCuOs7lJ/FMolOZByzNEAP0S6KR5JSSI23I3adabkOasEISV9DwBTxjQDrda8z1Ew8GV9vIeEdRywWB1JxdGRDs3RWaoDBCHQiSzJ2Q9Liwj6I+8ljzRqbJGiy7d4xGbV65pYPSND8N9fdvinS2nZJcBaK8ZCoUiT8s0RABhoux6G9mES5pXQoK4LXeSZr0Jac4KYVgpOT4MYQEmFFVoa2TcmhjrZEA0aXt5HQarq7kwjpAKoJGsK075i8f3RmiAL/LKesFkfgTXFGWiLjcX2fPmgykplo/+MAyM0dFo1bcPZrfKU829GXNdLG568zdFL1BMsB9evq0bgv19sObIJSpyRqFQ7Gi5hghALoFOklcSGCvcmUld+a4mzXoT0pwVHWElA2vAa3ck4qmvD6vuWqlFvN5qGE+petq2U3s9okbvQLLhBAwVeYoGqyu5MHKQCqBZgAaBNYsFSdU1qA+IAiRlusH+Jjw8qD1GJsY6nIMoAIDR3w+XnpkmvCVtOcUIy0a/OAuMwaCYexPsb8LgzhH4aGemogH27LDO6BwViLk/U5EzCoUiD216R4ptkgZknwvtqmZUlhGfojkLsChR23CZdqxxckRs41EKF0nGc34PsPx27W1OXG8z9OZvyMD/dmYqbVlV7EoMeQDyT+Tiup5S9XRlO2uOXMIz3xwh3ocSWk3yAGCL2R8LwkORa2x4joi28HhhyH9x/GwHpwogtbGX/vorcufNR31OQyKIMSYG0S/OQsCw4XZG3fXtQrFk+xl8vjsTpZU1spolUhgAwWYTSiqdBdocvzsKhXJ1oWf+9qohMn/+fPz44484ceIE/P39MXDgQCxcuBBduqj35xBpVoYIoBC2aG3vpidZRro9UsPF22T+TmZcPLQGOLcL+P1N7WXHfQr0uNv2csMf2XhpTTqKKmpt78lNknJejc0ZOarGgVJ+ht4Jz9Xt7D1TiPEf79PcPgmioivgnLC6xeyP6VERwviYhg/FsEnV3w/aKaKSjJ23WFB58BDq8/NhjIyEuc/12HQ8z+l8h5hNKK6sw8CsY065Jvl+wVjacyz2xPUgPk7Rm7VrxlAapqFQrjKajSGSkpKC++67D3379kV9fT1efPFFpKenIyMjAwEBAZrrNztDBPC8sqoew8WbHFsF/PB/2sv5hwJVl4k2+efwr9F1wCi7SUYrdKLmjVCqhrFwPAYv3KYYGiGd8NzZjriuUghJLyPZVMw2fWGXuGoBMLJNHHINBjsjxAYPcPXBqDg9A461MdKxA9D8DpSSbgdmHcNLqctt2xThrK9FETQ9rHy0PxU5o1CuMpqNIeJIfn4+oqKisGPHDtx4442ayzdLQ8QbNAdlVVKPCAFi/5TBNe8iOthMHBpx2RvxVx7e/Xy5rFCYFK0Jj9SrobQdpRCSEgE+BlTUWhQ/Z8HZBNDyEYRy/xyca7tFc7uV5x+FpbKj7GfPDrsW3xy4oOhZUjPGWJ7Dsk2vI6K6RDbBlYPQ3+bhES86hWnUePe+XrijV2vi5SkUSvNHz/zdqMmqJSWCKzcsTF5LoKamBjU1NbbXpaWljTKuJoc0adabaCbkkuHYP8VO/TQhStHgcrkbb8Za9Fr7L3zj01BdlMWHYU7dBCeBL61SYNJS4ZySKuw9U+jkUVBK6nREHP19fdvgU5keLiKcgwCa0VAPf4LxMUblxjJy5bXS7yjY30dx7N0LzqqW/ooiaN0LzspKzStBRc4olJZNoxkiHMdh2rRpGDRoEBITE2WXmT9/PubMmdNYQ6JIUdXNIEfaPwVoMCK2r/4MI39dAUahLFir6kS2V4k1x8bPYawxKJJVG9Wa8EgnxLk/H1fMc3EUVDtXUImVqReQU+qs9Brs76NqiDjC15NJtZMuZ1seDYbeCyldFZcLq1HpnOewnPgLClFIVgWal8iZp6qtKBSKfhrNEJk8eTLS09Oxa9cuxWVmzZqF6dOn216XlpaiTZs2jTE8Z5pDuKSxUdLNIMwLea9uLBZZ7nYKi4xgUzGvbhHg6OCSlAXn1V5PNESb10JSQuzU2t7apE1UG+XBEk14WqXCIlIjBHDueeMoqOYkHy/JbSHZn4ilMh5cXTAYY4lsioiYI2KpjCfYmtOqyC6pRoGKV4i0Z02Rb6DN2AKgq/+P27hw3Xqq2opCobhGoxgiU6ZMwfr167Fz505cc801isv5+vrC19e3MYakzlXeiE4VOaE3ngO+0D7uPXyikxHCgsNsk1Da7DzdNGiORI3eTjQ8m9dCQ5lWqja6n0sgmvAMLKPYOE8NqUdhaNdoHDp/2cnokMsp0b8/FjW5o+HXegV4XiZflQFqckeDAes06ZMei1wnYhGtnjU8gPrwSLw4YzySO0Xazrfe/j8u48J1S9pQUYR6TigUz+NVQ4TneTz99NP46aefsH37dsTH639Sa3QauxGd2hNcU3llHHNWOItq/ggPBtl8GFI5Z7e+tmS5IGWfbDihS7iMVHH2WnMFJo0l16pQyvMI8DWgokY5sVT0KPSfv1WzPJlkf7HBfkhsHYQtGXl256O+LBHVlx6Eb/Q6MKaGfI1WhgiMvuYJBLROkg0F3de3Dd7Z8pfm8TOyrhYBtZ41vHXd9rNfQtC1UU7HqLf/j+4J34XrVm9eEvWcUCjewatVM0899RS+/vprrFmzxk47JDg4GP7+2ml3jV41o0fUyxMGgdoTHKDfK+NNw0VF84QHMMv4PL4t7+V0Ux/D7sF7Pou1tz/uU2xkBhEJlwEgrvKxTFgHQwftCi2n9SQTYUSAL576Og0lVdoy9Y6Q6pg4TryXK2ox+Wu1vjUcDOZMITHVEoj6iniIpkFMkC/GJ7dF+4gA2yQOQLU0GRAm1bf+cR0e+GS/7OdiFU+/S39iwB/HEFxVaftMFEELGjFCcftqxys1NHRP+C5et3qqpEqqaj2iU0OhtBSaTdXMkiVLAABDhgyxe//zzz/HpEmTvLlrcqSTd3lu4zWiU32Ce0h+HbmnO3H8JzcAf3wHVBY0LO/JcJJK3xUmZQGGcH3xrUyIgVSyHK2ikRIv7x2QdeOTyO4HxcHQfhDxIYqTY05pBUq4U4gIqUFcTBRqy9u5ZIQAGhU/EqThG7GEVv0JgVUs0c0trcGiLX9hyYNJdiGhMdfFKqrbip/37xAu65my0zWJB/h2wMX8CKwqvxHbfXrhqanj0Pk65bCrFDVDA4CuUAkAlxtI6qmSemPTSf0VXRQKhQivh2aaNXIeCRLcbUSn2atFCfs+Ljjxs/r4PR1OUmkUmAL5XICLra5DlSEG/lW5Csdm34OH2I3vQndcNcTJMZ87CN/odWAlYY8gUwSMgSlOiqWkyFb8OCIxiE+U+iO3xDH44YyYlCu3P8B+crRwPNYezVbd3tqj2XghpZstb0VEqvQqwrDANVEFmBb1I07WtcVzP6YjwN8X/TqEy+bIiKjlZDyxIg0hZpP+Cd/FBpKkVVJFFbX6K7ooFAoxLbfpnZJHggR3G9FpPsGpYX262/kWsH0+dBkuapMyaVhHRfNE0Yg48aYug8HAMhgQH9IwnvPRDc0CpWPsehtxd1w1xMnREJgOv9YrnD4vrSuAX+sVqL7kLJ+uhVSUzHK2Fogf43xeHQzi7gB2+cproThuM49RFnATJ8fk+DAs252p2ZRPXF7MW5n5wzGUVtXYko2dbEFJddLgmj546LNUp2/YUSxNLScDUE+WVZzwXWwgSdpQMawVWQI9qYeF0ki0xMrHK5SWaYioeiTUcOig6yruelQAYP8SkI2fIJzkwSoh2QoRlbCOYg8euRJiMEBVkcP6C4Fp6S7fcBomRw6+0esAyKunMwB8o9ehviwBWp4KESeZ9t0AfywOjPS8KhjESlooctLvSgJuAPBrRg6mf3eEuDOwOJmmJMYi0M+E9z/7XDXZWFqdtI9LUA2pqIml6cFpwicM01naDECqgxCdUtWStLw42N9HdTyiYditIA/I7EQnvOZAS658vAJpmYaIyx4JXpe7X5GASPfWB4j7vdhQMn48VSWk9fShEtaxW//kBmDfh87blzteD4SeRCE1gznTLhzjBAOwphIYzJmKuRlS5MIZAMCXZgHfTQBzzxfC+VAwiB21UDiwittUMloA4HMdgmmAfbiif4dwbDJXAPUE66FY9n1SsTRXxwiAQIyPx+HuM/DUmztk81LkQorB/iY8PKg9hifE2JaV85zYGYa7IPzRCa9paezKR4rbkDeEuJpw1SPhHyZMHu7w52rgu0nubUO204cGcu5rklyVjTOF5dTIWCtULSy/XWict/x24XXGWvvlxLBOj7uFf0UjRLq+nBGiiI4xKiA+XavJokshWU6qneIUzoCQO1Xy03P4c88GbS0URvA2qG7T+nq26Uuw4IiOwxEGwmQrFX0zsAxuH9iLaH21pGQxpFJUXqO4jKtjtJEwBpZ/LMOB4HBsCDDjgJ8vxF9ErU8I/rfjrJM3RvTWAMCuGUPx7LBrEeJvAgAUV9XhnS1/YfDCbdickWNLpJWeetEwjIGDx0ic8Bx//xTv46l7GqVRaZmGiKs5HlVFwlO7q/z6MvD9RKBaTVeDBD0hJUbo5isXTtJTbaCE+PThuB2x+mf7QqGzb+bv8he/0vrEEIxRBfHp2pPy6aJ2ilIBBcsAwXV52LpxFdkYUUy0TdFocQUe8iqnyUNGo8o/RtG84Xggiw+X1ZBxJCzAB7HBfopmNANBEp6Bs6mtpcS65fwWjDz6Jh4JM2NGVAQeiY3GyDZx2GL2h7G2GB+aFmEkm2q3jjSpd1N6DhZtOYVih+ooqbGy5MEkxAQLvxebYcg4G4Z0wmtCPHFPozQ6LdMQEWPKrngWMneoT6xKpK8G9rync2fulgJqVI+4WG1gg+TpY/s8ZS+Jy7k6OsaogZiwyFnl05UKvRgwCPWJIpJPv6szYeiO8LAH9equGPpwhHQ5OTi5EhzWAP/Rb4Kx6sXYLe/Q4FCLmGB/Wc+C9PWCu3rYTfgN6/opanVsOb8F07dPR26tfWgtz2DA9KgIbDMLmkVyHiPRW/PSmnTVJFqxWmfXjKFY+Wh/fHFLvWAYKh4tnfCaBHfvaU0JZxHmFVfmlyuclpkjYhdT1snONxv+TxoL5izAhunqy8ji5gStVT3iYrWBDb25Ntb8CFuM1q3qIcIxAqr5K1KZdVX5dAAvDZiJ2edYzSqL2GvigfPaQ97LJ+BufidioOTpEJIs2/Yehp+OXNLeINRDJHbVNnCutpmy8jAWg8Gong6TfcIYIafFIfnPscGhGjFBvraQyrRh1+Lz3Zl23gdHrRhSJVYLZ8GC1AXg4fyl8QwDhuexMDwUN1dW2SXVOuLYP8huO7Cv1hnQMRyoJJwkjlsNb5rA2ji4e09rKlp4cm3LNERE/EP0J31KKc0Swg/9nwK6jFK+2ZzbBVQW6hwbWaM5p+XMEUDPe9THI0JYbaBYJeTSUwXfUE7skacSjTESXOANMut+yL8EJ/n0GHMMZiTPwLB2w8CNztassjD6GpC1K0zRwOB4YRLfzyVgTt0ELDEtAsfbu/h5MMI2UxYguWMkLra6Dlk12ttM5boiNtgPL9/WDXN/Pm4zmkiqbTgeeOrrNDyb1xlThna2n/glycZHj5/A/F3FimXDclTXc3hj43GsPZptl6sRYk0KddyfUn8eR9Ly0pBbqfw74hkGOUYj0vx80be6xi2PkV21DulElvqR8NcYk0pTl6s29f4B9+9pTQFNrvWuxLu7eE3iPWOtsnqpO5jDgVFvA4lj7fe17mmgqljftm6aCexYoL3cQ2uEi93Vi19Fuh2A+kVAKLMuy8T1wr+urg9AdYycxaq1Mo94PTll1eiAKCRFJcEgOadaEuQWjse/583DvLo3ADjnEPA88L/627HAcj8AeSMhB+GI/Mc7MHS/w7bP1V8vxYfWqhnpNjmrM+BA8ruwdBlt8x6I+igj2VTF9QDIVtvEBPnh1THKPVQ2pmdj+ndHUVnrnvvYXYn0DWc3YMbvMzSXW5hXgFEVlbiv9iU7jwgDIDTAhKIKbeXclY/2bzCObLLyShOeIwTXkztoGdzeNhKa0xO9O/e0xqax24o0Inrm75ZniHAW4M1O9noUTujpVyrDwKnAiLnuiaY9tAZY86T6jc4/DHj+tPs/UNmbSGttUTDdN2MJd30MJI4jX98vFODrgRpJ1Yp0jNIbbeEZ4NDnQJmakqh7F7hWU7aN6dk4t/JfeNy43inMw/PC0UoNALmwyVePDrTzCmxMz8b21Z9hat0ndkZLlX8M/Ee/KftdbTz2N3r/cCMi+UJVT8rgmnftvBvieGYNDsF13brKTlwWjsf7W//CJ7vOolylIaAWYkhr14yhuiXSD+QcwCObHhG2w/HodpFHaDlwuRVwvA0D3rq9T7Jy0aa6ldNxAsCH9/e28x4Rj09xwlM5Um9MKloPVgOnAumrvGckKN7nmnDid/We1tiQPsxNXO9+W5FGhhoiapzdQdTSHiNeF5LN0r4EaslKO+1IfgxI/9G+94sexn0KGHy0PTf3fOmZC8vVJybdN2MrI+cBAyZrr9//KcAvBEhbZn9TkXqfXJXqBzx3gTuevzb9UPXfHvCtypENXigZAFIeGdQer4zubveeheOReiYflnO7EcUUo2OHjkI/HaXvivBGJ/UUyHlo1CYu0SjbfTofi387o7kvJew8Dgo4GoDXtwvGqJ9S0P5wDiZutiBCcqkWBALLh7E434nDLxez8QLzHH6sSrLbXojZhAV39QAA8oaLUlz57XlyUiF6sJLDQ0ZCc36ibw6hIi2OrRKS+bUY96kge3AF0Wya3jVLMn8nW+5iqjXRzEU7LfUj19YTsU5m8A209wLYQSjfTgJrEC5Um6z6Hu0Ll7MIOSr9n3RuuKeFv3XCUVRdtT69APJPW5VFwKpJQNbTwJ73nT8nRZqn4o4x5jh+czj8q5TzgkRF0kmGjVhmSZE1RtYcycK/b0twzp3oHAV0vpPo8EjzcMTcCSXRNLV4tZjP4a7E+e7T+arJqUohsafMN+D6H79x2l5YGTD9Jw5FtwLHUt7FT79FOC1TUlknKL8+cB2+HVGH9XuO4FRlgC3/RUyiHZ4Qg70OqqwGlrEX6ju+luy692TFxrldLhghgK72D2q42HCwUVBpR+Ex3DV2rtTkWg/T8gwRUs/vma3wSFmpbqxPEJWFwNtdVYwQwHaR/zYf6HCT8kVAcrEoTKboea984qvS8hFdgQu7tQ/z0gHAYGzoGSOnugoIT1tqhZV7Fyt8Toh4gbsa41ZySxMmJ79iWoF/GjfISrQXVtTqaqRm4Sw4kHMI+y+cA1ffCskxfdC/4DRIbosRTDGMqFcUTQN48NaJi1GYuEibyCkh9abEOlTRSJvlScNY+aVBaPftLwCcL20WwrcSfTgGEyPiwMO5MoYHkMKmovcPTyMahUgGYPEB9gbF4OS1d6N70h0oKrRg8MJtijlBdhMeiSHiyUmF9MFKFg8YCVdyuay7eCIv5kpMrvUCLS80c2Y78OUdntmWx7HeSgdMAfa+r391uYuA5GIhyWWRrqMaE3bh56R08bqTDKuJxGV84mfXYtwuu8UdNqOSNPrufb1wR6/WmtvYcn4LXt39OkrqGrxSXF0Q5hTlYlxlPpH9XcL7I5ip0lwu9cblSB461ul9C8fj+tc2qzauI0UaEhmeEGMzBBzDRhW5Prgg4+lw5IVBT+BYZCen96UeIJYBtpj9sSA8FLnGhmc0ri4YNbmj7RoeyoZsNHOmvBCm2PaavaSAK7jj9ie9RkfOEwyw5hoi0Ysn82KupORaHeiZv1ueoFn8DdYGas0AxuH0B8UJeRN7F7u2PUdpaVXVU+typKJi4jrpq7VFzNwdt4i3n6LE0A+hJLSF47H3TCHWHLmEvWcKYdnxpttGCCCVaP/CSXCLxMuw5fwWPLv9WRTX2ofGWGMp/hPlh61WQS8tSIwQAFix5QA2pguJwNJzsnjbaY8YIQBsno+1a77D6a2fo11ZGm5l9ztJqtdXk01oYTKeRUfZ/C1mf0yPikCuwX6bjLEEfq1XwBiYbjc+QBA6s4iWpKhPJKzlsDcNcUFXaTfY/W2446EhEYdkWGDTi+rtH64kPC0jL4angxxykILirlgjRC8tLzTDGoDR73mnfJcY60U77nMgILwhHFFZKEjAu4wk7nttisbFYl3OL5gw0c66nZ+nAyq5D66hEK/2Vlw0qDUwYp5gkG6fTxTjTt2+Ds/sD7S551lwOOb3DgI8NCQhZ6QIkw2r8b7lLlulhmxfFQmioJeMnpfNQSUKenlq+stDCOasywDHAXN/ziDuqGv2McDHwDrJqMth83zUFQG7gW98AAsvaKtIj9PoR3azL/J1luYXZfMBwAJgQXio8Ct3OJEMI1Q6OXZfdhQ6A6C/07S7iA9WCppDor9bTqCPA8AEtQbjjttfs+EgAN6hQcCVro/hjbwYraagVzktzxABrDeLL4FfXtAo8fQScjclzgK80115HWKsF8GBj8kuFr0xZo8bISLW8exf2uDCbd1HeJpyvJG5w3UPAH5BwIbndCXXfrVlP7K5hqfPyYafEADC5ExzBPG+phtX4S/+GmzikhX7qkixCXopLOYo6OUOUtE0rqQaT32dpmv9yloLKqFtOCglzBoY50nOHFkLo78F9VUsZE8Cw8AYHY3CDglgymrtpkmpuFman69dOEZmM2AUui87Jek25qSi8mAllokzgJNgnujEOdX73+ji7riUjC9FPJQo21R4Ky+mMZJrmyktLzQjkjAGePZPYMiLjbM/c4SgnTFxvRAjdnwS2PGGZ42iy+fIlnO3nY0SQ160umx1YufC7e45I8Q/TPg7+hWwf4nusupXTF/amqax4PCIcSP5fqcfF2LkBPAAXvX5EkseuI5I4Cv/L7Jx5Bvcu9k795XhYDCfgTHoCAzmM4CLXX8dUesyLAfDAtFJogqug6FidQNEvzgLr9wh5HdINymVwyc9P50DdsLxWGXDZ0qdpr2B+GAVaP97yUYYnqybhifqpiEH9p61HITjybppOBE6xHNjmHpUuM8RcQX34qGVLh6nZXpEpKQt8/AGFdyTo/5rr7gq5deXXWiIp0Foe7Ll2g0Ggr5yTZRMFka4IbbtD4TFAxX5QECk8O8mnUafXll8OUQdku3z4c7xhaIMS0yL8GTdNJSgFUKZCrIV298AXNwP9H1UyP3ReGJkGSAGhUhplQngGvVtcxZEHl4JBGtPcuH17imgSvvKGAPT4Ru9DqxEBl8uodMVpOESUoLaVAODLiM3LRj1VQ3ngguPRJtX/o2gESOQAlhl/BtCSalcVxQjEMEoQ6SF7PxcijiJgOAFqMkdA0tZIlH4rFFw8ML8WeqP0es4W1n45po+sn2GJrlZ6WTHxf36dZOuxGoaWunicVqmISKWs2bucLHpmkKnkYFPOysYivw6C2BZZ0+IK115fQOBmnKoXgSEEx+qi11vACi3b/BAfbW9aFxQHDBivsbF6w0Y4M/V1q/HvX2yjOAVmG36Egvr7iVf8fga4S8oDki8m/y7JrlBn9+DpKJLiA6IQ57BAF4mEYDheZjrfdG7ula39+s/dQ+igA+xm7iMgenwa73CeT/WhM7qSw+6ZYy42gum1TXVKIsLwFNZTyGkphxFvoH45+Q70T2prW2ZlMRYu2Z6XS9vR/AOIYk1qboG0fX1iudRCmsstR3r7NETNMNnWiq8HkPi2u/K8Yjeuc2mFsuBdZK2j/W0EeWKUXEleg1U82K8lJR8ldPyQjMZa4Ws7eW3u1D2xghyyUrZzSPmAiPny68qVxniSlde/zBgjFhVo5KZb/QRJn8tNr0oPEnd84X+UIpj9ZH42rGSpDRbEB9LbGxlQB4oy/JYh1+WAeKYQoQzpfpXLs0WhNe630W2PMkNujwXBgAzC4VERcahEl98PSC/NXxk8ivUqPKPwXJLCtZxA7GPS7CFY3yj1wnbdvjpia+Fz10P06h1D1ZCDBv9x/IQjkZ2xo5reuNYZCdEBTunEovia3f0jEGXw68BEK4a6XlkLRwSznMY9KfwL8M5hnysE3n8JgxPiFId28b0bAxeuA3jP96HZ745gvEf78PghdtsVUfeQuwqbR2uHeJrkhwkXegyKhghafxK9RrQSheP0rI8Iu70fvEPA0a/K/zAhr0qn4jGWYBNsxQ2IJOgdX6P/vCDOAaGIDM/gEAIS4zTSl27qR8LT/Fa3L2soeGeOULojSNbAWo99sMr3O943Awo5IOQxSt3wpXHeg4u7AMC4wQDSQn/UCE3hrOoP1VZb/zDKqvwdl6Bk/5FtMWCGYWXkVFxvc4rnYH/6DfxAdfHLpRhMGfahWOc1lJI6BS9SVoE+hlw7XUjUH7iYwTU5Co6cMQETBFp2Aho6A2j+rRvrXyQbmdYZRU+TC0Bm9oKoeUN7xcEAsuGs0jtInluY4Diunyk5aWhb0xf2V1IRdikZJdU44kVafjw/t4Y1dOFPCpCGrpK21c2xTiIxXkMzZCFyFXiNWjhlS6epOUYIqR6GUrc/TnQcYjwf6XsZr1lXXpdmUNebDAySC4C0u2f3NCQUBd/g7Adkv4R0iS8zN+1j90Dmhs2zBFAu0FkBpOHyUUY5tRNwBLTIqdqBHWsHpohL1pzVqzvOVJ1WQhtaak0Wm/8fGk2hlVW4ebKKqT5+SLfYECkxYJeVTXIRzg+4xIwFavJhihpDJYC2IUyzlVX4JOT2ptgjGV4dlhntI8IwO+nCrAq7W8A8o39pNL2ZdUWfLH/b+Sx92KJz3tOBoeUGp9QzCgfjxyE2W2H+Glf5tooveiH8N0BcDR1wsqA537k8N+7YG+MAMivzJfdvIXjMWddhurdZsrKw1gMBqN6etggkOAYjnIKDXmyHwtJKS/gvVJmRxqj10wLrnTxJC3HENE0ElQIak32Y9Nb1qU3PhpuXzaoeRGQbn/fh0DbAQ03BrsbCkAUAz25gWxf7nDj80BkV2cJeLWkscBYYcgeyE3hAOTw4baJ70XTC5ht+gL+VTn6NhTekazcUUtvwfo9Md9NAA8GBvC2El1buKLuIeznEoQOvVW5UO7kHAr8YznQfrDd9yqGMgDgQE48kSHy7M3XY/KAa7ExPdtmhMg10sviw2Sl7YsRpJrOwgDwrb2M+4f1wzP7A8G58rTvcG3wHJCbFizZQwNCUAqYtJnDgc4NHX0BIDLvFNBhlNPmUzOLNPVVOB546us0LGUVGup5COl3aIcnJModUSrlNUcAPe+RbxfhDbxxbBSv0XIMEZezsxlyF6Lesi6bK5PQQNJruBBvnwF+mSGIm1XkN/R/IRVmylgrGDPeJv4me8OLswBJk4DtcqWx1sniVqvSpe5kXOckNAZA2ZC5eCc0yfpkOQoGzGx46irPJasMahUtHEfX2wRP0qpJCuEqAr0F642fcfiexHDFH4E34oPRCfBn31RPrhv9ntCvSIWkqCREm6ORV5kHXsGgiTbH4Il+w20eAUBZFyQGRbZKJKkxQpqwGpW1DbtmvIt9Zwqx92wBAGHC7d+BICQp8SYx4FGZ72NXceMICyCiDLj1IIdf+rAAI4S+kjbOBoI6OE1uehoAzlmXgeEJMd5JYFVCKUztCbExPSELb3gtvHlsFK/QcnrNuNK3RHRT67mo9PaayFhLpvIaGAc8m67/IiXdviPi04PWsWu2AfcECudNzaMgCTEAEKqTfnhYXZeEMQB3fyaIUyh1A1a7gbny/ZP+LrVax1tv6FxZDo6XmXHa3ANRQQH2bnjZp0SC45Kw5fwWTN8uJFhLjRHGatC8PeRtDGs3DHvPFGL8x/vAgsMu36mK+TSiSNrgmndt4ZX+bAa+8XlNcyxFCMK+O/di7oaTyg3p1LBOWDx4lJ73R9ZestYPBYHA8mEs7gstxLDKKuEcOvSPEY+flJWP9ldsbmjhLEjLS0N+ZT4izZFIikqCwZ3JWvOalfmdegNveC2a4tgaIwR0BaJn/m45HhHiRCoICZX9ngJu/JfQEM3xh610sbhS1iWKEa2bqp7EWV0C7HxLGJOeH3nCGEFLQ6/HgvTpwZ2QFzE8kHCHsK92A1Wa1FkZ8qLzeQoI1xZH4y1CB2HRW6H35uLK9+8plUZrmI4F0N3654QbyXViCWpFWTc83nUOfrrwgaDoaiXaHI0ZyTMwrN0wAA0eAS1dEEHavhCTDBttpcIHuWtRwAcignHuDyMlDKX44tuVyJaUpQJATkk1nlyRZt+QTg6rN6l2/fMw+pHnL4WXAdN/suCaQTzQBrJy3snxYYgN9iOWvxfPl2Opb5khDW8cWOh0rmcmz7Sda914Q6JcL97yWjT2sdEQkEdoOYYIaSIVAFSVCMmEteVCyaWei8WVXhPiBLHzLWDPu0CtjFhWXYUQgti/tKFyhpQuo1wInRDKMJNOpD4B8selhSjxvu9D4S8wFqivgfL3xwBpywVDBGh4WjlO2GRLPB5Xk9BIv39xXPknyLarFJZzfBpr008QlirLtonJWVrFINXSFXkVddaQ0mBdYYCN6dkOlRc+iAv6F57vdRwRAcWIDGqLpB4PwWD0sa0jqo2ShlleMTVok2TxYThi6YRhxsOa68ltX0w1JQp5JIyB8dpRmD7/fUzy/xIBVVWacivi59kHg8FbGBj9LTCXZNutJ5bPPrFCXQZfTODtVpCH1G2heHafGZdKhV48xsB0+Lde4ZSxm1eZh+nbp9u8T7rxlkQ5KZpN49yQf2/MY6MhII/RcgwRQEdPBOsPa+9iEF8sjhPC1KPChED65MkahMkzbZn6hF1VpP9Hrscb5HicWk8PxHkrLkrWOHoxNGXwJWOuuqyj/4WV8lztslkttDwPWmElO5xVGsWnZsPJdbgufT58KyXJsjK9eQwA2vFhWGZNDNUMXUh+y6n5Rkz+1QCL5PsbyaZids0XiEtt8CLwv71l9xSYHB+GmCA/5JWHEByjPTEoQoyBzEOhpDsi25BOxOFaNbQbiNF33odFf9Xg36nLwYHk18qAqzEga58QzjEeewfRT2Qj6LrWtu87JTEWH97fG1NWHpYtX7ZL4N0lvPc9H4Y57ARs4vrAN3qdbOUQDx4MGCxMXYib29ysP0wTEEm2nLfExrzptWgs+XVvGlMtkJZliAANk8T+pdqJhaqufI0JT3TP9dAh4kUc5uD1/cj1eIPkKMsWchnkJlVSI6dW3c3uhLvN7k5uAPYtUR+THJteFAxQV12rjgZp9zvtvyMdWja8dQo61fvf6AQWBjR4J3qW7WxIAJXOVArnLFaSGPprSbJi6MLy5xrU//yCzbhJBvC7b0N1i1LiKV+aBXw3AYzVQN6ckYPqunqkcl1VNVd43lkcTdQdsfAsGHCquSWpXFfZ4xVxShpVcKWnpCwEXpiIDxabcO++7xFZrayXIkd9QTEuvbYEGHRZkJy3Xv+jeo7BYjBODQK1EnjvNz6AP1U0W3jwyKnMUdUxkSVjrdDsUxUvS5R702tBkqDvCSG15hDeuopoecqqgDAxlPztmW2d3CBMLI4/SuuN2U5JVQs9F57ehlFKSoAkbJwlJFTamtElNhyXaOQA8GgHPXeb3f3xHVwu15VTwRXhLIJRdmyV8C8n6VEiVe2VO1c6tWyy+TA8UfsMRm4KwaCFWzBt9fd4eu1nyK9Lx0s6GsMBDZP9bNOXYKzKp3PWZcAieVQ/vGk52O8nwFRhX44sTo4p7D7FhnQsAJ7nUbb6X5i79g88sSINxVX14MBiTp1QsSTnFVBSU2cZwMBwts6xUhwb8LHg0J/NwBh2D/qzGWAlyq7nCiobVhSNQKdrVfi+U9gDeO/D6TB9txZ5Dz0hPzANcg8HCT9dyW9oVM9YLH0wCbHBQrjK1tiPkTmPYhGT72ai/SnpmMgiHr+qV7ERxMa86bVgDdoKzonj3D82V40ptftHC6blVM1I4SzAW50901RNq8W7TEa9Inore8Z9qs/jAtg/sYtqqLpDNtablTQ8JPekqXVulDAFCDkxruIfDlS5+90SVuqIni9AwdMhOVf+oUTf73v1Y7GHS7Tr7+LYZC66vh4zCy8LVRs6ua/2JVvfEbFaY+Oxv9Fz1Q2q1S1FCEIEgby9XI+akWwq5ps+QRhTrrm+lE/rRuJW4wEH/ZEGJVUtfZLYYD/smjEUBnC6qil4iwWnbxmG+txcwW2jg7Y3FyAgutZpm2JIzXJ2JwbvnqS6jQN+vngkVnsi/mzkZ2QeEdLqNp1VVC7hSnWZ7m1reETcrZpxpdpN6f4xYr6QTH+VVd3QqhktSKXVGdZ6E1K4WMzh2hOtHvecXl2R09ucXf9aOCZhuhSykYmByuVFlGUDPz5KPjYRd4wQQGi65zYOrlXVxLSHhBYAWvHiYa8S7fk0d43NUFBqMpdnMGB6VATezivQbYxIEzzzyqph4XisXfsDUjSqWyJA1mPHMfFU9IiEoFw2FKPGJURicM17soqsRPokJclCngibocuVzhgMiH5xFi49M00YsA5jpL5auB55jkflX/moX74IbLfBSA+LR15lHboxxZrbSKqugW+dH6qN1bLniwGDaHM0kqKSlDcifegozyW7r9zxYYOCtLfwZtM4kvC2J0ImejvwKt4/soBVE+3fa4FVNy0zNEPqVus0DIo/MoDcG6GZYGnFLsxBwNGvgDc6AtsXuu7qUwrZmCM0VuSdw0OikdPjbuHfQDfUIv1DoRzqYYSJ37Hpnoi7howUMXlVNTENGvL11nNVQeZGb0jAVG4yJ3aIXRgeCr3OXWmC57mCSqRmFsFYkadzK2SIRsF80ycA9BkhABAKIbdoH5eAtZIGfLbwBpTDG7NNX4IFh7yyahw9nkG2Q8m9IWjECLR+dxGM0fpCBEY/C0ov+uH0umhc+C0CWQs/wd+TJqHunjH49u0v8co2bS+hAUBUXj8AzjaQqNkyI3mGcqKqY5iQRGgPAE7+3DghA281jWusqhnVkLSDMaW3vYhaaPgqpWUaIqSxx0sKpXfixRLSlmw7WhOQNG4oSm0rTbKOVF8WynrlchJISRgDTEsX3IjjPhX+TSHo3AuoX9DiU4MruSP9nlT4wLqt294BTP76tytuQ9PQstIq2nNaKQGRqueDB4MsviEBU2wypzR58wyDHKMRaX6+RLvneeFPnNwB4JsDF5BTWk3c9baQD1RsYCfnNBCNgjCmXEdPngaeNq3BLt+pGMmm2r0v6pMobVPslJzMnoDhxHq03j+XbIcO94agESPQaesW5Lz6Nj4aPAHFPgEqvYV5GM31sNSwuLQ7FPVV9rfX8OoSvJS6HMa/65DFhymeR44Xwk8nSkei+tKD4OuD7T6PNkerl+4q5cKQkPqR8n1EJr/BwvHYe6YQa45cwt4zhXY5R5rI3XemHXPPE9BYVTMAuTGl+/5hPYcbZ+o3CK/QHJSWGZohrfRQCrvUWhPgSMvg1JZTihvetgj461fB66GH0iwhVHD3ciBxrPqyaoqAmb+T7U/tghYTx/a8R7YtADaXZmQX+U69/qGCjop/qIvGgXXmGvVf4NdZZK7VP39yYT8yBMZquqTFBExAaB5HQr6h4alYrVGcGGF42bQCm2r6ggOL7JJqFJXXaFa3iFUqc+sexAemd2Wb/aklnrpDrIwUPKk+ySifNNx2YoPmsygPBoxCpcim43l48ggHPqIncnsxeEm2xFfYQ1SvUuQeVu9Z89SRH/ENdyMeC9wA/4haSL4+m5Ej/g6i2T54ud8DiIzMtldWBeQr2dxt7iniqIUhc5+q8o/BnLoJ+Ka8l+09YlVbET16PSQKpnpDJu7iyeajdrhQdXMFi6u1TEPE3XLW6svCukNmkS2ff0q4aTj+QLXihtfoKMtz5IeHhUPrPlb+c60frScu6Iy1VkE4PfBCVvv3k+T3K4ZASC9u/1B7Y0YqLMayZHFqt5+eJOeKNSgKnnEj5+OPta3AlFSDB8DXBxJtPdLS8NTDaPyeGauS6TTjKltC7MXLlbbqFrmOwtIqlU1cMp6smyYkiIJcjdQdGOshzTZ9ic01fcCBJfbg3Mb/Dh7qxhAn5q1IXenWicUSEIW5a6ttZ3RPXA+8ljwRT/yx2q7E1+hvQXRSKQw+nGbPmtDaCtx6MBUXEQH48YjoVAafQAuMfhb4d4zAX9e/hFGhQzDJrlPuNQ0bUbt2XTDQ5Y1XSW4Tz8lej76VOZiHN3CZbTAQiVVt9UI6yXoz/0QJTzUflYP0PneFi6s1StXMBx98gDfffBM5OTm47rrr8P777yM5OVlzPa9VzYjoEpaSITDO2tmVcH3phdMoPVogyMc7/gAVtSwcqmFsywGyF7Taj9vV4/MLBXz8tasbxi4BviC4sB5aI9woHJVHxdeVhcCmWer9VzSz/NWQnCvpk5M5Qpj9xCaDViNlwx/ZEs0JDhGd/oNaY5UtJ8RuyzyPaIsFGy9m4e+OD6Dd4PFAySVg9ePEo8viw/C24RGsqhSSHoUqlOWIYy7bLePYJVdUBI1CMQaxf+Be407Nfcl5UfQyvvZF8GARjSK8ZvocrVAl64nheaAMfghitBOXC/ggnO03F8mjJsneE2SPn+fQveAswmrK0Mn/Eh6J2YjWhiKU6OhZAzgbAcboaET/+0UEjRghv4LWtdv/Sc83oFSpfpPrFcRA6IK8a8ZQzzTyI71fOa7jZl8lj+HO/UOrx5Td9pu4d5ADeuZvrxsi3377LSZMmIClS5eiX79+WLRoEb7//nucPHkSUVFRqut63RABgPpa4O1urpWZAkJfk+1iPgXJqWR0lXK6jWOpmt4frdwF7R8q5HCo9b1xpcmgHh5ao1F6rKP8Vq18Tnw6PrnBeoPX6UETb36A5hOds5Q6kBD0C/6O2w4AdsYIY71sbVUz4g1r+0KFbsTycBAORwx7jGRT8arpC8RKKmgK+UD8u+5hbOT6O60vNLV7GrG4rJzLwgOX0QohEEp33ZmbLvOtECopAVaqwuF5oAK+aMXUaG7zmdqncN///QsDanbLTniiR8ixS7AU0TDrlf8X7vidMKwph/VgWr+7yNkYIbl2SSr5vIC0JFw8F/8ZGoFrO3ZyrxzVnUm2OTWjU3yoU0KH8eCpxpkeRs/87fVk1bfffhuPPvooHn74YSQkJGDp0qUwm8347LPPvL1rMi7ud+/CDe+oUyiMB9Y/Kzy5NgaOlS16FAGBhoSyIS82JNBWWRNk1RJjvdWnQqSygDxrHVAXs1o1STgmsdpHuo5YeSA+Zeop++jzCHDdeCFx7LuHFIW0kLEWG9Oz8eSKNKcmaSdKR+Kl3GpEWeyTzqItFqsRUt2gFMlZgEOfk48PDTeA2aYvcSu7H0tMixDtEHIJZ8qwxPQeZhq+dlpfSBpVNkIA4ZRldngIT9ZNQxHIwk1KiMaMdNtK+yQxQgCg3hyF5HbBirkVjlU4cnBgsY9LwEdho5HvF6yS0KqB1cDMnTcfvPU7FxNCd21dq33tVhZYE7E94InQgZizM5JNxS7fqfjG5zVcu2ua6wn0IqT3q9/mOydnOlbxedoI0ZMYqktQUmcIqal7B3kArxoitbW1OHToEIYNa8juZlkWw4YNw969e725a3Lc/XJaRdtnf9/4vPY6lQXALwTLeQrpMer50YoX2q8vCYaHY+KoWpmZt/pUSLdPmrVOUn7rmKGuZLjoUXw9+Bnw+1vA8TUKCwgaNfz6Z7H3pyXo56AKCggT3G8l92PjxSx8mp2LhXkF+Cw7FxsvZglGCNBwwzq/h7xUXIJYYfKa6TPbazkeN67Hrex+u/dIk0Z7974efwTeiNfqHtI9PhG9GiSkPNS/LU7s36Q64UmrcNTgGBZLe461TiUuOpt5HvU5Oag8eAgb07MxeOE2jP94H7777SDZ+j3vsf7H3ZNFXl2WhxCbrkuMY+6QO+WopPer39903+jRg5aKshKOAQi/EKsGkQS9JcyNWSnkJbyarFpQUACLxYJohzr86OhonDjhfEHX1NSgpqbhKaa0lExAyS1c/nIckjVF65t0IqhphGMTkR4j6fEWniHI8ZARNhNpN9Ba9VKsb6z+4YDR13oeCZJk1bLWRdds5g59fSE8VXlACFNZgDl4F/BxzkcYyabiZdOXMAJIrnZ4wnfo6MuV5bj1ZBHOKFfpiAbAXNPn2FxzPfqwpxCFYkQQiHMBABsYg9mjO2GZQ88VEkQDxBtGCACs3n0UlTUWvOejvSyJ4bUvrjsCBtWiNs2gmriqxaHDp/DkuXzbr7AdQ3hv6TIKaDvArfw3W+6KRnWZmCNykLsWO32nAZAzZFXuE1rovT83RnKmK4mhSutUlwjvDXlR8K67EkJq7EohL9Csqmbmz5+POXPmNO5OXepMq+I6IxSt8ggJdwpP24pP6TI/wFMbtbfrH2bNeyE5HwplZqwB6PeUrnwFAII0u38oGm6FBFnvclnrriQii09fntINcQGpKigAWeVQGyPm2eWXrF2XBQ+nKToRwZRiv+9kO6NFFBiTp+E3mMIagPHjkfvDEkTyhfJN8OCZoIIeSfpzNeThIrVqnRCzCcWVdUhmT6BdmwLwrYHKfB/UVRmQdzgIlhoWeo5u77aDSAyMx58RHTDccBDPGn/Q8Ao5VGdJDfTCM8D2+dbOvdrU+YbD545FqtVl0mqqPuwpO5l9Z1woRwVcuD+7YfSQ4ErXXZJ10pa7nkzaFJVCHsaroZmIiAgYDAbk5tq713JzcxETE+O0/KxZs1BSUmL7u3jxojeHJ0CiZuoTYP9azXVGqi0ixT9c3/JBrYVqmHuWAXcr5QTI/ADrawkz6nno9gZIQzlizHTws85uRxJEL4qjqBupy9JVQSfx6UtXuM6zj+kN+Qhf4FXVxnYM8OuLAGex5ZdsLOugKpSlDIMaH/JKjzDYe05UjRCgIVk383ekYB8ibnpM0DRRXsNGnSkQJ7ooidvJIx7/S3WTkMWHKU69onBYKtfVpqOiJTLm2O335du64d37emHlo/1x6KXhWPpgEjr7C3ksDAsERNcipH0VYvqIpb7kX86YPzbhjd1LsWzja5hx6iuUnvdHZZ6PenRwxDxhsj+2Svi33UAhR2LIDOHa0VA7Fgy4QBieO95wnSmEQGvMMXjR9AI2ccnEITrdoXCXmmryzrlxnkJvjp2r64iQ5qF4S6m2kfCqR8THxwfXX389tm7dirFjxwIAOI7D1q1bMWXKFKflfX194etLphLpcWTFs8IE8SwtwRoprsia37oAKMpU8B5YLVwl1133sQDzpUJFhkOp2oGPyXIcHM8DCXKhnKA4oPeDVi0RPbOj9SnB6AdMWOtU4qqKS2EVB88RqTu4+13AxX0e956wDAg0OoSbl+XcbsxZV2c1HRu0QPTmU/iOWQR+w3QwBD2YFLfLsPa/L/E3CNj9NjSfy3wDgRrB2DHVlaFb9mrhWqy6DLnv1dGLkoOGpnioY/Ghj3A+lLRRxLJTEh0VzuHZLSLQF3f0am17nZIYi9bFfYEt9mMMalMNDLqM3LRgu3CNnAfI8b2ImlLUpJuQDcFYFDRLSoRtSul+pzWMolCZlTAGTNfb8Neq2ej05/uy+iosA7TyMcBwepP9vUMaAi3LBiry4R8QiddbxeAOS1dYztUCu6ENqaKxFHGSddXD6UkIt2kXJnU1mVSvQBmJuFozxeuhmenTp2PixIno06cPkpOTsWjRIlRUVODhhx/29q7JUKxRR4N4lpJgjVx5mN7GdYBgvPS8B4jqRmZQONL1NsA3CDi/SziM+BuA9oOdf4CXz5GPiRhG8FzIhXJKswUjZODTQPoqnZ15eaAsS5jc9HQY1h1WkfEctRvoLIQmx58/AXcvayj9Lc8l7+nhIc6cPYPskoYy+M1cHxSjFUIdqktUGfg0kGhNsHRswKUHngNGzhOuBfF6OPGz7PWlGoKpcchVKcuRrG/veubBgOd5vF0/Duf5WLumeACwkUvGk7XOAmyisbKZ64P+bIatod7kumfwsulL2WXlSnejAv2c3jsb0BPhMiq1QW2qEdi6GhX5PiioCsZHxaMw9twuBFZLmxbytl4yIo7nqb5KkJDHoMv2xsifPzqNxSlvgTWg8z2v4fCmzojf+6JTFRIA+NSWyOc6sAbhmtgy286oHCCWwJOEUFZNAka/p/8JXTrJZu4Adr6pvY6nkjMdmwcSMGVdFsaw2YKomyvJpK4KlOlRqm1GeN0Quffee5Gfn49XXnkFOTk56NWrFzZu3OiUwNokaD49q8Qa1axVW7xO66lcR+KlEnLjOPqVvNUc2l5jPHqRTgoq8c/0H4CpR+2FxEg78ypd+EoaAXqfghQNPUJ3wq8vNsR2OYtgeLlQueIqeXyI3etk9gTCGB1GCCB8P8NeFVoCXJoC7F3s+oBaRTcYjirXl76AlvV35B8KmPwcZMaj8WzJfYr6HgCwiUvG5po+Th18h7MHsct3ql1uQxYfhv/UPYhiBDl1+3Ucf0ywoHzqSFRQgKJ3hWcAc1Qt5tc9gFEjYtHnxBeozDehMtcXhRmBhGdGuO5yDwchsHU1GNUAu3zeQu/hD4JPXwC+rFxdVVV671ObHFdNEgxaLSXlqstCKbuc0KIW4iTbbiBw5KvGSc6Uu786ev4kiMm7m8o64BdRYTZBZzKpK3koVziN0vRuypQpOH/+PGpqarB//37069evMXarjauxOzVNClG05p4vrA3OlNBIvCSpfdcah2MpWd9HoXHXAsAKirEkN8SgOCFkRNJ59uJ+1zrzyj1NyJXOvdUZSF9N/vRxw/PKTbbO79E4JhGH3wdrAG59Q3u1fk+oaj3wYFDpF40ac4xKaiEDBLWGof0gu3eJY/VSpMdwbYr+9SWk5kuebTya9MsL38kdS+yapB2963dVI0QkJMAP+yUdfIezB2VLTWNQhA9N7yEY5XbdfmVGg0EdwzFn3Z/49PezqK1vmJiS48Ow328QnqybhhzYGyolaIVF9ePwp7k/Uv5+BwzLo1V0LXyD63WeDwb1lUZU5hOU+kjCeGKDuj/3bgRTlqVylTv8tklK4NN/AO7+DET3DrmGbqT5EHo637rDn6vl9X+sRojjmZCG8CxiuG9dhvB/PeN1J6fkCqVZVc00Oq7E7kit1WnHGrwbJzcAf3xnH4ogCbmo4YrVbPQBBkxRb0I3cIrQ40atD0//p4QSQT0N4RzPtaslZ0pPZZWFQlhhwBSy7d48S/lGpderIl0+YYzwtLduqnLOUcIYoN0gxSx3BoB5zFvCS41M+OSOkYgN9kOOtT8NaQ8WxWNwMa4uPgmO/9WAD6KsLmlvxOgrC+xCdckcb3f8joiei5dvS8Dkr9PAAGDAYbZCIjDLCMfyuukzbK1JAgfWyZPiYzSixsJhVVqDKOHrG47j0RviMWtUAjZn5KC4sg6bIHhiJhtW4xHjRoQy5QhlyjHd9AMm1W+Gb31DRY/Rz7UuqfXV5JPtnK+34YtyIew1ht1DVK6M8lxYOAvSji5DvqUYkX6+SKqukcnzsU6OimX3DpReAvYvbQjjybZakMmHED2hllqh11faMv2hbBLSVwv9utRw8Iw4hvB4ANkl1UjNLMIApTwXcbxdb2toYpinrlVjoxkLlOmlZRsirsTu9Fir8Tc0/I14zbNJRKTjyPwd6Dik4e0Rc4V/9y62dy8yBmDA5IbPZS8amV4NrorpuFJyRpKIuncxMOBpa3jBxVI2vZVPYsWQuE0xxJb5u3LejtKNyT8ESH4c8AsWknQ1brYGALNHJ+DJFcIkq9VFVxHx+3Ehri4+CR7mOuAZ4yqsX30aw7s+DYM3BJQctmlgGbvjd/xl8ABGJcYgNMAHH9yfhLk/Z6BdWZpqqSnLABEoxWHfx1AHo12oK5sPw6t1E7CJt/fCcDzwv52Z4Hge6//Isb0/nD2IZ42rnPYRwpfaPRybI2th9Legvkpfia8eA+ZUZUP1H6nBuqU6Cwt+GIncylwgSkg0ja6vx8zCy0JrAUf05KFp5VMRdABGYKx7GhxyZKwlypVieA7/qXsQBXyIYggPAPLKqoX7g38oMGyOcF0HRApjF/OoXOnL1YwFyvTSKE3vXMXrvWY0mxExznr/x1YJ4QAt7vpY+KF5K3uZdBz+ofLJYfW1QhXN5XNC7kjfRwWPiRSSXg2unEMpeppTkfZUMEcAt/1Xu5mdHBlrgbVPA9XF2vuR4mq7bc4C7HwL2L9EOTk2MBa4/mHVm620T42ocAmGJPbq8P240KzQwjMwMPbffZ0pGKbOQ4EMZY+ZY2WPdqUPA/xjGdBttNPvcmNGHmb+eAzFlXUA7JvyiZNEdLAZL9/WDb2Ov4G440pl7/bjAezHJBpdn1lSsIXr4zT5SI0hoQ/PVGKjsPSin5CEatuS6uhgNFvQ6fY8MKzQDyiUKZP9vjkAObx9YzrtsTHYEhGH6YFG8A7XtVOfIyk97gWOfasxdj1Yf58j5yl05LYO3lMlqjp//1Nrp2Atp56LsmlkMbocfk3e2wMQ5hNK0binNhOaVdM7d2iUpnd6O8zqmQydQjEuTFRK6GoqxzSS0iBAdA4dIW1ORWp8AUIeQbuB+hN/v3NdghyA/iQ8taotG2Tn0cLxSM0sQl5ZNbpe3o5rD78GRvWGqrBdgvPA8UAl/BAAoWrD0YBQrYqB/CRPjH+YfQ5PUBwOd5+Ju36LAA+xg/AXMkmowm90ic8ij6m/yHXmFenPZuAbn9d0ba/0op9Tia/z2RROXutBlxF4TTWyEYpv6m/Gs8YfnUpyxaoiuYZ9NoMVjiEqBhYAI6/tjtw6eUE4aefnRpkKVavsPDgx62zW+ZTpP/ilrJNiWPDeVkcwv/5NMLIGFO/8W9bEw4aXF2lWTe+aPXqFYMTcBq1bmeNF406/BTlIxyEilxzmKdwV0yFN0NXjiizPFbbTbqCwXnmuYJQonQPOAvzyAvn2lVj3DPl5JtY8EVRCtBL8DOd3YUB8CO7o1Rpdbn4AjNj/aNyngvvaMXla6fsR81wcBeXEXVqHW2udguSMCa1fpSjZ/p+6B7Gt/jqNpR1wuHHzpVnotXcqRrL7FPudCEmoizDP9IleqT5VRCXckWyq02ekicPSR8GgNtXocHsu2txcgIzk9ghPLIXR375Cw2i22IwQAPBDHaabfgTDOOe88GDwUf3tsobSJi5ZNqGWD4rD6n4vKBohAMAzDHKMRqT5NZLuk1apv6eSN/XkXQS1xpgx4wDIp6Cy1lwkZyMEsF3zuowQXDECZXpp2TkiInrKZlVzG9TwcNmV3TgI9i0nr+zJNtmNIabTbqC1zbm26BbKc4Wsd5IEOMDlhnFOVBUJoZYhM7SX1VtV4vgdagkeOWoK3Pgv8u9H/D53vCHk29Q25EnkMeH4um4Ippt+IB+7AoV8EHoaz7q1DXES+MD0PkoRICSkyiSh8jz0lzZrICa3zjZ9ic01fcCBRaCfEZXVtcR9eIoQiHCJWm0uG445oQ9hU3AyRrKpmNftE/gV1KK+2gCjnwXmyFowLFDG+6EVqmW1QEQYcHjMuB6H+U6Kxsjmmj5YN5pF96AqpOYb8ew+M3IPH4B/a5kNOrDZ7A8ACgmsjczJDe5raOh52ElZgJSEa7DkQYMtLCoSE+yHd/uVwX9njsoGCLnxeSCy6xUlUKYXaoiI6BGCUUo0JBHpcqXfgtY41j1N1lxOau3rVe0jwdtiOqwBGPU2meiWUiJcaZYQdpBW/riiP6LG/qXCpK91w3Bln+LN1hXBI73fz4mfgcNf2BkhMIcju+fLOLfztP6xyxDOlCJCpdmeHgwMryrk5q2meYISrtCZN5VPwGfJ2Wi9f45G75WGSqMba96xNRF0THrcxCVjM9cHrw4uguX0DgTV5yCLi8De+m74r+kjBKBaNf+EgaBdMtv0JbbWJKEvcwLXFZxBfTWLAz5dkR7REVEhZnQdMBQbM3Lw5K9p4FEHg5ms/87K4CCsDA5ST2DtcS8Q0lZIxP7130TbdYl9HwrN/tzxFpD0tmEMQpmydT8pibEYnhBjC4tGBQr6MoY/3TfUAQDxN12RImV6oIaIq8h5ANwV6XJ1HH7BwBcEF59o7buq2tccSBwLZE1VL0EmYd+Hwp9ofHkyA72qiMzYdGWff3wnZN57W/BIsUy6CL33PYtWvaYAGa5tWhglg1pzDEZ16wEccn07zYkoFOPN7ufRN/VF8A7Ju46JuFLNiXoYsY9LUNwuBxavHIsAMM72Xn82A7Eaho4ICyCOKcSe/MkoSTPb8k/GYQfK/P1RNVnw3s1dewz92XQMYDLA1fJYXmdGnbFS3oBzOKA8gwHToyLkE1ivHQFL93FIPZOPXn7vwa86TyFcoYJfCFkCufi7B1zzzpJ4vMd9JrTWkGBgGQzoGG6/nNv3FA8KszVzqCHiDo5PmJm/k63n6bKr9oPJNTmuBtW+EXOB1tcDPz+n4YEiQDS+7l5GfrMjgcTYdKXzc2WBUO2kp4RcLwS/kc4XfwDfKhYoz3Yp8ZMBD9/b30Af/9BGN0SUqnP09udxpH+PLhiXLbQ6cMoZcHhDTTbeETH8I0WvcF3pRT8U7m7l9H5gVSUC33oVf5WmY13NZwjzafAoJRb549moCOtXrl7exDMMGJ7HwvBQ3FxZZRemSc034pmF26wVXeOFXkhEFV0NWKJ7wHCe4P5aekkIjcqWvBN6exPGCCqxexfbJ/AwrKBTlDiWbNAudXa37Uz4p5l3zfUUNFnVk2gmkApqmB63cPUoDV4tqn3dxwL/OiWU9bmF9QaxaZZnffckxiZrABLvhu6bFKlWA6nnzVHR8twu7d9IWRaYPg+7ZITwgFAt0PU2/UnXHkDua9bfsbgBHgz4oNa4v187opyfdwwPY3DNu0RGiNLY9AjX8RyQmxZsfSV3f+BhWPENQjj7sNawyiq8nVuAaItDgrTCdSKXwFrjE4qvt+xHu7I0sOAaEmR5sq7cHA8U8a3AkhghItvnKahNPwRsX6it3JqxVpCqd5Rx5znhfdKCA5LO7kp4KymVVL22kaEeEU/iikiXp9BS7hN/0K52gmyOsAYPeZeEidUz6HCnijc8vZD2DGoVrZ2QLJcr5B9Ctv3wjsoqsiowgH34yqXkb8+SA6HHTAla4UPTewhh5HqwyGFtUZeyQBCqIsBQTX6ulNAjXFeZ7+NQDuyIIBdfVeCDgOhau0+GV1Vh6MUqpPn5YrPZHyuDtWUU8g3CvngAvrWXscjnQwD2pc5i75/2vmV4/UYzDDusXZol37/UAHPXW2XbrrTDuZJyq1Ylmx6Psd48vuTHgG5jvJOUmrFWqAyUJuUHxgptKZo4FN9yPSLesgzdLWV1d9/Skk25XiquKqE2BSTfUXMYpyMkxiZx6a4MgbFknrfKQueePIsSG57olHoVkdwwAeHcJ4wBnj8DPLRGyO6/4XnhRkrA0eNWKWula6YREUwgFvu4RCw0PWV9R3vm44PicPKmD7Cm9nr8WepPtK+pptXY5TtVtuSXFA4s5lh1UbS8OaQy8ErLGQD0ra7BcLlEVBkiHT0oVqSlzhxY7OMS8E1VPyy2jAPu+QK8w/efg3C8Uz8OYUy5PpVgUuQkFbzhMU4YA/zjC7Jlu43R7jHmCqI2kGNlYJnVU+QpWQkXaZkeEW9UjEhpjFJWJbQqI9r0IxMHauoEKdLvyK04rAsMedE5/mwbH4Fyq4g7DeF+fQkYOd+qNKngeUscJ69EKc2J+XWW8+ekmAIEV7Uobd9xSEMrgczfgePaN7b/Ha7EohEcDp2/jLza6xE1egeSDSdgKM8BNs5S/I3KHK1uHJ+wo62T5FN10zBk7BNg2B7yir8j5gEB4UB5rq3U9dKmOgBHwILDXr9wRKFQc1zipCwnNEaKGOaYbfoCcQ66KVJIZeDF5XjO6kVxKBdOqq5BdH098gwG8DLuCVHkLKm6Rnjt8LlcqTMAfL4nE1NeGo1UU3+8+/lyu+qh29l9RGN3DZmcOG95jPXk8anhiuQCZxG8lmqse6ZJ8wJbniHSWBUj3i5ldQVxclczQoCmT5DS8x25rOsihRG8DAy0bxQ3/qtBj6Ms275vRJt+QpfhY6u0bxLuhL5KLwl6KkqhuBHzVIwM6813g5uJvnUVQqWWgnFYY46BqSJH9klWLFvdWNYB/edvRVFFQzggNtgP7/bzQbLK2MRNVsIXZtS4NHw5nREOwDvB38A/4RWAVX+Y2JiebSt1FRnOHoSJryEKIYiT8gLTJyitM2O/QpdfLaRhjigUIx9C6GQAk4GpptUASPrYCHLx5shaWWVXo78F0UklCLymGjMLL2N6VAQYnrczRkTZ9xmFl1X1RMRS535sBvZyiQCA4so6ofS1os6pesjlJo7EOCR2e8JjrGQsuBu2d/UBOvN37dBpVZFzX7JGpGUZIldDxYirkEiJe6pzpTu48h0p5sdInmBPbhDKdZVuArdK+z4Q3CgcjcyMtcB715HfJNwNKZXnCkq0cpMliXvZ3WojEQXj8GjiLPTZ/ww43l7tU1q2yoG1M0IAIKekGiu2HEAyQWdYV40QJVgA/lU5DZOSwsOEheMxZ12G3S9EKpdOvD8GCEU5VvrMQwEfiJfqHsZGrr/ucYthDin7kYC7jTuFHBIWiE4qsfaxkZeLj+5dirJL0l43DdRXsbi0OxStB13GsDZVeDuvAAvCQ5FrbJg+oi0WzFDSEZHhQ9N7mFn3T5s3SNTfcOwRdJC71rUmjjJYAKT5+SLfYECk1XNju8uLDwaudgUX0TIWSPL4lLbr6gP0+V3K23VcjhoijYDezrnNDVeVUEnyEcwRwNQj9o3vPKm8Soqr35FWOCz+BkHsSC4xs9+TDYaNKzcKV24S7oaURENGbrJs1ERjeePQ0mU0ntyVidmm5YhDw9NYDpR7s4hb89pTsE8gUEsgnqZx/lIzi+xUNEUpb8BZYp2UCKYMS0zv4X/1Z7HAcr9rG3FgZf1QTDeuAscL0vEYdNnJ21Hmb8b2nr3xXNwqnF0vGsfylTXZqcGoNpowNKoMQyqqcNhfYVInIBjldqGpqEA/JFfvwl6/ZxGNBuXkLD4Ma+sH4jHjeiejVg9bzP7OxpNUhE16PbnquVC8DziIKE49KnhOSe+r7j5A6xH/biJaliFyJVeMuJPXQpKPUFkgXByk8uHewp3vSCscJhor0m63VZeFTPq0ZQ3Hpie/x9WbhMshJYJYMqm3RVMJmBRn4zA5PgxrzD5g6uxnDpJ5RKwIiWUuEwlfEVdU9J8M7FygvZzG+csrq7Z7ncye0FRRJeVx43oc5TviF64f0fJyXYaHswftmv6JpyaoTTUCW1cjNz8Y2yp64VvTUByL6AiOYVGT44O7q7ar7IkBV2dA4Y5AlPibEZ1Ugr5tqlWW1xi3JF8k3XcQkqt3wfD9REQ5fN8xKMJjxvX4qP52jDHuUc2FUWKL2R/ToyKcfkk2EbaSWgwryxZCE+0Guua5IHnYcxRR7HE32QG4+wAdfwPw+5va+2nCh++WZYg094oRJQ+Eu3kteif3plRe9fZ3dOJnYLsgOmWH47GRXpTu3CSUbni2jpwuxpJJ3cvd7wL2ulA+rITkd2Y4sQ7z6990aiEfTZCkKVaELPV5FzwYTWOErKyTEeTqPZAwGBXoZ/d6OHuAZADaI7Qex1zTZyiuC0AkSp0k36XIdRku4lshFOVORyeGxN6xjMMHwXeCC7bf3ukqgsYyVsRQDQZdFjwtLiLmi7zTrxyGTf+GnBCcaLCMNe3Fkbu240LeIWTt+AR3GXYT7cMCYEF4qHA+lETYWhlw84+PCh4d6cOWngcSPcnneu+j7j5Atx8sNLBUyxPxDxOWayJaVvluUwmOkZCxVr7UMn21xhM3tDvr6pncNZ/wCfbnDt78jrxxbO7eJORKrp8/LehzuNPNWEvgbsQ8wFO9METE35n1PDPgnVzprLUqdrbpS7DgnDYhsolLxqmbPkCt2VMPBVatmKRJ1tcawn8qJMeHISZIEO1iweFuw07Z5SwADvj5YkOAGQf8fEH6q4pgyrDSZx7e81mMb3xew16/Z3CXf5rdiJW6DIu9dmTPO4Dxxu2y+yz2dVZdVUbYWO7hICfNL1dIZjJUJ3GWAWJQiI4nPkbb358jNkIAISck12gkF2GTlvSSdgUHdHrRdd5r3H04O/Gz9rqj323SvMiWZYjoUSBtTJT0HEqzhQZv7ta165ncm1p5lXQSPb9HvwaMN47NEx4cuRseiSaMGlp6NgHhrpcPO+FgHGqcZ7H3STJ7QmlriA32Q6eb7odx+p94x/Cwh8YJqwibezo/BpbB+OS2AISwTDDjnKC5xeyPkW3i8EhsNGZEReCR2GiMbBOHLWYyrREpUSjCf/n/YiSbatdeHnA2OBhG2UPEMsrn/cboozD6W6AnRFhfaUR+eitU5Pq4Z5AQ7rJTxvtOhhevsa4orqZFw3IuPpDo9tDquNe483Amzi1K3hD/MOGhp4kFzVpWaAZwL3PZG5A8pZOgZpHrScBqDnk0at9R4jihNNWV3BVvHJu7WfZquFsCruZePraKfDtaujOAvQFPeP6iUKz0a8Ts0QkwsAzAGtFt7L+QtWqNYuUEDwaMOZws36VVtHBO3dT5aR8RAAAYxh50+kwzJ0GuMZwKjDXX6J3gbzDMMghtyo+6lZMyrUMWVmYWI5cXwj4A8IhpEwxJFoXKGmUKM4JQmNFQ4isXqlHO4bFeG6Q5DDLJqlphOSVxNfXlrEbCb/OBDjeR/TZcTT4nuVZcSaAVxSDXTVUfj9GvoUlgE9LyDBGgaQXHHHFH2EqKlkVOaoA1lzwaue+oslBdpEvridYbx9ZUsv6kFU1KxoyeY0yZL+iknNwgdP+VTvhyBjzhth8c1hcH9vvZVaDEBPth9ugEpCQ2eCxSelyDw1mvInbvVKfKCV6UWB/1X6uBSmYQWsAilUtAnqUDojg/JIN1rvpQOcdRgX4YyabiEcNGu1WIchJkGsNpw8O/Kgc7J/jhzNkIgLAiU47+f3+G/ibh/1l8GFbW34xQpgJoA9nKGhKU8kZEj4WzMSK5NjTFvqxraBgdcgaPXhE2O35/U/hzfNDRrROiAul1SHL/Fscld50qUZbVLKpEGZ7Xcm41HaWlpQgODkZJSQmCgrR7HFyRHFsl5IS4jPUGO+0YeSmv2gTGWYTcFK0bOun+PIVtXEpGm2RcgPwxevPYZKuMdCitur0vnRVNnAV4q7Ng3GkxcX3DjYrEANJxni1gBTErq45EcnyY4AmRwfLnGtT//AJ8K3Ma3pSeY1uSNSBrEFoN1Y3p2ZizLsPOAIp1NIDkzrE5HBj1NpA4Fpb6ehS8di0i+UI7w+iAny8eidWeXD7LzkVfuclPi3GfCud9+e26V+Wtjg7p2eUAJ08DzwEVeT64tCcMXK01qYdk+wAM/hyuHZ0DhhW2czE/AgcqrkXfgFNoE1kARkwGcLw2FL87nccHZ2NE9FABkBVh0/ZQSX4/gPq1J/e7UdqmK/catYIGov3KMO5T8goeHeiZv6kh0tRk/q7jpqLwxO3pKhbCG3qjQnqe5CTYHW8U3jq2xtBdURSmc2H86auFHCQ1glq7bph54zyL59hR1VbthhwYB1w/CQjviNR8I8b/aoDFmh7nWP46afx4pLAHge9VzsvAqUDnEbK/xw0BZsywTnpqjC8pxfDKKt36G5i4Hmg3EFVvJsC3Ul65FnD2DsgZIbbPIP9+6UWpwBm5gMeyG25FTG0RBvxxDMFVlbb3S/zNMN97C3reO1r+2shYK99AkVT/RQbx2OR0RGLq63WIsDGSyhONa0/qmZAVUbQi6oq4c5/gLIIcgbSZn16kDxoehBoiVxKkT48j5wmt6hvjiRto3Cd8EtzyHDncKJrbsZGixytEemP79WVgz3vK23PHMCM5z64YbxoeIUt9PU7s34Sqy5cQVXsJbTK/AyPprix2gQXgVP5ajAAEo1Jbv6TfE8D+pU5vk3pEROxEtaCcT8GDASPxIv173jzMq3sDgLzIlyvdauUMEjnJdy1+7HgD7jzzOwBn7wsDIO6ddxDSNUD4zs0RwkAr8oHCM/Kl9SrjA+Q9IWK5cr1vCHxqiwFYlVXDWiO/93hEmgKRtPFVqxHoiSlQ4dqT+62K7iIRV/WZ5Lrp6sXVBw0CqCFypUH69NjYSqdNoayqhC7PkRwON4rmdGykkJ4DvU84f64GfnboPeMpw0ztPLsSYtLwCB0e8C6eSrsG2SXVDbLrjH15oDhJic+prIPngGgC9w0Cakqd3rYAGNkmTjEnwXEHJOEBzjoDn+k2GZ3/MRd7M4sx/uN9SGH34QPT+zAw8rdwjgdK0AorLLfgaeMazUPieefzAcDWBK8i1xeFGYGa2yn2CUBwbYWi98UYwKPzbdkNYRpCxKOUblfd08OACYwF7lwqGDokvz93kbv2nDwkjrjgJSRp2UHCwKnAiLnubUMBPfN3y0xWbW6QJpI2diO9xtyflmHgdpddB2Gx5tiUUAtvVTR1Hwt0G+0dw0zpPLsimqdRYcaDQfSeOciteRcs0FDi6jgkpuEpWm8Vho2aUms1UaHdeAyArTGco9EhvNSfwCqOsfPxD1D5+pfI6/hvAG1QjCBFI0RcLxTliGPI1HPfrr8b443bnNRLGRYIiK6FObIWJZlmxeZ5HIASnwCE1lYo7oMBYKlgUJnvg4DoWsXllNZ1Mj9Vvi9G1I5hWPkcCGlC/NnfgN//q2s8sihde5wFOLpSYSWrNUXa54xExZWU9B+AYa82+UMYNUSaC82pkqexIXky1qxOIbwom6N8PyneqPpxNAC73+n935yrsvgaFWYMeDudDLUSV71hC1niegOnN8Px9ze0ogpv5RZgVnhb1JoavBxK+5SKakkTWOW8M/71pRhzcgY2sNPgi3qiYY6zCoApeXvEbsgfWMbiA8tYJLMnMIw5hP8z/mLnIWFYICqpBFm7Q53CJGLY5bc2SbjLGpZRo77axd8YDxQgCJf6vYTrfPPJyn7VjAPxt+8b7Np4HHG89oi9Lg4PSmp4qtISaDa91agh0pxoTk/pjRW60PNkrOY5SppIlrDVVPL9nsDTmiVN1U/IVVl8HfokjcLpzcK/jMTFAmFS/6HkIRRe7gODORPGwHT4hO3V3Jyj+Jac0SDuarbpCzxX94S+8TLOeRaO3ZABYB+XgH1IwAG+i5BDI/GQcNcYcah/F7Q9kovI6hLb+wX+IfgueRyKDb5EhojRzzVlZoYBIlCKVw5X4/3xN8JAYojIXfPeCMs4ioq5Ej4h+Y17+mGqGTycUUOkudMUuQyNNUG58mSs5DkCrNUyXhAWay54UrOkKfsJuRpiIjQivda9Vwkx8bD/U/gzcDBGr+Nsk7qlsiMAEBkipOJbDAObcZDFhykKvTmtB+crg2WE/jRybOKSsbmmDyYbVuMR40aEMuUIZcrxYPvtuNQmDJ/ljIC/xYjE9ma0uflGvBdaj5p1M3HJn1cM3wA8jGYLzJH6wjKOGCvykGrpigGuGOZ/rlavilKBt/45hvt4AEziuIZrz9XwCclv3NMPU83g4axlSbxfaSj1n8lY6919KsnNiz0YPIWrkutykujNVb7f02hJt5MYD03dT8jVEJOm1DVg4VmEogwHuWth4RlFCXAe2vLg+mCAjDXo2m8kooPNdiO0VMaDqwtW3B/D84ipr5cX1VIhEqW26h+O8FjkzlwIyrHEtAgj2VSnz4azB/GscRWCrT1sROIMRXip9Tf4V9sVSOE+QvetD8KwahLMNTmIThI9JY6DEl5H9y7VnajqSD6CYDm3G0gYC/l6GoVrPv1HYNXDLu93fX0/yKbl8AC/5/2G+6Pu8AlD3kOL4Drw+D69DDVEmiuNaRCINPYE5enkS09M0o2JKMOst2eOu31omrqfkKu9M+yMTXlYcPjA9C6eNKyBgeEV8zIYWMMceseuiHDODBf3YvboBNs+xFHV5I62LWY3Dqt1MqPwsk6lVcHzs4lLxpN105CDMFcHbvOmNDQi5GAwn4Ep6DDGBn4FC2SSeqH87QW1qUbrQZdh9LdvQMP4A3FuduwFgFLeH2+blmLw7kkNVSiOX7TcNf/ry4IR4kJjHB5ABXwx0JAh73thhHRpXrw/uhLuSFkg/Ot4T3C8TwAqD12kWNdztW+Xh6GhmeaIq8l87uJOS3tX8Eby5ZWS9Otu+MudfKKm7ifkTogpYQxw9zLgB/kJRcyheMS4iWgojGN7dH/rhF4lSXQ1R0gSUzUoz0VKjxuw5MEkO/XW+rJEXF84CJdCdtiJakVbLHih4DJuqayym1PUyoh5HshGmK1PjBhCSWZPYCCTjqmm1SSHbgfLAHEoRNegTTgfdQSsSfBqvAB/RNfH2WmdkBDUphqBratRme+D+moDjH4W/C/0djxr+tEljRMpgahCK8dGg46/BcfX6atV9HK0YQAEoAYBjLLXigUa7o96wx1DZgn/OuoE+YcKe5f+HsX7xD1fyAvAkeBu3y4PQw2R5khjGwQijT1BeathXHNK+pWjKfMzgObRT8id5pMB4apPtWLZKhF3L2to9ijNN3I0ZM/vITNErOcsJTEWwxNiGuTrA0zov+5f4C5mIc3PF/kGAyKtPU4MUHjkkJmwxfDOnLoJ4MEixGyCn9GAnNJq7OMSkIquuNu4kzhvRMoWsz8uRu1wWs/lZn3Wsl8RYx3nmWolELjyy3IarqWutwEbpntmxySU5wrVZ0Fx5OGZ6mL5e4KckSHeJ+5eBpj89RkiNzwvNPJzt2+Xh6GGSHOkqZ5YG3uCaqqGcU1JU3m7pHizY7Ae9HivpEnbec5t7OWoNQXDVFeqoJLKNHR+ldufoyHrwjkzsAwGdAwXXmT+DpRmwQDI9pgRJ+j36v+/vXOPb6LO+v9nJknTprSFQpu0gKW0KpaiUKCAsitli+1PRV0vu67iiqvsg8IC4ipFXWvVFVAX8bbguq6ysl5WXS94KdAHL48Klt3iSi3VLRRke6elSWzatMnM74/JpLnMJJP0Mkk5b1+8sMlk5pshzZw553M+5wp8weViDKz4ve55JPsEVKcwCuv7bsFuLh8AsPHKae6Ap9ncjQffP4wHu5fgj7onQ8o8iMP6pDL9AxvW5/kmlW3mq/gQDdUc3Rpo41xC16D78vhdik1SNlNpsBhl9Phuu0HZa77+O5QXCl3v7YM7lA228yR1ivAZ3ZIrc7xh+g7ygQKRSEStO1Y1LlADuTOORtTKdnkSSQGgkuxVmK2WMRescFmGD8J7DHDOeNf+vptxD7KlpvgCim8a6rgJ2M8JGpPd9tnIZ2uwYlIjvmv5AXu6z8KXXA44sEiO1+Gn08cjKS4GANwBT1yMBi++/FXImYd/xuq9Ska+yHmdKEH0KdnH5WAV3lb0GjGIkrKY18Y5YcwzK9CaCL9Ln1W8hfkhrTg8OABM4ngw4vdjzmXA1dtly4gCjDBMMdSAAnwYr4HwOTz2mfrfQT5QIBKJqHXHqtYFKlp0HYOB2voMkWgJAMOysnb9fvz4t0DK2RL29WG+R49z5rT0l1gYRzzesl6Hil2JKP7iSfzPDAPOO2eK92c4pNZjDhpDPcYk9mD+nPMwb85vMQ8szqnvwJ6aZrx1sAEdXX14/vNjeP7zYzAm6FF2+VQU56ahODcNafNHA/4NMLLwYHBSo+xSIHqdyM/Ekfcp+ZLLUdBuzAgZLMZ36F4/jm5WeFyh8LXq+CnM1wXdbEBwLtdcxvf7MfcK4YRItgu7TsK5P5Oxfh8Cdt0NxI5Wtu0w+otQIBKJqHnHqtYFKtJ1HYNFJOgzRCI9AAzLi8Hj96P2fWFQpGcQYhgrdAqE+znOuQwVhlg88FkZTjn7Z83E9JVjY/vL+Fl3mxAEVMJb+Kfg5oJPTMePzp+ME0c3w9J3EnYA274D3qpPRMmZP4cj9kr85fNjfq9ssdqxfEcVti3JQ3FumhAEhRCI9MQZ8TaKAHwUdFvR60QUBfsOmmOEt+KmGWNR1ncDdrlKSQ/0/RJ/1G2RH2Dnyi/xHNBSJbqdSrXm8mg5mIiE8T1BW4H38Tm4mg9PN6MUe5wRcZc9Jv25mnoFwLwk/50aNyb8QERizEBQejqVbTeM/iJDNvTu2LFjePDBB7F37140NzcjPT0dS5YswT333IOYmBhF+zhtht7JoeaU2GgcChcNKJ22PEQTMaOKcAYdir8fQIDheDyw4G5gbJayz7bH70JFTyPW1vwZPM97XR+lhtfxYIRNPKc+BxhuWVG4DmuPvALeZ83ivstaurDLvATl3FzJZcbHaPD1/UXQgAvyGYNwASvegMqTMfjFbg2cAOKzN4HRmqUdXXkeRqcT5Sca3aWnU/wojGH6NSyN/Fg80Hc9lhTkYb7Jico2LW7fb0CDpc+9TVpSLP4443vM+HJtQMFxV0sMvv9onOzzImcUnJSdWSOWhObbn8Ai9p/CAERITyuWRJ8A2H+A1Dn0C6SUdJvIfacGnaotBdM/lf31pR6rGgwG5zsoIobe1dbWguM4PPvss8jOzkZ1dTWWLVuGrq4uPPbYY0N12JGFmnesp0uGYriJJH1GpKM0NfzjO4GUKd5dLwHFePAeBxDoIuJxM+AEsHFiOniNxq8uISXoZHyFfxLZRmE0fTpapv8cj/z3Q78gxHPffxwXiw9tT+LPjqPY6LzOb7uuXie+qDuJH52VEvwzdunjcE5ZjNWb9sIJobxhb1mM2PE7/K6ycl4nt/WtAg8WqehEK0ajkpsCDixumDQHOHMc8gF8uoDv7xxKiEV+ZjI0xz8D9gf28lA6i0bcLph1vei34mtZLwXPA53MKCQufgqaN26ClCetXyyjpNtE7ju19n2gT3k3kmuVQM7lQobvmheFzJ9nICMzHTo46nwHDVlGRIpHH30UW7duxdGjRxVtf9pnRIiRi5rZrmhBaUbEd/R6yJkU15ev70XER59yIFaPX6UFT1f/panFX9DpuUbXnXHFiY+xsWE3Wno7Fa/0+UZh37f1rcaH3By/56+Yno4t187oX3+Az9i+I+34xXP7vV6vTaiG3vguWF3/RczkcGCdh4+IZ6aBk2ikNSXG4v7LclCcm+b3HADBPOvNmwO+T8UZkft/hXgTB3vlX6C3Nbsfb+S9S0IiLDjZoX7iewOAW/vWYOnNqzDP/nkIQukwMgmKNFA+gRDDemeTEtOBizYIbe3iDau1CfjHMmVr8MQwDrj08UH5DoqIjIgUZrMZycnyDoB2ux12e/8vsMUSTkRHEFFApOszIoFwRdshi+wkWhYl9Cm+Q+nkkNzOc02sBhWsHWvrX5fMgATipFYDhgEe1L2AXfbZfoFA/UmPdt8gn7FWq7/Q02HNhcOag7nxH+IG/VsY53Rilt3uzoRIDcnzpcXSg1t3VGGrS7PihwLtgSGlF9o4Z+CZNfEMDFethlOjw9M9i3Hg0/f9sjO+cGADDvXz1LRcbO0Bpnucw/pPgE8DDdkLsdvE0Qu8dzuCl1Rcz59VBHy3y7+kZWkC3lgqBNLTrhYeEx1YQ6V4gyo3QsMWiNTV1eGpp54KWJbZsGEDysrKhmtJBKEuw1H+imatT7hlrLBEdj4XEYk2a6VD6SS381iTk3NiY+XGkIMQz32PYyzIZ2vdrb4i9SdtcHI8NOJtfoDPWGpCrLCJK0vgeRHf33UJkrpTUKr7KzQebqK+4lMpxDJJ2c4aLMox9a9FJON8WGNSEW9vldRrcDzQwSTCmGd2dc34OYsAAIzTO3Dg/z7A6i8TXA62Of47C4CnI61UACOeH/c5HMyOt5p3gffWhOZv8h85Qz3X5+jDdf2BdNAgXoYEmSzWEBPyrJmSkhKhTSnAn9pab8OhhoYGFBcX45prrsGyZfLpovXr18NsNrv/nDhxIvR3RBCEgBpDEwebcOYHDWQo2LcfCH9LXEzyeuwwOhxuzYQv0sPrGL+5OVWtVWixhZa1kdp3Kjr9trP0OFBZH1gDIZKfmYxrR32Fz/Sr8GrMQ3gy5mm8GvMQPtOvQhFbiV1cPubbn8S1vfdiVe9KXNt7L+bbnwgYhIjwAJrMPX5rcXI89tV3YseY2wD4D+sTf37beb7szBqtwYnxrtbdHRUH3Db64SBmSN7lzsd+l0cLA0FUm5/pk71XGOB+Y4nDO181YN+RdjilphGK5ZhQTdaCzcixNgKfum70Aw4BlcL/czqchJwRueOOO7B06dKA20yePNn9/42NjSgoKMD555+PP/3pTwFfp9frodfrQ10SQRC+qG0jP5iEWsYKmEkJwv4/AmfMk7zoaACUtJ/C2tRxYHgevIdgVVrQKZ21abO1KV+P7L6FCbRz2Rq/u3mpkosUmtqd2OB41C8zY0IHtuq24Na+NdjF5ftlXULBcy3l1U3u+TtFbCc6daOQzHg7x3a6nGPNGIVbUC45s8aQ0utu2RV8V0JDKgMkZkHEf9HSxTmSmZxAWQYeDFqQjMU7OXD4CoAQ0JQu9tDLhNWSHgIfPwykniP8zshZMfihvkg+5EAkJSUFKSkpirZtaGhAQUEBZs6ciRdeeAEsS8N+CYVEc0lBbSLBRn6wCbWMpfhL2BfXuVn1leRFp9DWjc2tJ7Fx7BgvJ9IxmkSUdHR4zWKxxRlxIv8+ZE9Z7BVApBiUfX+KGJ1OL7EozwtW75t125DG9GccGvlklPX9EqkJ0u29Xrg+Iwz8JxSzjOASer/uJeyxz5LVgihBLG+UVzfh1h1V4AEUsZXuVlqvJfHAaJelfSU3Bc0YCyM6wLC8X4suDwZNfP/gP6UUsZWCLkTivO3i8mHyDRw8CeKuy/M8Sn20M81mH71MUGflQcDzd9s3iG8/AlS9GHEmhkPWNdPQ0IAFCxYgIyMD27dvh8ZDwGUymRTtg7pmTlMGOpk2VEZa0BNut8lIxPPftv2Id9tuIG58TxgmJuP74QRQVXw/2lLPQoohBXmpedAAqPx4J9774it8Z4t332n73hV/cOi/uPPLa2U9OwBgDBODO1saYfIYjCeuQrQwker4YBiAu+av0Ey9PPD7U/gZubb33rAyIgwAU1IsPlu3EAAwf9NeNJl7wILDZ/pVsuZinh05bxZ0YMa+1a5nvM8/D2B572pFZSKRYmY/HuvcBke3Brq4/syK26L/wmeQfeF1/pkQXyS+n5oxFqW90toZz3Oh+ebNoB1Dsvh2ywQi0O/2MH3fRUTXzJ49e1BXV4e6ujpMmDDB67lh7Bgmoo3hLikMd9AzHESKjXwk4JtJ6elU5mL5Q4vQgSDjMqwp3ojZPp+P8uom3LpbBx6zvR73vCtelGPCg+99CzsneHb4upOKQYat/Xp8cKoTD+n+4iUW7Yk1oru7C6Pxg9+FnGWEi6pm13rgnEsDX1wU/ttP0luxP4jFhYyM2F3e2Hek3a3jyGdrvbIRvrAMkI527J7+GbLPuhSY8KK/R0ZiOr6bcQ927Rqt6D0AwPzGf2PNoddxoru/Jdh7Zg2Dsw/+HrjwWiDYWD+fLMM3ljhXOUY6c+Spl5kXlpDadUbnrQS+eFLZS35okQ84ItAjasgCkaVLlwbVkhCEF8NdUhhJOgpPIslGPtI4+2JlgYh4bhTqU5wcj7KdNYE+uSjbWYOEWJ3ropyLnoYl0Bt3gtGZ+7d1JKGnZTGs1rPxIYBd9tleeoa1P85C/qc3yS6bUdpCqvDf/sof5eG13dL+tADw6x9n4t1/N3kJRn3LG546ESmBrRTZtduA2m1AYjqcFz2M2k4ttN9/BkOMFunTFyF70nyk7f8EzeaeoGqL8xsP4e7Kl/y285tZE0rrrcfFvO6rBrcmJBCt1h7gXAXdLFI+IWLpJGaUsqxe+xF/t9YIvsGiWTNE5DCck2lHoo5CRK2hidFAOOdGwR1kZX1HwO4N8a5435H+TgnRs0NjqAejtYJ3JMBpy4RnM6PY1eFaGd774gAUFSOCZTwUCC97DSacHDsLSYYadNr6vJ4fbdBhw5XTUJybhruKz/F3T/VI17jbYBG6uJS3NIF9YynSeA9ha/XT6I4z4Y95d+PKj8YFlCOzPIflX7/t+knBzJrDro6yEMoVnu8vEMdO2pQJqfN/DYw+A4hPEdppPdfy49/6azx831PcGNfU6ei5wSL1KBE5DGdJIZSgJ9oI2LqnvkJeFTinoIv45i0gb6nrwcE7N0o7VfwvPCyctiw4LNPhtGUh0FcyD+A7W7yyw/hkPJwcj31H2vvbSsHKfkY4Xiifr+r8OW575d9+QQgAnPJ4TAMO89gaXK7Zh3lsjTDrxoOZGWOQHC/MF6vkpqCRT/Zr25WDAQ/wwBh4d9fobc2Yvm81/lFwEqYk+UBg6smjSOkxB2hgZeCwaWFrc80/q/xTyG3u+ZnJSEuKDdoku6XiO5RXN8m3pIutQF9uE6bkVpQKOiXPz6L7d5uBXGAlEGC8QXmJ8PsQQVBGhIgchrOkMNJ1FGpNUY5EpHRAcWMAMEC3h15hAOdG6V3xvMnj8GZVg6KSghSV3BR0xxoR19MKpRkdz7ZZEUFAOxvFEp8RJaZlbsMyphKaXSWyJQDx2B1dQtcLBxZlfb/EVt0WcLyyAXRSgl6hs4fH9G824bM7v0blcbM7I3OqqxcPvPcNmi12JNutwQ8Aj5k1HIRW4eOnoP3PLTDc9icw064I+FoNy6B0cQ6W76gKehy3yZtnye/bD4RyoZRjqlQGQ/zd/vAuwcpdJCENmLk0SOlmELPKgwgFIkTkMJwlhdNBR0E28vI6oO5OhDyFNwDiXbFcgCF2TszNGovSxTm4dUdVqA4nAIQL+fdzSnH2JyugxG3Ws23Wk34B7WwsWnUIv9n0DLRdrQHt0T3hAZxr/RTs60/4vwvXBfTgvCdw60fj/I4dygC6QLAAYGmA5sQ+zMvyvqgW5Zrw9N46VLxSp2hf2lgnLCdi0VKVBEd3/2dAW7kexodjkVhUHHQf8XoNuuzymQYv0WrW2H4H1Ld+HeAVAUrEvhEaA0GMrYQIu8Gi0gwROQxnSSGo+6a6ToODhqhvmHa18PfpFIQo0QFVbQem/lT+3IglnUNvCH/LpLTFu2JA9pPr7iIpzk3D1iV5fiUFU6Ieow26QJ9IpCXFIvvC6xS5zQYT0ALCHfr+Y534wJrt5S4aDBYcSnV/hdy55QGk7SsD41OmEdnF5WMx+0c4frw+6LGCwVmbvctOLov71YVnYsWqq9BhGC2zCmGtWoMDTrsgXBVm2/Tj6OLRsPp2WHbvlt2DGOwFCkI88SrjhVMiFoNr39dZmpQJsYGIu8GijAgRWQxXSSHcOSZE9DBQ8XOIrd1igOFbBpEyySrOTcOiHJOfyHNPTbNktsTP8VNBtkupgHb7F8cCnCNpgrXhMuBhQrvkPByRU90OdO9/HgkhH92blTsb8YG1f4qwp29L8XkT0LmhDI2rV4OD95232M2UOt2CloNJ7pX7vhMAaCm7DwmT9WAmz/c6x4GCPTm8ynihlIjFoHjnKgTUgDCs0AceRUJ1CkSIyGO4SgqkoxjZDEQHJFPS4V1lhwP5W+A8e7Ffh4hcgCFlkqVhGSFF70EowUywbh6lAtrdNaGn6ZW24QbaLp+tRUJva8jH9uQUPwrl1slej/m6mSYsWoRnFtyCn+9/HSk9/a3Slrh45OSdgCaG8yrHSOFoN8P2h6sRf+Y4r0A0WLDniVie85phozQzIdWOK4dbaxI9N1gUiBCRyXCZ7pCOYuQSrg4oQEmHAQ+OByZ8+QDmfzoWxiSDX4AgFWCEQijBTCCUCmjDQWkbbqDtlAYzgfiLo9ivlOQ7/beyvgPvj56CD4vuwdSTR5Fst6JDn4DD4ybh09g1MBwP4tjmwtGj8ROQKu+WEvCbYaNEFyfXjhuIubcBNW9HzQ0WBSIEEYFOg8QgEK74OUhJR3T/zGdr8aU5x3uWyCAx0GAGCC6gHQgTz/sJuuufQ2xPq8tw3RtxAFygWTDhDKzr37+QDXnGeYXs86IwVAwWOIbFoZRsr+3K+n6JP8Qp01VoY50Qwxy+vAT7dXPxnxZlXTlj42Pw+5/m+n9GgpaIA7XjBuDsi4GLHoqaGywSqxIEMTIJV/yssKSTik4v0afkyHcVCSSgHSivH2zCGssvwPO8hBCUAQOgaV5pQOGrUk8R3mf14ubr+24JKqwVM0py7OLy8dvRy8HEyWkqhCNqDQ4YUnrdPzOWBjzxwnY8/dGRwIsHkByvw771P5EPVOV8RRLTha6u7lA6izxE9lEkVKdAhCCIkUugL3k5h0mFJR3xjt7z7jvSkOvQGQzENtxmPtn7Cde5PXfRL3F13gTpF6PfUwSARDDiMuw6fxV64rz/PZr4sbiT/a2igXdiWSuQ4dgufi6eyb8Z0uGasDDjDIvbb8y9b4/SEstzmNZWhwv/exDT2urA8pzbcuzhn05DjDbIpTbnMmBNtTCs7qrnhb/XHAKSM4O+x34iVwMSDCrNEAQxsglVBxSkpCNOiPUtO4SqFxguPDUnn9e1KbqLV8ouLh977LOQz9biLEMXSq9bCM2kC1Be04oy18TdYK+X9BRx6RnKudlYsTcfsz3m7QTyOWHBuWfzOOJTkZ9R5M4MBepGuuQ3SzD+qvPQ8vAGOJqb3c9rDU4YZ1hcg/G8EQPR8xsPYfnXb3sJYdtik/Da3GuweOV1ykt2UiXirjZlrwUiWgMSDIaP4FG4oYwRJgiCGDTcXTOA56VLvHO/tW+N3x357YVnYXXhmcO0wPBwcjzmb9ob0HgtyaCD2WXhHurF4ZVlc2Hu7pU0UQuEGEA8sHAczsrKBjLOhxMs5isIZsTgooitFAIaxjeg8XZ59XeY7Rcb804nPn69HFm7ViM51oz4lF6/TIgYiM63P4G5jd/g3srt7nWI8AAYhsH4J7Yg8aKLQjgTPnz9d+Afy4Jv96PfAgV3+wfXchN4h4FQrt+UESEIgvBFprU7kP35qwe+x8qF2SF3twwnSrIDG6+cBgB+F20lNJu78ciub8NyjN3P5eDwuOnIykh3Z2+UHH9MfAxmd3+Grbot/k96dLkU514WtBtp1+FW3PoVcFHa9diq2+LuwHGv0/XGyvpuAHi4B+pJKpB4Hk2l94PvsUNrNMIwayYYTYhBQILCbMrkBf4BRog+OGpCGRGCICIDFe/egq3pw/1fYfuhnqD2568smzvgbpfhQEl2wMnxeHpvHV74vB6d3f6D76T43SXn4MH3D4e9rtsLz8KrB74PKQB6/JpcXPy/FyHG1iyjA3F1R605FPDzJGaLxGNLZVga+f5AdFpbHR75fJvidWpNJhjvXh9ahoRzBvcPSRzv/97kRhuIZ2gYJvBSRoQgiOgiUu/eXHX7XvNk7P/3V0E3j1SdiC9KvEr21DRjS8V3irIbollX8ih9WOvRgENBXB2O7P0CGRiNFgSfdyNyVk819LbmAFsoG/Tma07mqX+R0qcoHagn4mhpQcPqNUAo5Rqv9l4fcz0AAAPGV5yqZLSB3PwalaBAhCAIdZG7e5ObPqoCSs3BhtJEbLAJ5FXi5Hg8+O4hzGFrgopEPe3nk+JiQl5HMVuJ+3R/RTrfAbhe3sgno6zvl0EnAJuSYnFOgsJupSBt2VJBpFgyEjUsl7L73eeiQx+iOb2r+ND0u/vAJiQgPj9fWanGVSbs3nkn4rr7A64mfiye1N2MBdxseI3kG+hoAxWgQIQgCPWIkrs3JeZgyfE6NFt6sO9Ie1hOqJKoVK6q++RlvG6/F+kxnmUJ6eDA037eyfFBzxPL9GstithKbI3Z4reNCR3YqtsiKQoGvIMfNl7ZhN1gbdlyQaR0iSYZD6QuQVtsEsb2mEPyweDMZpy46VchlWrKudlYceoxv+4h3s7itR1V2Hr9eSgeVS98TlprlS0kgibwkkaEIAj1qP8/YPulwbe78T3V797EKatA8G4SX71FWKhVrqp5F/zffwme5+EZS0l1DK0syMLti872CrrkzpO4xTPXzcCYeD1aLV0o3rNIVtvh2Z3im4nxOr9uHUUQB10ZjYiT41FZ34FmczcefP8wOrp63c8VsZVuEazUuXjs2NW49MsvwCMMUy5G2OH4LZuReFa8bLDpdDjwm03PQNvVKpmZKmYrURbzEoxoD+34Q/w7Fcr1mwIRgiDU49AbwJs3B9/uqucFh0iVkRJ5SiFes8K2fldLbOi6qPOWRkXBgZw4V4kYVmkQem3vve4JvisLsnFB9jj/jJNMu3Ww8xXo35MFh8/0q2BCB6SSW+K5uKv+Fvz663e9fERCQRsPZF/S2N8m7Bls1rwL+3t3emlgPDNTcoFSYJSJdwcKiVUJgogOwh1MpxKeIk+pO2gR38FrIZVp1CxXufQFcqv1nLNzPCHPe5KsB4oG94VgpS/qQW5fdJb0uQxjkraYuZG7E89na709SXwQzwWbEYOlacJAvbE9ZvzPoXeR2NulOEPi6AJsbTGINwqfI3HCc132TciuewExPisUy1a39a3Cfbod7rUoIzLdVykQIQhCPcIdTKcioshz35F2ySBExNP6PaSWXjXFhiEEB0t9J8n64CuGdXI89h1p7w9M4lOh5FIoOpj6Ta71JQQHXSfHo2xnTcASm9LpwKOdp7wG6vVqYnBv5XZwUF6ucfQIa+Q5wNamQ1+3BqaWl8GN4+GrZxU1Ng/pXsQ4xqLwCIATQFVyOtpm/AIpyWnI45zQREgwQoEIQRDqEXT6KCLu7k1EaatuyC29SkWEQyE2VJh5WlI4G/khlJykSiDjE3WoiDMhrrsFgaz0T4w6D1svm6asxKVwkvb+o+1By2tKpwP7bvdF+jQ8lH8j1hz6OxK6uxXtQxvrhOVELFqqkuDo7v+sa+OcMOaZ/SzmWQYYB4VByI/vRIWWx8aG3Wjp7QSO/h04+ncYDUaU5JegMKNQ2X6GEBp6RxCEuoQzmC4CGLKWXjXLVWKGSqY4w4MBnzge+QsWK96lWALxvfA3Wvpwu/latx+G73EYhoF1wYP46K6FGDvuv/jg6Ac40HwATs4Z2nuSWM+Kv1UF3S7YdGAOgsGZ78whAEiY0I2Zlx7BhAUnwcZwCDbZ12ln0fD5GDi6vS/Jjm7hccuJ8NvCKxISsbb+dSEI8aDV1oq1H69FxfGKsPc9WFBGhCAI9Ql1MF0EEKylV9Q1yOkoZFGzXBUkQ8UAijNUTs6JA83/wr0VH4M1xMJpy4TnvS8PwTRsvfZObDDsAONRjmJc2o4T8QaseKsYLbb+7M9A7uSD6UI8EacDb9VtAcdLd82U9d3g19HDgkOp7q9gACSYepE2uxMNn49Bv3JIRNhJ6nQLWg4muR6TMovn0XIwEQnje/zm3pxCIkbDCkbmc+JMTMfGY++Cl3ieF8I9bKrchIKJBaqWaSgjQhBEZCCm1addLfwdwUEI0D+3BZCZNQIFugYpxGAg0J6Hslw1CBmqiuMVKHqzCMv23Az7mJdgyHgO8dmboE2o9tqOB/DqD9Oxf/EnQjvpVc8Lf685hIp4A9Z+vNYrCAFCv5MXtSlvVf0Xd79VHdIcHHE6cDO8g8lmjJX1OBFFruI/e+LEHoy/4BS0cZzXdmwcj/QLTkGr51zlGLnPCQOHTQtbW79ZHA8GdkMaEq9+0vUq6c9J1fm/9jt/nvDg0WxrRlVr8AzRUEIZEYIgiDApzk3D1iV5fvoH00B9RMLoAhlUBpChqjhegbUfr/W7C2e0ZsSO34GehiVwWHO9nmvt6gOm92s7nJwTGys3DvhOXmm7dSCCWb37IiVyTZzYg4TxPbC1xcDRo4E21olXxizEr3TlsByPU7QOUdAqZqb0lz4i/DuxGtnPSVusFvg2+L7bbG2K1jBUUCBCEAQxABS1qobDEJSrnJwTVa1VaLO1IcWQgrzUPPkLuULhp+/+5QIIhhFczvXGnXBYc+CZkD920uaxDx4vHfxI8Z38bNNsyW1CKcMEQ7R6V4KcyJVh4W7RBYCK3lk40DcF98TtULRfbaygjeFHpcF2xq/hOKqB1loJw6xLwMh8TlKaDyjad0psiOXDQYYCEYIgiAESaG7LgAgjGJCj4ngFNlZuHDS9hRRVrVUBAwiGARidGRpDPZy2LPfjrx74HisXZmNPTTPKdtagjf8SceODH0/uTl5Je640HDSGejBaK3hHgp+uRQmiyDWN6QhoCidmVf43MQ874h5AYrdNensA1rh4/D71atyVNRZtf34bjpY/uZ8PZBWfl5oHo8GIVlurdHDI8zA6nch79SZVB0ySRoQgCGKEI5ZLBqq3kEPUYXx4WEEdAACj9Z5c22TuwdN769zdNbxD2UC5FEOK3xre+aoBL35eH3I5RptQjfjsTTBkPIe48a/K6lqCIYpceR5+HTeiSsRT5OpgtHhy2jVez3tuzwB4ctrVOFYfj8bfPwtHi/e/oTjV17J7t99aNKwGJfklANxSYzeMy1R9XfspaMQBkzXvhvReBwuyeCcIghjBODknit4sks1UMGBgNBhRflV5WJ0T5dVNuP/dGjRbeqAxHIEh47mgr7EdX+aVEQGA0XE6dHb3uX7iEJ+9CYzWLI5kCbjmgWpBtAnViB0vlEg8jydeHaV0LcGQHpY3FmV9N2A3l++Xnzi/8RCWf/22l1V8a9xoPDvtcuxPm4oXd/0e43rM0pJWhoHWaET2/1ZITvSVyoaZHA6saz+FQpvodTK41u9k8U4QBEEACF4uUaK3kKO8ugnLd/R3XDhtmeD6kmQDCJ4HeEeSq+ThTX8QAgAs7C2LETt+B3jeOzgQ7+zX5a9zByED04Jw0Bt3Sgc8AXQtwZATucbG6GCMFSY1iyTH6/BF+jTsT5uKqSePItluRYc+Ad+MmwyOYTGtrS7wLBueh6O5GW1PPY34efNgmDXTKyApzChEgVOHqr9fgzaNBilOJ/J67D7OtkPo2BsECkQIgiBGMEo7IkLtnHByPEr+ccjnUfkAQswu2FsWw/OCzgBI8sqGCDisuehpWCIECbr+i7DRYMS6/HUomPgTfP6fkyh589CABKkaQz1YnfxF3lPXksRMwe8unYrv223YUvGd8L4C7FtK5GrrdWLZjyYjf1Iy9h09CYDBnMxk3PnG12ix9Lit4j1Jtlv9HpOifds2tG/bJqkb0XS1YXaPPfhOhsKxNwgUiBAEQYxgPHUUg7GdyP6j7ei09fk9LhdA8I4k2FsWe5U4xDjlpgsm4fGK/0juy2HNcQtI7y2agxtmFGBXdStm/7Ui4KwfpfjqVeRgtVY87GE1f7ZpVNjloOf+7yheO3DCnRV5+iPAEKORDWo69KNC2n9fczP+u2o10p94AqOLXMFIBA+YpECEIAhiBBO0c8Klt8hLzQtpv/uOtMs+5xlAFJ0bj5vmnou2tjQ8+N63aIK/38qiHBNePXBCxqWWBWfLgikpFjfMWIhHyg/j2U/rQ1prIJQKY9cUzPTyhfFt2z5ptePB9w8r2pet1wlbr9PvMTlqJwInE4Bkq7LiEANB6Fq9vhQ/mHJQfN6EiB4wSYEIQRDECEbsnFj78VowYLyCEV+9RWgEK4iwcNqyMDkuC7NNUwATUDR1vKzfSuniHNy6o0pu9CFKF+dgV3XToAYhQHBdCwAYDSYsn7PI73HPtm0nx+O5/zuKZouC8keI8DFdeHERizv+wSme6ssCGGvrxCNPvgnc/jMhiIrQAZPUvksQBDHCKcwoxOYFm5FqSPV63GgwYvOCzWH5iMybPC7k7cQL9+XTx2Ne1lgv0zfRpdaU5D3gzZQUi61L8rAox4R73wmtlRbwnhEjs4VLtwK/2Ipx/VcSIFAT24bf+7oRv8jPCHl9SuAdCag8m8UfrmTRoSyB4ybZbkXZzho4+hzosppgTluLrh/SwHv2Cqs8YJIyIgRBEKcBhRmFKJhYoNxZNQhzs8ZitEEnqRMRGW3QYW4IRm+BXGr3HWlHR5f8sXwR7/nlpud64qlrYWWEsfuOtPutSaptOClOC0u3Y1AcXUXErM2XZ5lx4EwG55zgkXuMx9VfBD9Kuz4BmYcP4NuCMrAn+wXJ2nFTYVxahMSfLFR9wOSwBCJ2ux1z5szBv//9bxw8eBDTp08fjsMSBEEQHmhYTcgtuvL7YrDxymle7bu+bLxyWshW93Iuta3W0EShpqRYXJxrwvOfH1O0vahrWX2pBmenwx2o7alpxfxNe72CjbSkWFx2Xhr+9Gm9X8DRH4QM3KW1n/5uJI5hUJPB4PBEHgsOOWV1IxyAk3GjkdTbhbsPvOT/fts70fCH14Az5iExU90Bk8NSmrnrrruQnp4+HIciCIIghoni3DRsW5IHU6Le63FToh7bluSFP/RPgtSE2OAbARil1+Bvt8zBZ+sWojDHpHj/LDjMZWsx5cQRXMwkYLYrCBHdXj1pMvfgWYkgBBCyMNqEaow6c+AurZ6IWRvekSQch2Xw4iLWLUz1RHRk/VPuYvz6kOCW6hcO8jzA82gqvR/md3ei68tK8E55wexQMuQZkQ8//BC7d+/Gm2++iQ8//HCoD0cQBEEMI0M29M+H/MxkpCXFBm2XfeSq83BB9jiv10h34/Tj5YL6LYBvAT4hHR93LwGP6SGt09Ol1ZNA04eV4tvO/M+kMUjdnIlv730AybZO93YnXY6sVl1cYCM0ANypU2i86y5h7QHm1gwlQxqItLS0YNmyZXj77bdhMBiCbm+322G39yuOLRbLUC6PIAiCGASGbOifzzHEzhq5oOJ/fpyJi89Nk3yNb5+ISBFbia26LX6P89ZGPMw/glPsGuzi8hWuUnBpBeDXgTMQl1ZvWLc9/qYleRiTY8I/tZmoeG2XnyPrhf89GNKexbk1eGLLsAYjQ1aa4XkeS5cuxfLlyzFr1ixFr9mwYQOSkpLcfyZOnDhUyyMIgiCiDLGzJs2nsyY5Xoc/XjcD6y/OkX2NbzcOIJRjSnV/Ff6f8X1OoFT3Eli/4oc0okurXBswwwCsy6U1EMt+NAmvLJuLJ66djtsLz4IxQbr0BQDzN+3F43uP4FBKNj6ZMAOHUrLBMcLqO/Qhtti47G9bHt4wrGWakDMiJSUl2LRpU8BtDh8+jN27d8NqtWL9+vWK971+/XqsXbvW/bPFYqFghCAIgnATTilIfM2Ln9d7mY7ls7VeQ+l8YRkgHe3IZ2v9rNqlUOrSGmy7975uRsn/y3G/p5ULs/3e756a5qAzdr4ZNxltsUkY22NWnnVwza2x/fNfiJ+jNBM0MEIORO644w4sXbo04DaTJ0/G3r17sW/fPuj13pHcrFmzcP3112P79u1+r9Pr9X7bEwRBEIQn4ZSCNCyDpRdk4s+f1bs1I6noVPRapdspdWkNtl2TuQeV9R3u9+j7fp0cj7KdNUFbhDmGxbZzr8C9ldsVG6GJONpCmz00EEIORFJSUpCSEnwmwZNPPomHHnrI/XNjYyOKiorw2muvYc6cOaEeliAIgiAGhK9mpBWjFb1O6XZOWybgSAK00gLRQNOH/Y4ZoF15/9F2xTNuvkifhofyb8Tyr98OKlz1RKvgOj9YDJlY9YwzzvD6edQoYWhPVlYWJkyYMFSHJQiCIAhZRM1I2c4aVJqnoJFPhgkdkg6sHA80YywquSlB92uI0cDWC3Q3C34fDODVM8uAARgePT7Th+WQa1cur25CyZu+U48D80X6NOxPm4qpJ49ibI8Z/1P9DyTa7bL+I1zKaBhmzQzpGAOBLN4JgiCI04ri3DR8tm4hXrp5Hh5jfgXA34FV/Lms7wZwCi6V4tA60e+Dc/l9iBgNRjy+4HE8ufiGgLbzDATDtPzMZL/nyqubcOuOKnR2K3eYFeEYFodSsvHxxBl4rkgX0H/kxZ9owA1u93VAhs3ifdKkSeD5wTS9JQiCIIjw0LAMLjhzHKxX34LbXnbgPt1fkY5+4WozxqKs74YQWnf7Ef0+tIZ6jE7swdM/W4DZppluO/2nweC2l/0daT0H/PmKb5XqQoKhMdTjQEYP/qBlsXQPh3EeutmOBODFRSwqM824trVq0Fx4g0GzZgiCIIjTluLcNHDXLsdlb89Dds8hpKITrRiNSm6KokyIPCwctiyctAF8d5bXTJ+Lz03DNjYP979bg2ZLv9bDlBSL0sU5ko60lfUdinUhgRA7dirPZt1za8b8AJwaBRyeyIB3BUBttggWqxIEQRDESKG8ugkPvl+DkzYnTkJo0WUYafOzcJEXnnofxbNq4OR4r5Zdz4BlIHh27PCsMLdGihTDCBCrEgRBEEQkI2oufIOOwVYR+ApP5Y7bYrHj1h1V+PWPM/Huv5u8MiDJ8bpBWYs4yZfVmiUG0AiiWqPBiLzUvEE5nhJIrEoQBEGcdijRXAzGuByWAU519So6Lu/68+yn9X5lmI6u0AWqUtx8wWTcNu0OMAwjdPJ4IP68Ln+dVylpqKGMCEEQBHHaoURzwfHA7y45Bw2d3fjL58f85tXIza/x3ceKl6vwDHMeUlKa8MWxerT2NQPIxHDmAtK89CdTcbYpARsrN6LF1uLexmgwYl3+OhRmFA7bugAKRAiCIIjTkECGYZ6MS9Dj5h9NRn5mMsp21ngFL6K4lON4rHzloF8LsIgmoRrrKje4jc4MGQDXlwR7y+KwJvEmxGph7XEo3n5lQRZuX3S2VydOYUYhCiYWoKq1Cm22NqQYUpCXmjesmRARCkQIgiCI0w45wzC57QLNuNl3pF02CNEmVCN2/A7w8JZkMFozYsfvQE/DkpCDkfsuzcGGD2vR4VHyCcQF2SmSs3g0rGbYWnQDQRoRgiAI4rQjPzMZaUmxUnpNANLGYuLMl8unj8e8rLHui7t8doWD3rhT2J/PgcSfheeVTfcVsXT34eGfBg9eApmjOTke+460452vGrDvSDuccpHUMEAZEYIgCOK0w3fujK/2A5A2FpNCLruiMdSD1cnPd2EYgNGZoTHUw2nLUrz25PgYFOemYduSPJT84xA6bf5C1kDvoby6ya/MlBbAw2SooYwIQRAEMWII5U5fnDtjSvIOJExJsdi6JE/xRVnMrvgimocFQ9xOaYuuKSkOgLD+f927CLcXnoXRcTqfbaTfg9g67CvUbTb34NYdVSivblK0hsGE4SPYd91isSApKQlmsxmJiYlqL4cgCCLi8DW+EnULpyPh3ukPxjksr27C8h3etu0awxEYMp4L+tpfZW3C3LQ5mJkxBhc++lHAbp60pFh8tm6hpAV8sPfg5HjM37RXdv8MhABGav+hEsr1m0ozBEEQUUqkpdjVRM4kTLzTD5ThELUfA6E4Nw03XzAJz39+zP2YaB7GaM1+GhGg3zxs1flF7m4VsVwklSFgIF8uUvIegrUs8wCazD2orO8Y8PkIBSrNEARBRCGRmGJXi2AmYQBQtrNmyAWZhTkmn0dY2FsWC+vwObSceZhYLvIt9aSFWC6SQmnLstLtBgvKiBAEQUQZwS68DIQL76Ic02lRplH7Tt/JOVHVWoV2tCIl5QTa2sZDvM93WHPR07AEeuNOMB7C1UDmYWKr8P4j7dh39CQAIdsxd/LA1n7sZJei7ZS2Ng8WFIgQBEFEGWpfeCONwbrTD0crUnG8wtuhdBwQn+RtVuaw5sJhzYHGUI/C3Djccv70oOZhe2qavcpuT39UN6Cym5Pj8ZfP64NuJ9fuO5RQIEIQBBFlRGqKXS1CNSeTIhy9TcXxCqz9eC14n9wUqzMjbvwOdHuYlSXH6/HQ5Vfj4nPTg65zIHoXOZ7e+x+Yu4O7sV47+4xhz6JRIEIQBBFlDMaFdyQhts82m3tkRZ6mAHf64Vz4nZwTGys3+gUh7mMyDNIn78btU34BU2K84k6coSi7OTkeL3iIaAMxaZxB0XaDCYlVCYIgooxwXEFHMqI5GeA/2T6YOVm4Qteq1iqvgXH+r+VxqrcVE9JavFxYgxFK2S0YoqfK43u+RWe3sum9agSvFIgQBEFEGQO58I5UwjUnC/fC32ZrU7QupduJDFbZrby6CfM37cUvntuPpz86omifow06VYJXKs0QBEFEIeKFV24i7OnmI+LkeCTFxeCuorPR0dWL5FF6mBKDC07DvfCnGFIUvU7pdiJKO1v+0/ID9h1pl3x/cqWmYNx0fqYqwSsFIgRBEFFKoImwpxOBhKbBzkW4epu81DwYDUa02loldSKiWVleap6i/QPC+3i84j+Ktn36ozrJTppApaZAjDbosHJhdoivGhyoNEMQBBHFyE2EPV0YqLFbuHobDatBSX6JaxvG5zXSZmWBEAOIUPF9n8FKTXJsvHKaap8dCkQIgiCIqGQwHFUHorcpzCjE5gWbkWpI9XrcaDBi84LNkmZlcoQbQPi+z1BbttOSYrFtgI6tA4VKMwRBEERUMljGbgPR2xRmFKJgYgGqWqvQZmtDiiElqFmZFAPxfPF8n0pLTSsLsnFB9riIKOVRIEIQBEFEJYNp7DYQvY2G1WC2abaitcgxGG2zrdYeXHpuekBPFQBIjtdh1U/ORIw2MooikbEKgiAIggiRwTZ2U1NvE0yrooTUhNiApSaRjq4+XPjoRxEzGJECEYIgCCIqGUnGbkoCiEB4eoDIeap40mTuwfIdVfjg68ZwljuoUCBCEARBRCUjzdhNSQAhR6etD3tqmr329cmdBUiOjwn4upWvHMQHX6ubGaFAhCAIgohawnVUjUScnBNjx/0X9/ysB0sXOgBwil8rzqDx7BD61/FT6OjqDfg6jgdue1ndzAiJVQmCIIioZiQYu1Ucr8DGyo1e82sSzxoNW9Ol7gm+gZDqENr9TXPgF3mw8pWDeBoMLj53+AM3CkQIgiCIqEcUmkYjFccrsPbjtX4OrbymE7Hjd6CnYYmiYATo7xDa8EENXvjimOI1iJmRbezwZ5GoNEMQBEEQKuHknNhYuVHSJh4AGAYwmN6D0jJNakIsPvi6Ec9+Wh/WeoIZwA0FFIgQBEEQhEpUtVZ5lWOk4LWduO/qOIyO08luI3YIzcwYg3vfqQ57PVKThocaCkQIgiAIQiXabG2KtjMl92LjVdPAIHCHkCBQ7RvQmgbi8hoOFIgQBEEQhEqkGFIUbyfXITQmXodnrpuB4ty0QQkiBsPlNRRIrEoQBEEQKpGXmgejwYhWW6ukToQBA6PBiLzUPABChxDHAfe+U+1uze3o6sOD7x8GyzIDCiIYCG3Pw20ARxkRgiAIglAJDatBSX4JACHo8ET8eV3+OvcQvfLqJqx4ucrPH6TZ3INbd1ThVJcdaWEYoqlpADekgcj777+POXPmIC4uDmPGjMEVV1wxlIcjCIIgiKijMKMQmxdsRqoh1etxo8GIzQs2ozCjEADg5HiU7ayR7K8RH3vw/cP43SU5AW3iF+Wk+gUrahrADVlp5s0338SyZcvw8MMPY+HChXA4HKiuDl/JSxAEQRAjlcKMQhRMLEBVaxXabG1IMaQgLzXPnQkBgMr6DjSZpTQgHDSGejBaK1r7EpBkmIatS/JQtrPGa/vkeB0eujwXF5+bDifHR4wBHMPz/KA3DDscDkyaNAllZWW4+eabw96PxWJBUlISzGYzEhMTB3GFBEEQBBFdvPNVA1a/+pXXY9qEauiNO8HqzO7HEnXjUHbBPSiY+BPVgo1Qrt9DkhGpqqpCQ0MDWJbFjBkz0NzcjOnTp+PRRx9Fbq68O5zdbofdbnf/bLFYhmJ5BEEQBBFxBMtS+ApRtQnViB2/w28/lr6TWPvxWqGsk1U45OseKEMSiBw9ehQAcP/992Pz5s2YNGkS/vCHP2DBggX47rvvkJwsrcjdsGEDysrKhmJJBEEQBBGxlFc3+ZVS0pJiUbo4x63byM9MRlpSLJrNPeDBQW/cCUBwX5ViU+UmFEws8CrvRCIhiVVLSkrAMEzAP7W1teA4wYr2nnvuwVVXXYWZM2fihRdeAMMweP3112X3v379epjNZvefEydODOzdEQRBEESEU17dhFt3VPnpP8ROmPLqJgDCPJ3SxTkAAK2hHqzOLBuE8ODRbGtGVWvVkK59MAgpI3LHHXdg6dKlAbeZPHkympqEk5aTk+N+XK/XY/Lkyfj+++9lX6vX66HX60NZEkEQBEFELcE6YRgI818W5ZigYRm3qdld5YdkptN4o9S5VU1CCkRSUlKQkhLcBW7mzJnQ6/X49ttvMX/+fABAX18fjh07hoyMjPBWShAEQRAjDPlOGAEe/fNfPKcL22wGxCnYv1LnVjUZEo1IYmIili9fjtLSUkycOBEZGRl49NFHAQDXXHPNUBySIAiCIKIOpZbs4nZiBsVhywTXlwRGK12e8XVkjWSGzEfk0UcfhVarxQ033IDu7m7MmTMHe/fuxZgxY4bqkARBEAQRVSi1ZBe368+gsLC3LEbs+B3geW/BKs8DYHgvR9ZIZsicVXU6HR577DG0tLTAYrFgz549mDp16lAdjiAIgiCiDrETRs7dg4HQPSPOf/HMoDisuehpWALekeT1Gt6RhF9k3Ot2ZI10aOgdQRAEQaiE2Alz644qMICXAFVq/otvBsVhzYXDmuN2VuUdCXDaMlFQcP6wrH8woKF3BEEQBKEiYieMScH8F+kMCgunLQsOy3RwtiykJRmGfYLuQKCMCEEQBEGoTHFuGhblmIJasoeaQYkGhmTWzGBBs2YIgiAIwh8lTqxqovqsGYIgCIIghg6lGZRogAIRgiAIgohCNCzjZXIWrZBYlSAIgiAI1aBAhCAIgiAI1aBAhCAIgiAI1aBAhCAIgiAI1aBAhCAIgiAI1aBAhCAIgiAI1aBAhCAIgiAI1aBAhCAIgiAI1aBAhCAIgiAI1YhoZ1VxDI7FYlF5JQRBEARBKEW8bisZZxfRgYjVagUATJw4UeWVEARBEAQRKlarFUlJSQG3iejpuxzHobGxEQkJCWCY6BvkM9hYLBZMnDgRJ06coGnEQwid5+GBzvPwQOd5+KBz3Q/P87BarUhPTwfLBlaBRHRGhGVZTJgwQe1lRByJiYmn/Yd8OKDzPDzQeR4e6DwPH3SuBYJlQkRIrEoQBEEQhGpQIEIQBEEQhGpQIBJF6PV6lJaWQq/Xq72UEQ2d5+GBzvPwQOd5+KBzHR4RLVYlCIIgCGJkQxkRgiAIgiBUgwIRgiAIgiBUgwIRgiAIgiBUgwIRgiAIgiBUgwKRKMdut2P69OlgGAZfffWV2ssZURw7dgw333wzMjMzERcXh6ysLJSWlqK3t1ftpY0InnnmGUyaNAmxsbGYM2cOKisr1V7SiGLDhg2YPXs2EhISkJqaiiuuuALffvut2ssa8WzcuBEMw2DNmjVqLyVqoEAkyrnrrruQnp6u9jJGJLW1teA4Ds8++yy++eYbPP7449i2bRvuvvtutZcW9bz22mtYu3YtSktLUVVVhfPOOw9FRUVobW1Ve2kjhk8++QQrVqzA/v37sWfPHvT19eGiiy5CV1eX2ksbsRw4cADPPvsszj33XLWXEl3wRNTywQcf8FOmTOG/+eYbHgB/8OBBtZc04nnkkUf4zMxMtZcR9eTn5/MrVqxw/+x0Ovn09HR+w4YNKq5qZNPa2soD4D/55BO1lzIisVqt/Jlnnsnv2bOHv/DCC/nVq1ervaSogTIiUUpLSwuWLVuGl156CQaDQe3lnDaYzWYkJyervYyopre3F//6179QWFjofoxlWRQWFmLfvn0qrmxkYzabAYA+v0PEihUrcMkll3h9rgllRPTQO0IanuexdOlSLF++HLNmzcKxY8fUXtJpQV1dHZ566ik89thjai8lqjl58iScTieMRqPX40ajEbW1tSqtamTDcRzWrFmDCy64ALm5uWovZ8Tx6quvoqqqCgcOHFB7KVEJZUQiiJKSEjAME/BPbW0tnnrqKVitVqxfv17tJUclSs+zJw0NDSguLsY111yDZcuWqbRyggiPFStWoLq6Gq+++qraSxlxnDhxAqtXr8bf/vY3xMbGqr2cqIQs3iOItrY2tLe3B9xm8uTJ+NnPfoadO3eCYRj3406nExqNBtdffz22b98+1EuNapSe55iYGABAY2MjFixYgLlz5+LFF18Ey1L8PhB6e3thMBjwxhtv4IorrnA/fuONN6KzsxPvvPOOeosbgaxcuRLvvPMOPv30U2RmZqq9nBHH22+/jZ/+9KfQaDTux5xOJxiGAcuysNvtXs8R/lAgEoV8//33sFgs7p8bGxtRVFSEN954A3PmzMGECRNUXN3IoqGhAQUFBZg5cyZ27NhBXyiDxJw5c5Cfn4+nnnoKgFA6OOOMM7By5UqUlJSovLqRAc/z+M1vfoO33noLH3/8Mc4880y1lzQisVqtOH78uNdjN910E6ZMmYJ169ZRKUwBpBGJQs444wyvn0eNGgUAyMrKoiBkEGloaMCCBQuQkZGBxx57DG1tbe7nTCaTiiuLftauXYsbb7wRs2bNQn5+PrZs2YKuri7cdNNNai9txLBixQq8/PLLeOedd5CQkIDm5mYAQFJSEuLi4lRe3cghISHBL9iIj4/H2LFjKQhRCAUiBCHDnj17UFdXh7q6Or8AjxKJA+PnP/852tracN9996G5uRnTp09HeXm5n4CVCJ+tW7cCABYsWOD1+AsvvIClS5cO/4IIQgYqzRAEQRAEoRqkuiMIgiAIQjUoECEIgiAIQjUoECEIgiAIQjUoECEIgiAIQjUoECEIgiAIQjUoECEIgiAIQjUoECEIgiAIQjUoECEIgiAIQjUoECEIgiAIQjUoECEIgiAIQjUoECEIgiAIQjUoECEIgiAIQjX+PyJ566moGM5yAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "y_pred = loaded_model.predict(new_X)\n", + "fig = plt.figure()\n", + "for group in X['group'].unique():\n", + " idx = X['group'] == group\n", + " subset = X.loc[idx]\n", + " plt.scatter(subset['x'], y[idx], label = group)\n", + "plt.scatter(x=new_X['x'], y=new_y, label='new data')\n", + "plt.scatter(x=new_X['x'], y=y_pred, label='prediction')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [target]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [1000/1000 00:00<00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAPHRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMHJjMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy9ytYEsAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hT1RvHP0m6N20pLcjeZe+9QSoKiPhDBEFAAdmIMhUBQRkiUwREUWQ6kQ0KCsgsskvZlN0BLd07ye+PNGnSrJsO2sL5PA+P9ubcc0/mee87vq9MrVarEQgEAoFAICgE5IW9AIFAIBAIBM8vwhARCAQCgUBQaAhDRCAQCAQCQaEhDBGBQCAQCASFhjBEBAKBQCAQFBrCEBEIBAKBQFBoCENEIBAIBAJBoSEMEYFAIBAIBIWGXWEvwBIqlYqHDx/i7u6OTCYr7OUIBAKBQCCQgFqtJiEhgdKlSyOXW/Z5FGlD5OHDh5QtW7awlyEQCAQCgSAX3Lt3jxdeeMHimCJtiLi7uwOaJ+Lh4VHIqxEIBAKBQCCF+Ph4ypYtq9vHLVGkDRFtOMbDw0MYIgKBQCAQFDOkpFWIZFWBQCAQCASFhjBEBAKBQCAQFBrCEBEIBAKBQFBoFOkcEYFAIBCYRq1Wk5mZiVKpLOylCJ5T7O3tUSgUeZ5HGCICgUBQzEhPTyc8PJzk5OTCXorgOUYmk/HCCy/g5uaWp3mEISIQCATFCJVKRVhYGAqFgtKlS+Pg4CAEHwVPHbVazaNHj7h//z5Vq1bNk2dEGCICgUBQjEhPT0elUlG2bFlcXFwKezmC55iSJUty+/ZtMjIy8mSIiGRVgUAgKIZYk80WCAqa/PLEiU+yQCAQCASCQkMYIgKBQCAQCAoNYYgIBAKBQCAoNIQhIhAIBIKnwuHDh+nevTulS5dGJpPxxx9/FPaSBEUAYYgUEeLj43n06FFhL0MgEDxHKFVqjt+MZtu5Bxy/GY1SpS7Q6yUlJVGvXj1WrFhRoNcRFC9E+W4hkpKSwq5du9iyZQu7du1CrVbzzTffMHDgwMJemkAgeMbZGxLOrB2hhMel6o4FeDoxo3sgQbUDCuSaL730Ei+99FKBzC0ovgiPSCHw+PFj3nrrLfz8/Pjf//5HWFgYs2fPpl+/frz99ttMmDCBzMzMwl6mQCB4RtkbEs6IDWcMjBCAiLhURmw4w96Q8EJameB5RHhECgFPT0/u3r3LpEmTeOONN6hWrRqgUapr2LAh48eP5+LFi/z00094e3sX8moFAsGzhFKlZtaOUEwFYdSADJi1I5Qugf4o5EKxVVDwCEOkELC3t+fw4cNGx2UyGaNHjyYwMJA+ffrQpEkTfv31Vxo0aFAIqxQIBM8iwWExRp4QfdRAeFwqwWExtKjs8/QWJnhuEaGZIkjHjh05deoUHh4eNG3alNmzZ5ORkVHYyxIIBM8AUQnmjZDcjBMI8oowRIooFStW5OTJk0yePJlZs2bRsmVLQkNDC3tZAoGgmOPn7pSv4wSCvCIMkSKMg4MDc+bM4dixYyQmJtKwYUMWLlyIUqks7KUJBIJiStOK3gR4OmEu+0OGpnqmacX8z09LTEzk3LlznDt3DoCwsDDOnTvH3bt38/1aguKDMESKAU2bNuXMmTOMGjWKSZMm0a5dO27cuFHYyxIIBMUQhVzGjO6BAEbGiPbvGd0DCyRR9b///qNBgwa6vLcJEybQoEEDPvnkk3y/lqD4UKCGiFKpZPr06VSsWBFnZ2cqV67M7NmzUasLVjTnWcTZ2Zkvv/ySQ4cOER4erhMFUqlUhb00gUBQzAiqHcDKtxri72kYfvH3dGLlWw0LTEekffv2qNVqo38//PBDgVxPUDwo0KqZ+fPns3LlStatW0etWrX477//GDx4MJ6enowdO7YgL/3M0qZNG86fP8/kyZMZPXo0W7duZe3atZQrV66wlyYQCIoRQbUD6BLoT3BYDFEJqfi5a8IxomRX8LQpUI/IsWPH6NmzJy+//DIVKlTg9ddf58UXXyQ4OLggL/vM4+bmxooVK/jzzz+5evUqtWvXZu3atcLTJBAIbEIhl9Gisg8965ehRWUfYYQICoUCNURatmzJgQMHuHbtGgDnz5/nyJEjZiV+09LSiI+PN/gnME+XLl0ICQnh9ddf55133qF79+6EhwtFRIFAIBAUHwrUEJkyZQp9+/alRo0a2Nvb06BBA8aPH0///v1Njp87dy6enp66f2XLli3I5T0TeHp6snbtWrZv385///1HrVq12Lx5s/COCAQCgaBYUKCGyM8//8zGjRvZtGkTZ86cYd26dSxcuJB169aZHD916lTi4uJ0/+7du1eQy3um6N69O5cuXaJr167069ePPn36iG6+AoFAICjyFKghMnHiRJ1XpE6dOgwYMID333+fuXPnmhzv6OiIh4eHwT+BdHx8fNi8eTM//fQT//zzD7Vr1+aPP/4o7GUJBAKBQGCWAjVEkpOTkcsNL6FQKETJaQHTp08fLl26RPPmzenVqxcDBw7kyZMnhb0sgUAgEAiMKFBDpHv37nz22Wfs2rWL27dvs3XrVhYtWkSvXr0K8rICoFSpUvzxxx+sW7eO7du3U61aNb766ivRs0YgEAgERYoCNUSWL1/O66+/zsiRI6lZsyYffvghw4cPZ/bs2QV5WUEWMpmM/m8N4MfdR6jfujNjx46lVq1a/P777yKZVSAQCARFggI1RNzd3VmyZAl37twhJSWFmzdvMmfOHBwcHArysoIs9oaE03r+34zdfofr1d/Cf/ByomRe9O7dmzZt2nDixInCXqJAIHjOWLFiBRUqVMDJyYlmzZoJXSmB6DXzrLI3JJwRG84QHpfdytuhZAVK9JpBqT6zCX/8hBYtWtCnTx9u3rxZiCsVCASFhkoJYf/CxV81/1UVbEPNn376iQkTJjBjxgzOnDlDvXr16Nq1K1FRUQV6XUHRRhgiBYxSpeb4zWi2nXvA8ZvRKFUFHxJRqtTM2hGKqSupAeeKDSg5YDFr137PsWPHqFmzJu+//z7R0dEFvjaBQFBECN0OS2rDulfgt3c0/11SW3O8gFi0aBFDhw5l8ODBBAYGsmrVKlxcXFi7dm2BXVNQ9BGGSA7y03DQhkbeXHOCcVvO8eaaE7Se/zd7QwpW/TQ4LMbAE5ITNRCRkEGNtt25du0aM2fO5LvvviMwMJA9e/YU6NoEAkERIHQ7/DwQ4h8aHo8P1xwvAGMkPT2d06dP07lzZ90xuVxO586dOX78eL5fT1B8EIaIHntDwmk1z9BwaDUvd4aDqdAIQHhcKu9tOMPS/dcKzDsSlWDeCMk5zsXFhWnTpnHt2jUaNWpEt27dGD9+PGlpaQWyNoFAUMiolLB3Mpj1mQJ7p+R7mObx48colUpKlSplcLxUqVJERETk67UExQthiGSxNySc9zacISLecBOPiNcYDjmNEUueE0uhES2L91/PtZFjDT93J+uDcozz9/dn586dLFmyhJUrV9KsWTMuX76c72sTCASFzJ1jxp4QA9QQ/0AzTiB4CghDBI3hMOX3ixbHTP39os7YsBZysRYa0RIRn8oIE0ZOXmla0ZsATyfM9dGUAQGempbf+sjlcsaNG0dwcDDp6ek0atSI1atXi1JfgeBZIjEyf8dJxNfXF4VCQWSk4byRkZH4+/vn67UExQthiAAnbkUTm2xZ6OtJcgYnbkWbDblExGUbFVJDI6BxhE7bepH0zPxTm1XIZczoHghgZIxo/57RPdBsy+969erx33//MXDgQN577z169+4tElkFgmcFt1LWx9gyTiIODg40atSIAwcO6I6pVCoOHDhAixYt8vVaguKFMESA4zelbbJHbzy2WI0CMGtHKL5ujjZdPyYpg+ZzD+SrZySodgAr32qIv6dhmMbf04mVbzUkqHaAxfNdXFxYtWoVv//+O4cOHaJevXr8888/+bY+gUBQSJRvCR6lMb5N0SIDjzKacfnMhAkTWLNmDevWrePy5cuMGDGCpKQkBg8enO/XEhQf7Ap7AUUDaaGHh7EpVqtRwuNSQa0JfUTEpUqcGWKS0hmx4YwkI0EqQbUD6BLoT3BYDFEJqfi5a8Ix5jwhpujVqxdNmjRhwIABdOrUiQkTJjBlyhR8fX3zZY0CgeApI1dA0HxNdQwyDH//sn4bguZpxuUzb7zxBo8ePeKTTz4hIiKC+vXrs3fvXqMEVsHzhfCIAC0qSdtUy3g5Sxr3OClNFxqxlVk7QvO1mkYhl9Gisg8965ehRWUfm4wQLS+88AL79+/n888/Z+XKlZQvX54JEybw4MGDfFunQCB4igT2gD4/gkeOmx6P0prjgT0K7NKjR4/mzp07pKWlcfLkSZo1a1Zg1xIUD4QhAjSv7IOXi73FMZ7Odni5SJOm93V1zA6NeEgP02g9KsFhMZLPeVooFAqmTJnCnTt3+OCDD/j++++pWLEiw4YN48aNG4W9PIFAYCuBPWB8CLy9E3p/p/nv+IsFaoQIBKYQhggar8G81+pYHCOTyfhst7Ry1g9+Oc/ekHCCagdwdEonxneqatN6bEl2fdr4+vry6aefcufOHebMmcP27dupXr06/fv35+JFy5VHAoGgiCFXQMU2UOd1zX8LIBwjEFhDGCJZBNUOYJUJD4arg+aLaa2qRp9IvbLcv0Ij+Om/ezatRaoOSGHi4eHBpEmTCAsLY/ny5Rw9epS6devSs2dPTp48WdjLEwgEAkExQRgiemg9GJuHNmdIqwqUcLEnKd12dUFthseU3y+aLPW1hFwGjcqXsPmahYWzszMjR47k+vXr/PDDD1y9epXmzZvTuXNn/v77b6FBIhAIBAKLCEMkBwq5jLiUdL4/epsnNnhBcqJG40WxdRtWqeH0nSe5vm5hYW9vz9tvv82lS5f49ddfiYmJoVOnTrRo0YLt27ejUuWfTopAIBAInh2EIZIDKfLsBU1RzhGxhkKhoHfv3pw+fZo9e/bg4OBAz549adasGUePHi3s5QkEAoGgiCEMkRxIlWcvSIpDjog1ZDIZQUFBHD58mIMHD6JWq2ndujVvvPEGt2/fLuzlCQQCgaCIIAyRHBS2N8LL2R6VWl1gnXkLg3bt2hEcHMy6des4cuQINWrUYOrUqcTHxxf20gQCgUBQyAhDJAf56Y3wcrE3K6JsjtiUDPp/e9KgiV5xwVJHYrlczsCBA7l27RqTJ09m6dKlVKtWjW+//RalMn/bjQsEAoGg+CAMkRxY61yrJcDTiVVvNWR424pYEitVY76jgyX0m+gVB6x1JNbi6urKrFmzuHr1Kp07d2bo0KE0atRI9LERCASFRvv27Rk/fnxhL+O5RRgiObDUuVbLS7X9Wfi/eqhU8M3hMMxFUbTaI84OtosE6TfRK+phGikdiXNStmxZNmzYwIkTJ3B2dqZjx4706tVLqLQKBIIiz8GDB5HJZMTGxhb2Up4JhCGSA6VKjaezA4NbVaCEq6Gku9bzsSckgv7fnmT05jOSqmtSM3KGHlQoXG5i53EOhctNwHRpa1GWfNdiqcpIijHVrFkzjh07xubNmzl9+jSBgYF8+OGH4gsuEDwFlColpyJOsfvWbk5FnEKpEmFSwdNHGCJ66IcX1h69TUxSOt6u9nSqURLAyPMh1VGhP87OPQTXKvNxKb8G5zJbcCm/Btcq87FzDzF7vn4CraU8jMLAWpWRFGNKJpPRt29frl69yowZM1i1ahVVq1bl66+/JjMzswBWLRAI9t/ZT9ffujJk3xAm/zuZIfuG0PW3ruy/s7/Artm+fXvGjh3LpEmT8Pb2xt/fn5kzZxqMiY2N5d1336VkyZJ4eHjQsWNHzp8/D0BcXBwKhYL//vsPAJVKhbe3N82bN9edv2HDBsqWLWt2DUlJSQwcOBA3NzcCAgL48ssvjcasX7+exo0b4+7ujr+/P/369SMqKgqA27dv06FDBwBKlCiBTCZj0KBBAOzdu5fWrVvj5eWFj48Pr7zyCjdv3sz16/W8IAyRLMyFF2KSMjhw5VG+XMPOPQSnMhuQ2cUZHJfZxeFUZoNZY0SbQCs1D+NpIrXKSMo4Z2dnPvroI65du0b37t0ZPXo0DRs2FPkjAkE+s//OfiYcnEBkcqTB8ajkKCYcnFCgxsi6detwdXXl5MmTLFiwgE8//ZS//vpL9/j//vc/oqKi2LNnD6dPn6Zhw4Z06tSJmJgYPD09qV+/PgcPHgTg4sWLyGQyzp49S2JiIgCHDh2iXbt2Zq8/ceJEDh06xLZt2/jzzz85ePAgZ86cMRiTkZHB7NmzOX/+PH/88Qe3b9/WGRtly5blt99+A+Dq1auEh4ezdOlSQGPkTJgwgf/++48DBw4gl8vp1auXEHS0gjBEeFoiZiocS+3Q/K9ajVrPkyHLCvloHs/+wMrQJMU2reidqzyMp4HUKiNbqpFKly7N2rVrOXXqFO7u7nTs2JHevXsL/RGBIB9QqpTMC56H2sQvnvbY/OD5BRamqVu3LjNmzKBq1aoMHDiQxo0bc+DAAQCOHDlCcHAwv/zyC40bN6Zq1aosXLgQLy8vfv31V0DjVdEaIgcPHqRLly7UrFmTI0eO6I6ZM0QSExP57rvvWLhwIZ06daJOnTqsW7fOyPM6ZMgQXnrpJSpVqkTz5s1ZtmwZe/bsITExEYVCgbe3NwB+fn74+/vj6ekJQO/evXnttdeoUqUK9evXZ+3atVy8eJHQ0NB8fx2fJYQhApy4FV2gImZyGdi5hCG3j0Mmg4RzCdz4+AZPDj9BlaExPGQykNvHoXAJ0/ydda42cTYveRgFibUqI31jylYaNWrEkSNH2LhxIydPnqRGjRpMnz6dpKSkPK1ZIHieORN1xsgToo8aNRHJEZyJOmN2TF6oW7euwd8BAQG6sMf58+dJTEzEx8cHNzc33b+wsDBdiKNdu3YcOXIEpVLJoUOHaN++vc44efjwITdu3KB9+/Ymr33z5k3S09Np1qyZ7pi3tzfVq1c3GHf69Gm6d+9OuXLlcHd31xk2d+/etfjcrl+/zptvvkmlSpXw8PCgQoUKks573nnuDZG9IeGM2lgwXzjQbMRD21QEuwTdscd7H5P2MI0Hax9w7YNrRO2IIjNRY5HLssb5ezqx8q2GBNUOyJc8jILCUpWRvjGlsFTjbAGZTEa/fv24cuUKH374IV988QU1atRg8+bNoqGeQJALHiVLCzVLHWcr9vb2Bn/LZDJd6CIxMZGAgADOnTtn8O/q1atMnDgRgLZt25KQkMCZM2c4fPiwgSFy6NAhSpcuTdWqVXO9vqSkJLp27YqHhwcbN27k1KlTbN26FYD09HSL53bv3p2YmBjWrFnDyZMndZ3IrZ33vPNcGyLacEdsSu6b2wFmdUQCPJ1Y0a8Bbav64YAXAMoUQ3dnZnwmUb9FcXXCVR5ueEj/GmXZPLQ5RyZ3JKh2AJC/eRgFQVDtAFa+1RB/T8Pwi74xlVfc3NyYM2cOoaGhNG3alH79+tGmTRuj2K5AILBMSZeS+TouP2nYsCERERHY2dlRpUoVg3++vr4AeHl5UbduXb766ivs7e2pUaMGbdu25ezZs+zcudNifkjlypWxt7fXGQgAT5484dq1a7q/r1y5QnR0NPPmzaNNmzbUqFFD57HR4uCgqajUF2OMjo7m6tWrfPzxx3Tq1ImaNWvy5Enxa2BaGNgV9gIKA6VKzYmb0Uz57aJNeSEyMBivtT++erMBJVwdiYhL0VTauDni7+HEk6R0Zu8KzfJmlMPVzxO5UxyVplUi+WYyj/c+Jv6/eFCDOl1NzP4Y5h0eSmjft+n21nvUqFSephW9JedX+Lo6cvxmNFEJqfi5a8IhufVE2EpQ7QC6BPoTHBZToNevVKkSv/32GwcOHGDcuHE0btyYd955h88++ww/P798vZZA8CzS0K8hpVxKEZUcZTJPRIaMUi6laOjX8KmvrXPnzrRo0YJXX32VBQsWUK1aNR4+fMiuXbvo1asXjRs3BjR5IsuXL+f1118HNOGVmjVr8tNPP7FixQqz87u5ufHOO+8wceJEfHx88PPz46OPPkIuz74nL1euHA4ODixfvpz33nuPkJAQZs+ebTBP+fLlkclk7Ny5k27duuHs7EyJEiXw8fHhm2++ISAggLt37zJlypQCeJWePZ47j4i28qT/dycle0JkwPC2Fc3e8XerW5oWlX3o1fAF3mlTiV4NyvAkKZ2Rm/STS+WkRXYHQK0Gl8oulBtVjmrzq+Hd2RuZg2bDTk9P59cf1/BOt5YEvTmUZtN/40lSmtU8DC8Xez745XyhVtQo5DJaVPahZ/0ytKjsU6BGUKdOnTh37hzLli3jt99+o1q1aixevFi4QAUCKyjkCqY01WyQshy/Ktq/JzedjEJuuxBjXpHJZOzevZu2bdsyePBgqlWrRt++fblz5w6lSpXSjWvXrh1KpdIgF6R9+/ZGx0zxxRdf0KZNG7p3707nzp1p3bo1jRo10j1esmRJfvjhB3755RcCAwOZN28eCxcuNJijTJkyzJo1iylTplCqVClGjx6NXC5ny5YtnD59mtq1a/P+++/zxRdf5Mvr8qwjUxfhQHt8fDyenp7ExcXh4eGR5/m0oRhbnrCXiz3zXqtDUO0AlCo1wWExRp6PnHf+uy88ZPTmsyZ1RuzcQ3AstQO5fXYJryrDk+SwjsQcuEzCmR2oM9J0j8kcXfFuP4j3R7/Ht0fuAMZeGXPPR7ui/AqPFFWio6P55JNPdPojS5cupWvXroW9LIGgQEhNTSUsLIyKFSvi5JT73lj77+xnXvA8g8RVfxd/JjedTOfynfNjqYJnHEufRVv27+fGEFGq1LSe/7fN1TEfdavJkNYVdYbG3pBwZu0INZgnwNOJGd0DCaodwN6QcN7bYC1vQYXCJQyZXQLqTHeUyRWRy+So1KBMekLcyd9IPLsbdWb23b1buVrMX7Sc9ddUBtf293AkNVOlk5PPiQyN5+bI5I5PLUxTWFy4cIFx48Zx8OBBevfuzZIlS3jhhRcKe1kCQb6SX4YIaEp5z0Sd4VHyI0q6lKShX8NC8YQIiifCELGR4zejeXPNiVydqzU0AJMeFe32vqJfA2bvumyTsWPOo5GZEE3s4R9JCjmgO6aws2PixIl07T+SuAwZfu5OqNRq+n970sQMhmx8pxmtqvpKXldxRa1Ws2XLFiZMmEBiYiKzZs1i7Nix2Nk9l+lQgmeQ/DREBIK8kF+GyHOTI5KXipKIuFTe23CGKb+bTm7VHvt4W4jNHhd/TyfeaVXB6Liduw++L79Pqb6fY1eiNADKzEzmzZ3Luz3b4/r4Mi0q+/A4Mc3oXEM0fW2GbV3DiuN7n/leEjKZjDfffJMrV64waNAgJk6cSKNGjTh27FhhL00gEAgEJnhuDBFblD1zojU0zIU/tGNikqSXAXs527Px3WYcmdyRzoH+Zsc5la9L6SFf4dmyL8g1d/U3b96kS5cuDBgwAPv0RLPn6ve1kZfaxKprE2m3pXOByjcXFTw9PVm+fDnBwcE4ODjQqlUrhg4dSnR0dGEvTSAQCAR6FLgh8uDBA9566y18fHxwdnamTp06uoZFTxNrCqBPm3m969Cqii8KuYxG5T0pWfIe9ma68crsHPBq8xalBy/H8YVauuMbNmxgwEstUVz/x0jcy1xfm7j0xwXeS6Io0ahRI06cOMGKFSv45ZdfqFGjBt9//73o/SAQCARFhAI1RJ48eUKrVq2wt7dnz549hIaG8uWXX1KiRImCvKxJpCiAPg3kMvi6X3YVy/47++m2NYhU3xU4WenGa+9bllL95uIdNAa5oysAMTEx3Pr9SyI3TyUj+n7WyOy+NjITT1aNukB7SRQ1FAoFI0eO5MqVKwQFBTFkyBDatWtHSIj5jscCgUAgeDoUqCEyf/58ypYty/fff0/Tpk2pWLEiL774IpUrVy7Iy5rFkgLo+51zLwlsCwNblKdb3WwjxFQHTEvdeGUyOe71ulJ66CpcArMVBNPuhfDw+9HEHtmI3OG6rq+NOQqyl4Q+SpWa4zej2XbuAcdvRhdKPxwt/v7+rF+/ngMHDvDo0SPq16/PpEmTdF07BQKBQPD0KdCqmcDAQLp27cr9+/c5dOgQZcqUYeTIkQwdOtTk+LS0NNLSspMv4+PjKVu2bL7piGjR6oHoK4ACtJ7/NxFxqQXahXfz0Oa0qOyDUqWk629dLTafUmV4knRjMpbsxZSwM8T+tZL0J9nCZfa+vrzwrjuuNVwtrmV+m/l0q9TN5ucgFWulzoVJWloaX375JbNnz6ZkyZIsXbqUV199FZkl600gKAKIqhlBUaFYVM3cunWLlStXUrVqVfbt28eIESMYO3Ys69atMzl+7ty5eHp66v6VLVu2QNalkMt00ulRCdnN4syFbqQil1k+V78LrbUOmGDYjdcczhUbUmrwcjyavw5Z9f8Zjx8TNi+M+9/d1zXTM0VB9pLQisflrCKKiEtlxIYzT1Xx1RSOjo5MmzaN0NBQ6tSpw2uvvUb37t0JC7P8egsEAoEgfylQQ0SlUtGwYUM+//xzGjRowLBhwxg6dCirVq0yOX7q1KnExcXp/t27d69A1qWVec8phw6YDN14u9qbmsYIlVpTPWMqB0WGYRdaqZ0t5Xpde82OsXeiRLtBBAxaimPpGrrjsf/Gcn3qdWKPxRoks6rVQKYXkZHmq3XyglKlZtaOUIulzrN2hBZqmEZLxYoV2blzJ7///jvnz5+nVq1afP7550IqXiB4BqhQoQJLlizR/S2Tyfjjjz/yNGd+zCEwpEANkYCAAAIDAw2O1axZk7t375oc7+joiIeHh8G//MbanTrAkckd2Ty0OUv71mfz0OZMf6WWqalMMrhleUq4OhgcM9WFVqo3Qp3pLtlD41CyAuUHLcT7xZHIHR0BUCYouf/NfW5/cZvU+6lo7ZGUiFcYvfkCc3eHSpxder5HcFiMRT0VNRAel+2JKmxkMhm9evXi8uXLjBo1ik8++YR69epx4MABo2okgUBQfAkPD+ell16SNHbmzJnUr18/T3MIpFGghkirVq24evWqwbFr165Rvnz5grysWaTeqQMGzdv8PaTHYbedDycmKftu2tvVnukv1zTKifjztDOqDE8s7XP+Lv4s6/WakYfGEmlKcG/QjYB31+Bau47ueFJoEjem3+Dh949IvNqTzITaAKw+HMbuC9bDJOa8SKZCLFLF4/IiMlcQuLm58cUXX3D27Fl8fHzo3LkzNWvWZPbs2dy8edPm+YpSoq5AUFzJT++kv78/jlk3aYU5h8CQAjVE3n//fU6cOMHnn3/OjRs32LRpE9988w2jRo0qyMuaJbd36k0reuPvIe2Dp2+EADxJymDUprMGG/buCw9Z8+8dg268ButQaxYzsckkutV5gSOTOzL95ZqSrq/Fzs0b35fnUvL16dh5eeue4JPDkdxdtIi4E7/oetlM3xZicZO0Nd9DqnhcXkTmCpI6depw+PBh9u7dS7NmzViwYAFVqlShefPmrF+/XpIGiS2Gm0DwvNC+fXtGjx7N6NGj8fT0xNfXl+nTpxt4HitUqMDs2bMZOHAgHh4eDBs2DIAjR47Qpk0bnJ2dKVu2LGPHjiUpKUl3XlRUFN27d8fZ2ZmKFSuyceNGo+vnDKvcv3+fN998E29vb1xdXWncuDEnT57khx9+YNasWZw/fx6ZTIZMJuOHH34wmqNly5ZMnjzZ4BqPHj3C3t6ew4cPA5rE+A8//JAyZcrg6upKs2bNOHjwoMXXSSaTsXr1al555RVcXFyoWbMmx48f58aNG7Rv3x5XV1datmxpdIO0bds2GjZsiJOTE5UqVWLWrFlkZmbnCS5atIg6derg6upK2bJlGTlypEHV4A8//ICXlxf79u2jZs2auLm5ERQURHh4wf5uFagh0qRJE7Zu3crmzZupXbs2s2fPZsmSJfTv378gL2uW3N6pK+QyZvaQHp7RJ2dOhFKl5uNtmrLczITapD54C3Wmp+E5mZ6kPHgLd2VD3fUHtaqYK0E2l8rNKP3Ot3i1G4TMwVkzf3oKsYfW8WDNeySFHuJxYprZMElu8j2sicfJMEzc1b9WUfEgyOVyunbtyrp164iMjOSnn37C19eXgQMH0rJlS06dOmX23KKeqCsQFCbr1q3Dzs6O4OBgli5dyqJFi/j2228NxixcuJB69epx9uxZpk+fzs2bNwkKCqJ3795cuHCBn376iSNHjjB69GjdOYMGDeLevXv8888//Prrr3z99ddERUWZXUdiYiLt2rXjwYMHbN++nfPnzzNp0iRUKhVvvPEGH3zwAbVq1SI8PJzw8HDeeOMNozn69+/Pli1bDAypn376idKlS9OmTRsARo8ezfHjx9myZQsXLlzgf//7H0FBQVy/ft3i66Q1xs6dO0eNGjXo168fw4cPZ+rUqfz333+o1WqD5//vv/8ycOBAxo0bR2hoKKtXr+aHH37gs88+042Ry+UsW7aMS5cusW7dOv7++28mTZpkcN3k5GQWLlzI+vXrOXz4MHfv3uXDDz+0uNa88tw0vQPpje+0JbY52RsSzpTfLxpJvbs5KkhMsy4OtnlocwATazDuxgtylvatT8/6ZQyur81j0X/TzDXOy4kyKZbYIxtJPL8P1Nl39Q6lq/Pp5wuY/HYPo3Ny+5pZWitglDNTlEt99Tl8+DBjxozh4sWLDBkyhM8//xw/Pz/d49a6PD9P3ZAFBYO5ksnGjRsTERHxVNfi7+9vk1J2+/btiYqK4tKlS7pS+SlTprB9+3ZCQzVh8QoVKtCgQQO2bt2qO+/dd99FoVCwevVq3bEjR47Qrl07kpKSuHv3LtWrVyc4OJgmTZoAcOXKFWrWrMnixYsZP348oPE0bN26lVdffZVvvvmGDz/8kNu3b+PtbXhTBJockT/++INz584ZHNef49GjR5QuXZq///5bZ3i0bNmStm3bMm/ePO7evUulSpW4e/cupUuX1s3RuXNnmjZtyueff27ydZLJZHz88cfMnj0bgBMnTtCiRQu+++47hgwZAsCWLVsYPHgwKSkpujk7derE1KlTdfNs2LCBSZMm8fDhQ5PX+fXXX3nvvfd4/PgxoPGIDB48mBs3buj0vr7++ms+/fRTk5+t/Crffa5akmrv1M1phWg3iZx36lqCagfQJdCfEzejOX7rMSCjRWUfohLSeP+nc1avb94jI0eZbCzyljN0oRVky7lh+3s60bdJWRbvt2xhK1y98Ok6CveGr/Dkn7Wkhp0GIP3hVaYM6snZPW+wcOFCXnjhBQlrtvzcLK01p3GhNVpyvidaD0JOowVMa8E8jY29bdu2nD59mjVr1vDxxx/zyy+/MGvWLEaNGoW9vb1N4T9Txq5AkFsiIiJ48OBBYS/DKs2bNzfQ62nRogVffvklSqUShUIjQdC4cWODc86fP8+FCxcMwi1qtRqVSkVYWBjXrl3Dzs6ORo0a6R6vUaMGXl5eZtdx7tw5GjRoYNIIkUrJkiV58cUX2bhxI23atCEsLIzjx4/rDKaLFy+iVCqpVq2awXlpaWn4+Fj+/tetW1f3/6VKlQI0YWP9Y6mpqcTHx+Ph4cH58+c5evSogQdEqVSSmppKcnIyLi4u7N+/n7lz53LlyhXi4+PJzMw0eBzAxcXFQHQ0ICDAomcpP3iuDBGtzPuIDWeMvAjar4V+ia25OVpV9aVVVV/dseM3pTVSe5yQxpNkaYlXPq4OJg0irTFkSpBty6l7kgTZHEqWp1SfWaTcOs2Tf74j47Gmiumnn35i165dzJ49m9GjR2NnZ5enfA9za9V/fa2FfmRoQj9dAv115xW298TOzo4RI0bQp08fpk+fzgcffMA333zDsmXLSPKVlstT1BJ1BcUff/+CKccvjGu6uhqKMSYmJjJ8+HDGjh1rNLZcuXJcu3bN5ms4Ozvnen369O/fn7Fjx7J8+XI2bdpEnTp1dAZDYmIiCoWC06dP64wsLW5ubhbntbfPlo3QGm6mjmlz1hITE5k1axavvfaa0VxOTk7cvn2bV155hREjRvDZZ5/h7e3NkSNHeOedd0hPT9cZIvrX0F6noAMnz5UhArbdqUvFmqcFNGJns3ddljzn7J61zRpECrnM5N201siSinOlRjhVqE/ihb+I/Xc9quQ4EhMTef/991m3bh2rV6+maeMmkp7bkyTTBpa5tYLGCPnhaJhNHoTceE8KCh8fH77++muGDRvG2LFj6dKlC+27vkJmxV7YeZayeG5RTdQVFF8Ko5lobjh58qTB3ydOnKBq1apGG7U+DRs2JDQ0lCpVqph8vEaNGmRmZnL69GldaObq1avExsaanbNu3bp8++23xMTEmPSKODg4oFRaD7n37NmTYcOGsXfvXjZt2sTAgQN1jzVo0AClUklUVJQudFNQNGzYkKtXr5p9jU6fPo1KpeLLL79ELtekh/78888FuiapFHj33aJIUO0AI62QI5M75noDs9RQT4steZfD21bU9aOxhaDaAbzbpoJN58jkCtzrB1F66Grc6r+ks7LPnTtH8+bNGTN6FB+0K2NxDpUaRm2yLQlTW1Ui1TiLSkgtskJp9evX59ChQ2zatInrIWd5+O0IYv/diCrD2MAyl6grEDwv3L17lwkTJnD16lU2b97M8uXLGTdunMVzJk+ezLFjxxg9ejTnzp3j+vXrbNu2TZesWb16dYKCghg+fDgnT57k9OnTvPvuuxa9Hm+++Sb+/v68+uqrHD16lFu3bvHbb79x/PhxQJOrEhYWxrlz53j8+LFB+xF9XF1defXVV5k+fTqXL1/mzTff1D1WrVo1+vfvz8CBA/n9998JCwsjODiYuXPnsmvXLltfOot88skn/Pjjj8yaNYtLly5x+fJltmzZwscffwxAlSpVyMjIYPny5dy6dYv169ebFRd92jyXhghk36lrtULyml/QJdCf8Z2r4els6NayZVpvV3u+7teAqd0CrQ82gVKl5rczuYsRK5zc8Ok6ink//EG9evUATQx25cqVDO/ZjoaZl7CWEivVCDBXVWKJ24+Ti7RQmkwm48033+TKlSv0GfwecSd/4eG3I0i6ckTn1pQa/hMInmUGDhxISkoKTZs2ZdSoUYwbN05XomuOunXrcujQIa5du0abNm1o0KABn3zyiUEC6Pfff0/p0qVp164dr732GsOGDTNIJM+Jg4MDf/75J35+fnTr1o06deowb948nWemd+/eBAUF0aFDB0qWLMnmzZvNztW/f3/Onz9PmzZtKFeunMFj33//PQMHDuSDDz6gevXqvPrqq5w6dcpoXF7p2rUrO3fu5M8//6RJkyY0b96cxYsX63S76tWrx6JFi5g/fz61a9dm48aNzJ07N1/XkFueq6qZgsJUzoKXsz2da/rxqwTDYHSHKrSq4pvnhEupFS6W2PhOM5pV9GLZsmV89PF0UlOSdY85VWiAd5f3sPc27yHZ+E4zg/yZnFirKjGHDBjSqgLfHb1tdWzOaqPCYO2e43w44QOeXDmOY7m6eHceRvkqNYpcFZCg+FGcm961b9+e+vXrG8iuC4ovxaLp3fOAubv7uJQMSUYIQNVSbvnilcmPBMjRm8/wZ2gUgS++ie+gFThXba57LPX2WR6uHUXM/tVkJpr2OmhDNOY0Qax5NcyhRpOMK4WikH8x5KUWPLp0lC+/24KPLJGodeNo/PAPmpUp/LUJBAJBUeK5S1bNT6TkLEhB6sZprWQ1PzbgJ8kZjNx0FlcHBQqPkvi99jHJ108Ss38VyvhHoMwk4fQOEs/vw63+S3g2fx2Fawnd+bEpGby34QxeLvYGeivaqpa0TOuqpOZISrecOGat/Pppo5DLmDDkDUa/1YulS5fy6aefsmXLFj7//HOGDBliMTlPIBAInhdEaCYP5DUUYou4lZSSValhD09nO+JSMi2OyYkqPZW44z+RcHo76ozspC2ZnSPuDV/Go+lrKFy9zJ6vfXbjO1e1qneSG8wJpRUlwsPDmTJlCj/++CONGjVi2bJltGzZsrCXJShmFOfQjODZQoRmigC2hEJymhm2JC5KlQzXVu9Ymm1424p83b+RhRGmkTs4UaLd25QZ/i3uTV5FZqfpMKzOTCM++HcerH6HJwe/R5kcZ/J8rbW7Ofgu/h62S9Vbw1SH46JGQEAA69at49ixY4CmKeTAgQPNqh4KBALB84AwRPKA1FDI+52rGXXQlbpxWgv/qIFpWy+SnhXy0OqkBOS4nn5FzuNE02VoUlC4lsC747uUGf4d7o17gkJTJaTOSCP+5G88WP0uTw6tQ5kSb3K9EfFpvNlUky2eH8bI6A5V8lx+/bRp0aIFJ0+eZM2aNezZs4fq1auzYMECs+WBAoFA8CwjQjN5QBsKsSYZf2RyR4BcSZJLDf94uzrwea/aBmEaU9fTiojZIq5micyEaOJP/krCuT2gzA73yByc8WjUA/emvVA4GSoILu1bH0c7uXGlUVZeidTeOdq5CrtCJi/ExsYyc+ZMvvrqKypVqsTSpUt56aWXCntZgiKMCM0Iigr5FZoRhkgesbW5m61sO/eAcVvOSRors3I9U3kmtqI1Erxc7IlLztA958z4x8Sd+IXEC/tyGCQueDTuiUeTnsizDBJtgzxTxtJfoRE2rdFcg8LixqVLlxg7dix///03r7zyCosXLzarkCh4vhGGiKCoIHJEigjaUEhuQy/WsKUSRo15UbHciIiZwt/TiVVvNWTea5peClqDy87DF58XR1Bm2De41Q8CuaYgS52eTNyxzTz4ZhiJF/fj7+Goq2oxJSqnVb3d+E4zvHKIw+nzrCmU1qpVi/379/Prr79y4cIFatWqxdSpU0lMTCzspQkEAkGBIjwi+URBdYO1Fv4xRU4vQW5FxHLi6qjg7PQXcbDT2K+mPCxujgoS05Qo46KIPf4TiRf3gyq77LZe01b8vH6tUTdKUxS0t6mokpyczIIFC5g/fz7e3t588cUXvPnmmwYdSwXPL8IjIigqCI9IESO/JeP159X2sZHKkeuPDLwiuRURy0lSmpLTd57o/g6qHcD0lwPxdnXQHUtMU+LlYo9PQBl8gsZQeuhqXGpkN3s6H3yUunXrMuvTTzl8OdxI8EyfgvY2FVVcXFyYOXMmly9fpkWLFvTv3582bdpw9uzZwl6aQCAQ5DvCELGCOYXQp4l2Q3Z3kiaAteLgTVrP/1tX1pufLef159obEs6oTWeIydF5Ny45g9jkDN7vXJWv3wti/86t7Ni5iwoVKgCQlpbGzBkz6NymGcMXbuTNNScM1qtPfjcoLE5UqFCBX3/9lf379/PkyRMaNWrEhx9+SHq66U7HAkFRJyEhgfHjx1O+fHmcnZ1p2bIlp06dMhgzaNAgZDKZwb+goCDd42lpaQwYMAAPDw+qVavG/v37Dc7/4osvGDNmjNW1zJw5k/r16xsdv337NjKZjHPnzhn8rf3n7u5OrVq1GDVqFNevG2oi/fDDD3h5eUl7MQQ6hLKqBaSIiNlCXsI3QbUDSE5TMuGX85LGazVGVr7VMF8lz69HJnL8ZjSNypewWFYsQyPJrhNrq9yNDu1DGDRmIr/+sBrUKjKi7xG5cTJu9bqibD+Y9zac4f3OVRndsarB66L1NkHBhcCKMp06deLcuXMsWbKEjz76iMOHD7NlyxYqVapU2EsTCGzi3XffJSQkhPXr11O6dGk2bNhA586dCQ0NpUyZ7Oq3oKAgvv/+e93fjo6Ouv//5ptvOH36NMePH2fPnj3069ePyMhIZDIZYWFhrFmzhv/++y/f175//35q1apFcnIyFy9eZOnSpdSrV48dO3bQqVOnfL/e84QwRMygzU/IudHqb/C2GCP5YdQEeJlvaZ0T7bqnbb3I1Jdq4u5kR0KqbWqqpvjqnxt89c8NvF3tiUnKMDtOvxOu1ohwcnbhftXeBLxdk+h9y0kP19xNJJ7fR/L1k3h3GsoitZrNwfeY2cP4dclvw7A4YW9vz8SJE+nQoQNvvPEGDRo0YM2aNfTp0weAxMRETpw4wdGjR2nUqBGvvPJKIa9YIDAkJSWF3377jW3bttG2bVtA45XYsWMHK1euZM6cObqxjo6O+Pv7m5zn8uXL9OjRg1q1alGpUiUmTpzI48ePKVmyJCNGjGD+/PkFklPo4+OjW1OlSpXo3r07nTp14p133uHmzZuiZUMeEKEZE0jpISO15T1IV0a1RtOK3kZCZdaIScpg4q8X8sUIyTmvFPRDOdpcFYdSlfB/ayElOg9H5qAxrlTJsTze8QVRv8zg3t3bvLfhDEv3X9O9xlJew6IQRitoGjduzJkzZwgKCuKNN96gZ8+eNGvWDC8vL7p06cLChQvp3r07s2fPpgjnoQueQzIzM1EqlUZJjc7Ozhw5csTg2MGDB/Hz86N69eqMGDGC6Oho3WP16tXjyJEjpKSksG/fPgICAvD19WXjxo04OTnRq1evp/J85HI548aN486dO5w+ffqpXPNZRXhETGAtudPU3b45rBk1MjRGTZdAf6shBm3i6ntZlST5hwqFSxgyuwTUme4okyuSXzaqflhI3yiRyRV4NOqOS9UWxOxfRcp1jWhbatgZwr8bhWfrN1mkfJXNwff45JWazN512eJrOOX3i8zcHkpE/LPvLfH09GTLli106tSJFStWULt2bYYMGUKbNm2oUaMGc+fO5eOPP+b69eusWbPGwK0teHZJTk7mypUrT/WaNWrUwMXFRdJYd3d3WrRowezZs6lZsyalSpVi8+bNHD9+3EAzJygoiNdee42KFSty8+ZNpk2bxksvvcTx48dRKBQMGTKECxcuEBgYiK+vLz///DNPnjzhk08+4eDBg3z88cds2bKFypUrs3btWoOQT04uXryIm5uh4KItBnyNGjUATR5J06ZNJZ8nMEQYIiaQmtz5V2iEVUMkP42agsDOPQTHUjuQ22f3iFFleJIW2Z3MhNp5nv+JXiKrqVwVOw9fTYffa8eJ+WsVysRo1JlpxB78gaRLB0nvOpqR8ZbfDzVkdfo19NLkNoxWHJDJZAwbNoxhw4YZPfbRRx9RuXJlBg0axO3bt9m6dSs+PsVf9E1gmStXrtCoke19pPLC6dOnadiwoeTx69evZ8iQIZQpUwaFQkHDhg158803DTwKffv21f1/nTp1qFu3LpUrV+bgwYN06tQJe3t7VqxYYTDv4MGDGTt2LGfPnuWPP/7g/PnzLFiwgLFjx/Lbb7+ZXU/16tXZvn27wbEHDx7Qvn17Sc9Ha7SI0vq8IQwRE0hN7lx79DZNK3pb3OSkGjVSxmm9K/mFnXsITmU2GB2X2cXhVGYDqQ/eyrMxMntXKF1ra7w92tCSKU0Ul2otcCpfj9h/15NweiegJuPRbSI2TMStXle82r2Nwtndpmvb6nEqbPIzEbdv376UK1eOnj170rx5c3bt2iVJu0VQfKlRo8ZTDxFoPQJSqVy5MocOHSIpKYn4+HgCAgJ44403LCZeV6pUCV9fX27cuGEyKfSff/7h0qVLfPvtt0ycOJFu3brh6upKnz59+Oqrryyux8HBwUjB2M5O+rZ4+bKmVUbFihUlnyMwRhgiJtBumNa0N2TAzO2XcHey53FimsnNw5xRk3rnAo4vBCJT2Fkcp09+6YFoUOFYagcAOY15mQzUanD230lCQiB5CdPoe3u0oaURZkJLckcXvDsPx7VWB6L3LicjKgxQk3h+L8nXj1Oi/RBca3e06e4jPz1OBVmxUxCJuC1btuTkyZO8/PLLtGjRgt9//5127drly3oFRQ8XFxebvBOFiaurK66urjx58oR9+/axYMECs2Pv379PdHQ0AQHG34PU1FRGjRrFxo0bUSgUKJVKnZciIyMDpVJpdE5+oVKpWLZsGRUrVqRBgwYFdp3nAZGsagKpImLabrL9vz3JuC3nTOphaI0a/e0qM/4xkb98wpN/vjMrVa5UKTkVcYrdt3ZzKuIUSpUyX/VAFC5hyO3jjIwQLTIZYBdLyZIP8twlV3/dOpEyD/N5C44B1Qh4ewklOr6rl8waR/TuxURunkr647t5WkNu2BsSTuv5f/PmmhNm3+u8zJ0fycymqFSpEsePH6dBgwZ06dKFH3/8Ma/LFQhyzb59+9i7dy9hYWH89ddfdOjQgRo1ajB48GBAU/01ceJETpw4we3btzlw4AA9e/akSpUqdO3a1Wi+2bNn061bN50h0KpVK37//XcuXLjAV199RatWrfJt7dHR0URERHDr1i22b99O586dCQ4O5rvvvhMVM3lEGCJmCKodwDutKth8XnhcqkHFh75Ro9+XxbvjUBJO7yAx5AAzugca3Fnvv7Ofrr91Zci+IUz+dzJD9g2h629duZ8WnA/PTIPMLkHSuF6NPAzWbjsqjj0INjCogmoHcHRKJ97vbD5UIJMr8GjyKqXfWYlL9ewfk7R7IYR/P4YnB39AlS7duMiLlkpBGgr5XaFlCi8vL/bs2cPAgQN5++23mT59OiqVKtfzCQS5JS4ujlGjRlGjRg0GDhxI69at2bdvH/b2mr5SCoWCCxcu0KNHD6pVq8Y777xDo0aN+Pfff42SrkNCQvj555+ZNWuW7tjrr7/Oyy+/TJs2bbhw4QJLly7Nt7V37tyZgIAA6tSpw5QpU6hZsyYXLlygQ4cO+XaN5xXRa8YCx29G8+aaE7k+39/DSaeHkdP1rlarSTmwgriQgxw7ekSXZLb/zn4mHJyAOsfWJMsyBRxjBvE4srrkvjPmULjcxKX8GqvjPqi9GH/HWrnq2msqEbaUSymmNJ1C5/KdAc0mP3P7JSLi08zOIwMcIy4Qd2A1EffvZD8HDz98Og/HuWozi+sI8HTi0MQOnL7zxOawirU+PTI0kvM64TYbkfoZy48uw2q1moULFzJp0iRq1qxJyZIldS5yLy8vJkyYQM2aNfN0DUHBI3rNCIoK+dVrRhgiFshNw7mcyMhuzpYzx6BugAsdO7QnPDyc06dP4+3jTdffuhKZHGlmLhme9r7cv/A+6jw7s1S4VpmPzM50eEatBnWmJ3MabaJXg3IoVWp+OBrG7F2XJc2unwhrMH9WBumb5T+mQ9nOupDUV3/fYPH+a0bz6De4a1fZi88+/5wF8xeQkZFdjeNcpRnenYdj5+lnci1dAv0IeRCfq/wLqYbCxneaIZfLbDZ0tp17wLgt56yOW9q3Pj3rmy9DtIXdu3ezfft2kpKSdP+uXLnCkydPWL9+PT179syX6wgKBmGICIoK+WWIiGRVC+gnV8og18aIftVGzrva3377jUaNGtGnTx8+//Fzs0YIgBo1sRmP+LCnPWv+lBObYl1UbHSHylQu6UZMUjpeLg7EJqfj7eZITGIacw93x6nMBtRqQ2NBa5qmRXbH38NVZ0B5uzrg7erAk6R0K6+F+URYshJhN95Yzjd7XQjwdGFG90DGda5KdX83I8+Lfw6DYc7s2fTr158W3fsRf1PTBC7lxkke3jmHZ8s38WjSE5nC3uCSf4VGGa1Qammv1NySUZvOGLwfUg0dqSGj/JTp79atG926dTM4lpCQwKBBg3j11VeZMWMGn3zyCXK5iNwKBIKCRxgiVtAmV+YmNAHWqzZeeOEFfv31Vzp27MjUUVNJqJaAc0Vn7NzMvzUVS6kY1LISSw5cNztGS6sqJU1eV6lS8+2Rxjx6AI6ldiDTC5+oMzU6IiXljXmSlG4xNGEKbSKsOWQykNnHoXAJIyKusoFB0CXQ32plSpxDSbx6f4rD5cM8+ftblElPUGekEXvoB5JC/sa760icylouO5Za2ivVAMhpFEo1dCyVNEN26CdnMnN+4+7uzi+//MLcuXOZPn06Z8+eZf369YXiiRQIBM8X4pZHAtoOsNNfzn383NKddZs2bVi9ejVnDp/hzpd3uDL6CtcmX+PeqnskXk40Gh8WKZdkhHi52JvdwLTeHmVCbZJvTCb5zlBSHvQl+c5Qkm9MRplQmx71Ahi1yThJ0xpSE2FldglGCZlar1HP+mV0Jb85iUpIRSaT4RrYjtJDV+He8BWQaT7KGdF3idw0hUdbPycj+p7F6+sbieYwVfUkBamJpqaSmbVo/86ZzFxQyOVyPvroI3bs2MHBgwdp1qwZV69eLfDrCgSC5xthiEhEIZcxqFXFXG1KYP3OesiQIcREx9BiaQteGPYC7nXdSb2fyu35t7m7/C7pUenIkFHKxZ/1B6WVisUmZ/BXaITZx3WltJ4uKJMrkxlfH2VyZUp5ODO2UxV+OnXfYgjG29WexW/UZ+M7zfD3yH5d1JnShMe047QGwQ9HwyRVh+i/lnJHV7y7vIf/wEU4+FfVHU++doyH340ies8yMhMeW5zPkpGokMvoUS8gV2E5KYYO6L8Php8Rf0+nQlGFffnllwkO1lRoNW3alJ07dz7V6wsEgucLkawqAf0k09uPk1mSlVQp5YWztapCWzUDoFKriDsRR8QvESjjlfgG+TL5/SUs/9NT0rqlXjvn89scfNegZ4sltNUce0PC9XrgSEuETboxmZy2cM7cClMiYoDJJGK1Skni+X3EHt2EKilWd1xhZ4dbox64N++DwsmwrwRoEk1bVfU1+fzMdWG2BamJpgUpmJYb4uPjGThwINu3b+fTTz9l2rRpIm+kCKBNEKxQoQLOztI7cgsE+U1KSgq3b98WVTMFjSnFSy8XTTKkpr+JefQrPmy5q91/Zz/zgufpEldVaSpS/krhwY4HuLqXQN60H661OyCTSdsUpJZ+5mbT1d9kl+6/xuL9mpCRuaoZ7afNnHy8/msGmFUbBcw2/+uYeQTf06tYdSyWhOziGhycnHBp1hf3Rq8gt8/+0uiXWetjrXRXKvlReltYqFQqZs+ezcyZM+nVqxfr1q3D3d02qX1B/qJUKrl27Rp+fn6ih5CgUImLi+Phw4dUqVJFpwWjpUgaIvPmzWPq1KmMGzeOJUuWSDqnsA0RcxuztoLm/c5VqeDrip+7E0+S0pm9K/8kupUqJWeizvAo+RElXUrS0K8h9+/d551R4zmw6w8cAqri3WkYjmWs561IuSPP7aarv8nmLEXNbUM9GeDpYk9ccobJ1x5gWNuKrD4cZnRuV3kwK+2XABCTouLzf9NZcSqddD2lZ4WbN56t+uFWtwsyucKswZhXHRl9jxRQpLwdtrJ9+3beeustypYtyx9//EHVqlWtnyQoMMLDw4mNjcXPzw8XFxfRdE3w1FGpVDx8+BB7e3vKlStn9BkscobIqVOn6NOnDx4eHnTo0KFYGCK5EbKS6lrPiwt+94WHvLtgPdH715AeeRPXwPZ4tRuEnYfp0AJIuyO3ddM19fxNz6FC4RKmSUzNdEeZXJH8SE2SyyBnOokcFUccx+JPDPov5904FTMOpvHj+QyDc+y8X8Cr7QBcqrVELpMZPR+pGh+AUXm3VM9ObvM/CiOMc+XKFXr27ElkZCSbN2/mpZdeKtDrCcyjVquJiIggNja2sJcieI6Ry+VUrFgRBwcHo8eKlI5IYmIi/fv3Z82aNcyZM6egL5dvWGswZ6os15ROSE7y0txsb0g4ozadxeGF2vgPXETixQPEHv6R5OvD8Wj2Oh5NX0Nuny2DbEvppy29WMxVc5guRZWjTK6c/ZcJAyI3mJqjqfwKpWXGiaHlPOV839OZD1s4MO3vNLZfzQQgM+Y+j/+Yi0NANUq0G0R4+br8cDSMQa0qopDLJJfuvt+5GltO3TWpfwKY9KpJLe81RUE0yJNCjRo1CA4O5q233uLll1/ms88+Y8qUKeJuvBCQyWQEBATg5+dHRoZ1PSGBoCBwcHDIl7yxAjdERo0axcsvv0znzp2tGiJpaWmkpWVLfcfHxxf08swidWO2ZQM3F+qRsinl7Ekikytwr/cirjVaE3dsC3HHfiLxwl+U6DAEl+qtkGdtDlJLP20RzMopMqbFkgCcdgVfvdmA8LhUyQqttuBHrMXHa/kp2NbXhddv9WTnP6dJux8KQHr4NSK3TMOpYkOmR77Nt0dqMaN7IF0C/fFysTebC6Q19EZ3rMLojlXMJtWa6yMjRcckJ3n5DOUHnp6ebNu2jZkzZzJt2jROnfqPIZNmo3TyLJYhp+KOQqEQDdcExZ4CNUS2bNnCmTNnOHXqlKTxc+fONWhgVJjkt+KlteZm1jYlcx4auaMLJToMwa1eV578s5bH2+bh+EItqr06mgXDe5rclEy59a0JawF4Oduzon9Dmlcyre8B5gXg9I0XjZhaWJ6k800RhZekcXYv1KFUvz6k3DxF7KF1ZDzW9K9JDTtDeNgZ4mu25d3bAxjVs6XFhGQ1hoZeTm/Y8ZvRNnvVLJHXz1B+IZfL+fTTT1H7VGDetPf5Y9devNr0x73hK5Qu4VrgnhmBQPBsUWCGyL179xg3bhx//fWX5H4IU6dOZcKECbq/4+PjKVu2bEEt0SL5rXiZm1CPPtY8L/beZfDrPZ1WTg84vnERIStG8lvqaRp+9hl+ftk9WCy59a15M+b1rkOrKuZzUbRYU0jNL+n8nASravBQ7W2UI6JFpYYIfAhW1UAmk+FSpSnOlRqRFHqQ2H83oozXSMEnXT5M0tWjzP0vCM9W/VC4mC6X9nKxp0ugv9n15LdXLa+fofxkb0g4G8JL4f/uKmIPr+fJgW9JvPAX6V3eY0RcaqHonwgEguJJgYkCnD59mqioKBo2bIidnR12dnYcOnSIZcuWYWdnh1KpNDrH0dERDw8Pg3+FRX4rXuZ1U5LqeRk9oDdXQy+ydOlSfvvtN6pWrcqXX35Jenq61Xb2gGRhLaVKzfGb0Ww794DjN6ONhMisKaSaE/HKRoXC5SZ2HudQuNwErLetVyFnVsZAzf/nsG60f8/KGIBK72Mvkytwq92JMkNXU6LjUOTOWZ85lZKEM7sI/34MKbfPmbxebHKGgVhZztfE183R5Hk5kfreFkS4MDfoe2YUzh74dB2F/8BFyOwciNg0hUc7v+SjTUckidMJBAJBgVXNJCQkcOfOHYNjgwcPpkaNGkyePJnatS33AoHCL9+F/EsMzGu7d2udgE1VsURHRzNjxgxWrVpFpUqVkDcfSEpAfZPJhbaUmuZnsqQ2TLQnJJwfj2s+L7kt+9XSVR7MDPsfDRJXH6p9mJUxgH2qphbPVaUlEx+8lfhTW1FnaJ+fDI9mvfFq8xYyhaETUVsabeo18fdwJDVTZbIMWTOrbWJ3ef0M5Rfm1qFWq0i88Bexh9ahVmYydtJHLJwxCTs70dJKIHjeKHLlu1rat29P/fr1i0X5rj75USppiyEBpg0BrUcDzJeKmjIEQkJCGPLeGE4dPYhThQaU6PgODiUrmFyntU3MkraKpTVYQ7u55VYILSdyVDSVX8GPWKLwIlhVw8ATYo3MhGiidy8h9fZZ3TGHgKr4dp+EfYns57d5aHPiUtIt6s3k/H/t32Db62XtMwQa4+folE4FmiNiraxZmRJP7OH1JJ3fS506dfjqq69o06ZNga1HIBAUPWzZv4VeswSkNGKTMoeUUM9foRG0nv83b645wbgt53hzzQlaz/+bvSHhue5JUrt2baYtX0/J3tPJjIsk/PuxRP+5EmWycYfciLgUs89BqVIz5feLZpMlwXqTN3M0reiNv6cDjqV2ABhJw2v/1jwuLUxzQhXIdlVLTqgCbTJCAOzcffDrMwuv9kNArrmjTw+/Tvj3o3lyaB2q1EQCPJ1oVL6E1QRSLxd7SnnkrY+M1hh+qba/bl5TpGaqLPYXyg+shZK04Zpvf/8TJycn2rZty8CBA4mIKNh1CQSC4omQeH/KWAprgGnNiZx3z7nx0Gg9DmplBgmndxJ7bItGwbRVP9wbdkOm0Mjzers68Hmv2iY3SH0Jd0vkNjSw4vheVl2baHVc8p2hOm0SrafBy4wSqyUc7eSkZaqsJsymRdzg8fYFZD55qDsmc3RlwLDRDHx3BO9sCrF6rY3vNEMul0l6z3K+v6ZUe82tWaqnJS9ePlu8ezLUrF27lilTppCRkcGnn37KqFGjRLhGIHjGKbKhGVt5Fg0RsNzIzRYlV1uvqb95KJPjiP13A4nn92FXIoASHd/FuVJjnf6I/kamVKk5diOK4b/+SjqxVhVSpTZ5y8nuW7uZ/O9kq+NSHvQlM74+oOkA3Kt+GTycHViy/1quKnCkiKyp0lOI/XcDCWd3gTJTd9yzhA/yBq/h3uAlZHbG6oJatK+JNQPAlKFqK9Y+K/mR42NrmDA6OpqPP/6Y1atXi3CNQPAcIAyRYsjTSEQ0ld+RHhXGk7/XkHrnAk7l6+PVdgBOpavrNrK/QiOY/tdmkt1/l5w8mts1noo4xZB9Q6yOU0SOoJFfY87eiyMmKburnZeLPRlKFUlpxhVZ+UVmfBRxR7eQfOkAKr3KL4W7L54t++JWp7NRQitk55JYMgDyo9NvzmvmfB/yM8cnNwbNf//9x6hRowgODmbAgAEsWLAAf3/zJdACgaB4IgyRYojUvia59TZo2RsSzrStF4lJyhbqUqvVpNw4SeyhH8mIvotzlWZ4tenP5H5BLD/5u03Jo14u9pz+uIvBnXhOL0Cj8iU4feeJkVdAqVLS9beuRCVHoTaxHavVoM70JOnGZEx5Y7ThCjdHOxLTMo0ez08WdCnJH98tYfPmzQbH7bwC8GrTH5eabZHJ5DrvxPSXAxm1ybwBsKJfA2bvupznTr/6DGxRnpdqB+i9vrb3T7JGbkI8KpVKhGsEgmccYYgUQ55maebWsw94/6dzRsfVKiVJlw8Td2QTmbHheNZqi+8bCTiVzTBKHgXThsH7nasxrnN2Z1ZTd805QyH6d9H77+xnwkGNqJ2+MSK1aka/c69mjvwl52Z94cIFho+byImDfxqMs/ctT4m2A3Cu0oyv+ze0aGTIgBKu9gbGYX6ifX09nR2KRPmvFhGuEQieXUTVTDFEq+Rq7l5ShmZDkarkagl/D9NVDzK5ArdaHSj97kq8g8aQeP8CN2ec5cG390mPSjceLwO5fRwKlzBA4w0Z3bGK7nFzAmo58zG0gmp7Q8LpXL4zi9ovwsvBUMFVnekpqXRXjUZobHznahbE0vKGvpBd3bp1Of7PPhZt2IFH5Qa6MRmP7xD1+xyc9nzCjXMneBhrvhpJDQVmhED267tfYjVNQQuiafHx8WHlypUEBweL6hqB4DlGeESKELnVCbEVKVUPns72JMiOk3J9NY92PCIzMRPvtt6U7F4Se297g/Ha5NFVORJcLYUBTF1T39Ow9exdPtzxBzK7BKvJsaZY2rc+r9QtrQsbPE5Iy3OjPQ8nOxa8XtdiY8KvN/3BigVzuHrxjMFjjuXq4NVmIE4v1MzTGnKLLV6Xp+UR0SdnuGb27NmMHDlShGsEgmKK8IgUU3KrE2IrljRNQGMEtazsDZTAp7MP1RZUo1TvUsQFx3Ft0jUitkSQmZidg1HC0cfACAHrfVFMXVPbJwXA38MVZXJlMuPrZ5XqSvmoZsvCP1FeBlQ0reiNn7sT3q4OeLuar2rJDxRyGWPe6sXl8/+xfft26tatq3ss7e5FIjdOJOrXWaRH3srztbTvm5eLvcVxWrReF29Xh6fidbMVuVzOu+++y7Vr1+jXrx/jx4+nUaNG/Pvvv099LQKB4OkiPCJFkPxQcpWC9fwNFa5V5iOzi0MmA2WKksd7HxO9Lxpk4NvNlyov1+CfAQdwyHHnKjX5Nif6Za62eFRMycJ72vuSFtmdR5HVbV6HOWRI1+iIiEvm4r97Wb/iC25cN9RfcanRBq/W/bH3ecHkNax9KbV5H9rmgvoS+ZYY0qoC3x+9DRSs1y2viOoagaB4I5JVBZLRbpp/hUawNmuD0seU5HpmfCZR2x/x5J8YSniXYM6sObz77rvY22ffnUtNvs2Jflhg94WHjNx01soZptcItsvCSyE3Gh3+bvaUeXSSbd8vR5nwSG8yOa61O+LVqh92ntkdkr1dHQzKkgM8nZj+ck1KuDqaNU5tSXa2VkZcVBDhGoGg+CIMEYFNWPM+mPI2OMt86Ob2BifWH+TPbb9QumwFFsz9jL5930Aul0vqi6KPqQ1e2uZq6LXJibWS39ySG42OdpU92f7TeuKO/4wqOTZ7gNwO9/pBeLZ4A4VbCRb3qYe/p7NNHjFbmyI+La9bfhATE8NHH30kqmsEgmKEyBER2IS1fI7MhNok3ZhMubQJqCP7kXxnKI9D3+fKf4lUq1mFF4eMJ8beh/79+1Gtdj327duHXIbFPBR99Hvt6G+GUqo3FC5hyO1NGyFgXNmTX+Rcm1KltthzBuBCRDIejXtQZvi3eLUdiNzRVfOAKpOEMzt5sPpdnhz6ARd1qsneRkqVmuM3o9l27gHHb0Yb9PSR2stIO1d+9E96Wnh7e4vqGoHgGUYYIgKJ5ZpyLt3yIzGmLp1TozniOJ4tDnNY5vAVe1/4jhv9H9P9rbe5H68kKCiITp06USLprsnk25x7nrlkXGvN1QBkdgkS1i59nKuDtK9EzrVZM+b0k0UVDk54tuhDmfe+w6PFG8jsNXOpM9OIP/ErfTo2Ys6cOSQkZK95b0i42WaIWp5WsnNh0bhxY44fP86aNWvYvXs31atXZ9myZWRmFqx4nUAgKFhEaOZZRqWEO8cgMRLcSkH5liBXGA2zJZ+jqzyYlfZLAEODQntz/l76OLZfB6dzP3Pn5lVee+01Pp09h3hHP6vKqjmREm7wLXmPVN8VVtet3ygvJy8GlqKKnxslXDSVNZ/tvsyTpHRJIQ4tUpNzTSWLKpNiiT/xC/E5+tj4+voybdo0Krd9lXG/GHtbzCWYFnbY5WlcX4RrBIKijcgREUDodtg7GeKzO8biURqC5kNgD4OhUvM55Kg44jgWf2KMvBqgMUYi8KF12lKUKjWNM0I49ssqosIfMHbsWD7//HOcnZ1tehrWtFVW9K/HoiuDci0LDxo12C2n7lqt0DHXBTkiLoUzd5+w/sRdq8/HUrLoyCae/PvzN6xduxalXh8bBw9f3FqY7mOjNYwOTewgybgraPKjoZ4tiOoagaBoIgyR553Q7fDzQIyLQLM2pj4/Ghkj5jZ8fZrLQ9niMMfq5fumf8wJlSZfQZ2ZAaF7iPj7RypVrMD69etp3LixDU/G+uaWW1l4fTl4KV+CnA3qbOmSa0uy6PXr15k5cyabN29G/+tp5xWAV9uBuNY0vvM3VWmTm80/L96M/GyoZws5q2smTZrEmDFjxG+GQFCICEPkeUalhCW1DT0hBsg0npHxF43CNNY21x7yYyxz+MrqEsamj2a7qqX+FUl/fA/X4yu5dfUS06dPZ9q0aQblvtawtkHuv7OfecHziEyO1B3zsi9J/INuxEUbq5lqtTq8XOyJTTavNurtas/0V2rh526PwuU2MamPCYuUs3BbBmqJKVa53YgvXrzIu2MnEnxwn8Fx1zqd8e7yHnJ78zk0T6ubrpaCaKhnKzExMcycOZPVq1fj6urK+++/z9ixY/H09CyQ6wkEAvMIQ+R5JuxfWPeK9XFv74SKxnfW+ht+Tln03HhEtMgAPzc7umYc4/PPPqNBgwasX7+eGjVqWF+rRJQqJWeizvAo+RElXUrS0K8hIOerv2/w/dEwYlOyDY4ATyf6NinL4v3XzU+YxcRe6Wy9u8LAyFFleJIW2V2SPkleQhPHb0bz2qx1xB5eT+qdc7rj9iUrUPLVqdh7m+/EbMvmn1dvxtNs2miNBw8eMH/+fL755hucnZ0ZP34848aNw8vLq0CvKxAIshHlu88ziZHWx1gYp1/WOahVRYNGfMGqGjxUexs1rdOiUsNDtQ/BKmPjQg1EJmby0sCxHD9+nISEBBo0aMDSpUtRqVTS1mwFhVxBE/8mdKvUjSb+TVDIFSjkMsZ1rsrp6V3YPLQ5S/vWZ/PQ5hyZ3JEKvq5W57RzD2HVlU8MjBAAmV0cTmU2YOceYvH8j7rVYOH/6pGWqTIquZVC04reVKhZD/++c/Dt/iEye0cAMh7dJnzdeJKuHDF7bk7ZfHOkZ2Yyfd82FB7nULjcBLLfD+1qZ+0Itbh2qY3ynkZDvTJlyrBs2TJu3brF22+/zbx586hQoQIzZ87kyZMnBX59gUBgG8IQedZwK5Vv43JqU6iQMytjIGDcQVf796yMAagsfKyiElJp0qQJZ86cYdiwYYwfP54uXbpw9671RM+8YEo3w3p5sArHUjtMPqLVLdE8bt6QWvHPTfp/e5JxW87Rf80xxsxdxvndazSeK5XS7Hn669a+B26B7fEfuBh7n7IAqNNTeLxtHve/Hkzkz58Qc2ANCef3kfEk3GAOS5v//jv76fzLi6T6rsC5zBZcyq/Btcp8AwNLikEjpdTalnH5QenSpVmyZAm3bt1iyJAhLFiwgAoVKvDJJ58QE2PZOBMIBE8PYYg8a5RvqckBsdTazKOMZpwEcmpT7FM1ZUTGeKJkhu71CHwYkTGefaqmFufTbkQuLi4sXbqU/fv3c+3aNerUqcP69et5mpHCJ0lpJqt/tNhliaWZQ4pYmjYc1FUezBHHsXyd8Qn1gj/UhM+W1NYkFptAX7zM09mBFf0074GDbzn8By7CJbBd9tiER6SGnSHhv23E7F3OwzXDiT+9Q/damtv8tUm+T9IfGRw35+2xZNA0reht4D3LSWE21AsICGDRokWEhYUxdOhQFi5cSIUKFfj444+Jjo5+6usRCASGiByRZxFd1QyYLHo1UTVjDaNk0fKeKO4d5/zlK6w+m8zehEoWPSGW8hViY2MZO3Ys69ev57XXXmPVqlWULFnSpvVZXKuJyg9zORH62Hucw6nMFqvXS3nQl8z4+mYfN6e9okameUdyvB/mkkanv1yT47eiWX/iLmq1mqSQAySe/5OMx3dQpSUZXde9/kvU7D2OY9Ne1FNn1eTRRCZFsuDUAp6kmQ5VmCp7tpbfYa3UuqiIqkVFRbFw4UJWrFiBXC5nzJgxTJgwAV9f38JemkDwzCCSVQVmdETKQNA8m40Qa+RsnJeze6y1jUh7/h9bf2P151NxtLdjzZo19Ohh+zqlVH5I7ezbo1ky/8R/avWalsTSrGmvqLOqmGRZVUxW+9VU8+XgtceGc6jVqJJiSX98h5QbJ0k4nR1OqtesNX/v3oa3t7fJyiIpz02VXNmmpNfi0FAP4NGjR3z55Zd89ZWmEmz06NF88MEHeTKCBQKBBmGISEWi8mixpRCen60bUc7xysQnJB5YQeyVEwwZMoRFixZJLr+UWvkhXUlWxQt1FxGfEZ1rsTSplUbBbdfRqH1PqyWwbk4KElIt55YkhvxNzN7lqJWasFCVKlV487NxbE1ZbXUdOUl50BdlfH2bvBmFrexqK48fP2bRokUsX74clUrFqFGj+PDDD/Hz87N+skAgMIkwRKRgg/KowDakbkRmwyNqNYkX/iL58HeU8PJk5cqVVr0jtuhY7LzwUJIcO0DJUldJ8/5BsywbxNK02KK9Urnj25LKiWWy7OubfBxY+5IHffu8TlRUFAByZwVlR5XFvbab1fn1Sb4zlCGNOvPRy4HWB2dR3AwRLdHR0SxevFjXv2bo0KGMGTOGKlWqFPbSBIJihyjftYY2hyKn6Fd8uOa4mQRCgTSkdHa11K0WmQz3ei9SY/Q31KtXn549e/LGG28QGWk+pCCl6Zy28sOWyo1HkdUZXn0Gfg6GXpkSDiVxfjLYqo5IFF6SrhOFl64HjTU6VLccOuhYoyROLwQyf91O7EtWAECVouTOottE75eWnKlWa7RSlMkV+f3MA5QqtcXuv1qkNOcrqvj4+DBnzhxu377NxIkT2bRpE9WqVaNHjx4cOHDgqSZSCwTPE8+fRyQPyqOCvGFJLM0cm95txu3gPxk3bhwqlYrFixczYMAAZDJD40Zq07mlfevzSt3SknJEQJNousRjMw6pkZxxcuSRQkFJxxI07PQ51OxJcFgMR2884qt/bpo835b+PJaSffXZPLQ5B69GsubfMLOaLqBJjM1MTSZ67yckX7miO+7d0ZuAfgHI7Ex7KUx5e0z148kZcissifeCIiUlhU2bNrF06VIuXrxI3bp12bZtGxUqVCjspQkERR4RmrFEHpVHJeVdPOu5J7nA1t4sWpb2rU/P+mV49OgR48e/z6ZNG6nfoh3T5y6mZ5v6Om+Lrcqee0PCeS+rwsMc2moXmSxnMbRh9ZG1poHWOhbrlz17OdsTl2K6903OyqP0TBXrj9/m8PXHHLr2yMQZGuRO10k49RmPd2cnubpUccGtrhuOpR1xKu2Eg5+DzjCRqhqrb2B0CfQvdIn3gkKtVnPw4EHeeecdXF1dOXbsGO7u7oW9LIGgSCNCM5bIi/Jo6HaNN2XdK/DbO6a1IKSMyYlKqTGQLv4qWeiqOKG9U7bVCIFsDYzTkZncqj0Yv9dncDEklNe7tKRyj9HsOn8fsF3HIqh2AF/3a2BWR0SOihn2P4KREQK6mqC9U0ClNBJ+y8k+VVO+8Z9JBIYaGqa0Vwa3qqibR46K5vJQesiP0VweqlnTK9VR3DkCF3/F4d5RBrUox7XIBDPPWoMqtTJ+vapT+p0yyBSaFSbfSCbq9yjufXWP69Ouc2l4KHeW2ZNwpT9JNyZLkq7XV109cStacmisuCGTyejQoQM7d+7k7t279O/f36A7skAgyBt21oc8Y+RWedRcR1ttXkmfHzV/WxuTMxH2GU+atZgLYgHtHXTTit4GLn/nyk0o/c4KYg+v486ulbx25gDLvl7F8FfbM6N7ICM2nDFbPjyje6DB3Xi3uqX5ChkjNxl7RprKr1BaZmnTVEP8A43nq2IbnfCbqYqhHvUC+OGcIwvSltFUfgU/YonCi2BVDYNwTICnE6M7VqG6vxsH/1jL2IxvDdaQInfBYRuQmaw7luniT92EvoRjSUhOTlpkd0q03oCDnwP3V90j80mm4RClmoQzZ0m+fg+fl9/HuXw9C/MZvAqEx6Vy/Ka03JOnIfFeUAQGBrJlyxZeeeUVpk2bxvz58wt7SQLBM8HzZ4holUfjwzHd8D4rR0RfeVSl1BgLJserNefsmZy141kYs3cK1Hg5O0wjxbgp5saItSRSU+gbDoCRISN3dMG7ywhcarYjZs8yRrzehQcfTeOjadNMGgP+FsqHu9UNYJXc+JxqLkmQaTTcGD3PWVDtALoE+nPiZjTHbz0GZNjJZSw9cD1r/XKjZoD69KinWV/FR3/TNfMLkBl+LpxVyUZq8g7Jkay0X2JV1TYzoTapD97CpdIOqn/hQlp4GmnhaaTcg5SwEiRfv4k6LQllwmOitnyEe5NXKdF2IDI7BwkvApj+3BvzNCXeC4KXXnqJL7/8kvfff5+aNWsyaNCgwl6SQFDsef5yRMB25VGpeSVS0OaePCtJs1byYaQmkeqjnwRpLfdDnZlO3LGfSDz1G9WrVeO7776jSdNmNpePGpWcyi6h+LG79cXmyCXKbS4MgJeLPS4K+DV9uNnkVlPYlvCqQuEShswuAXWmO8rkioCczPhHPN61mLS7F3QjXfwrMnrWEn66Zf3zt/GdZnz463mzeTLFOUckJ2q1mmHDhrFu3Tq2bdtGUFCQUfK0QPC8I3JErBHYQ2NseOS4Q/YobdoLITWvRAraue4cs2CEgIHr/2kjNWdFQj6MLXfAA1uU13XG1XovrLnyZXYOeLUdwJcbd+Pi4kLLli0ZM3oUpe0SLZYP58So5LhCK5t79uQlFwYgNjmDcknnKS2TboSAJgG2tCyapvIrZh/X+wtlcmUy4+tnqcFqfgLsPUpSqu8cXn1vKvYOmg6/yRFhLBnzP9QXtoPadGM/be5Nk4re9G1SzqwRAsahseKKTCZjxYoVtG7dmm7dulGuXDlGjhzJvn37SEtLK+zlCQTFjucvNKMlsIcmTCKlukVqXokUtHPlJWm2IJGasyIxrNS0ojfervbEJGVYvfRLtQOMeplINWSaNmrIqOPHWbZsGXPmzOGbb76hT58+TJw4kQYNGkiawwC5QvOcfx4I5rJOgubpPi+5zYXJiR+x+X7usjfq4+PupPP2PElKZ/Yuc+Gr7oSM6kf//v25cOEC6enp3N3zDU6XjuP78vsoPLLVRrUmRY96AbT74h+zBph/Vp8cT2cHtp17UKxEzszh4ODAn3/+yb///su2bdvYtm0bK1euxM3NjaCgIHr27Em3bt3w9n76Tf4EguLG8xmasRVdGMVCXol7gOaX2VruiTbUktcy4oLAnHGRM2RlY1hp94WHjNx01uKlA8y47a2VxuZ0+StVag6G3GXLxh/Ztelbwu/fpVOnTkycOJEXX3xRsgtdG6pRXN1BvZC5OCZHZD9oomePdNl4y0iVhFdCtq6JUknD1DTG2H/K7gRjFVBTEvvW1E/T0tKYPn06Cxcu1Al5KZxc8er8Hq6B7ZHJZHg529O6qi+7LoSbNcDe71yVqn7uRoZPUe0/k1vUajUhISFs376d7du3ExwcjEKhoHXr1rzzzjsMGDCgsJcoEDxVhI5IQSAlrwSk555IMW6eZo6IVONi7Dk4tQb2TbM+p54RNXd3KKsPh5mb2aLYldSurjnzM9QqJQ73gpFd2MH10AvUrVuXDz/8kL59+2Jvb2922TnnkaMiyP0Wwxu4UK9mDZOes9zkwpjCmgAawH4XZ+b5lCDSLtuhWUqp5sXK0/l6j7GEe24FxZQqNas2b2fWh6N4FPFAd9yzVlvcO41A4WxZS0MGeLrYE5dsrItSXEXOpPLw4UN27tzJ77//zr59+/joo4+YPXu2yCURPDcUmRyRuXPn0qRJE9zd3fHz8+PVV1/l6tWrBXnJgkNKXoktuSda1z9gnIdg7PovcKTmrCyqKc0IAYOw0tRugXzdryHeroZVGAGeTkabUU4p8S6B/qx8qyH+noZhGn+9c03lZ8jkCjLLtyD9lc+Y990vlClThoEDB1KpUiW+/PJL4uPjjZZsah4VcvYkVOHVw6XZm1TF5HuSX9UgKuTMytAYs6ZUU/e7ODPBz5dIheEaohQy1ofNwc49xOgcfb0PU7LsptBKtX9x0Q6nvotwrdVB91jcpcOErx1Nyu1zFudQo8l7MVdHZuuaihOlS5dm2LBh7N27l/nz5/PZZ5/p1IEFAoEhBeoRCQoKom/fvjRp0oTMzEymTZtGSEgIoaGhuLq6Wj2/SHlEtOS3sqrJnAxj13+Bc/FXTcJpPnKpyyZqtOhm4PK3FhKw1L23S6C/yXOVmZmMmb8Cu6Qok/oc+uGby6GXWLhwIZs2bcLZ2Zn33nuPcePGUbp0aZsa59kaQrKVrvJgZtj/aKAjogS6li2tMUJM3FlL6Qa8eWhzmlb0tvoemJJqT7r8LzF/rkCVmqg75t6oB17tBiK3z70hplW7fZZZtWoVI0eO5O2332bNmjXY2T2/6XmC54MiG5p59OgRfn5+HDp0iLZt21odXyQNkYKgKEjC52OJsn45aSlPF8m5ALnqVRK6nbSdEw1yOB6qvZmVMdBIV0N/w3vw4AFLly5l9erVpKSk0L9/fzr3eZePDsVaXae5jdNcCMkcrg4KktLNK3TKUdFUfoXOstP0sjvCLed0hgRYT5xOvjM0qyLGmCGtKrAnJMJsvoY1Yywz4THRu5eSejs750fh7kuJ9oNwqdkuV6EHrYz/s86mTZsYOHAgPXv2ZOPGjTg5FW9NFYHAEkXWELlx4wZVq1bl4sWL1K5tLCGdlpZmUP4WHx9P2bJln31DpChgNWdF4jQ5+qcYGBGBfmYNrlx5I7LydtSoDYJbpnq4gOkNLz4+njVr1rBkyRLu37+PU6VGeDbtjWO5OmY31cV96uHv6WzSoyBFR0Q765BWFfhOYsddOSqqe+7hful/rY5NedCXzPj6kubVX8/Ktxri6exgNelWrVaRcHonsYd+QJ2ZrjvuULo63p2G4Vi6uuRrw/PhEdGyY8cO/ve//1GmTBnmzZvH66+/LvJGBM8kRdIQUalU9OjRg9jYWI4cOWJyzMyZM5k1a5bR8UIxRIqCl+JpYzYhVzoP1T7MyhhgYADIgDfczjHXZQMyM2XBtjats5Zca0rky9KGl56ezpxl3zFvwQIyHt3Gwb8qHs1fx7V6K6Ox3q4OxCRlb8A5K0D0w0+3HyezOfguEfHGHggpm74+CpebuJRfY3WcOY+IXGY67wSyDb1JQTV4/6dzktaTEX2fJ39/S8qt/wyOu9bqQIm2b6Pw8MXLTLKq/jWLgsiZtZBhfnL58mUmTpzIrl27aNGiBV9++SUtWrQokGsJBIVFkTRERowYwZ49ezhy5AgvvPCCyTFFxiPyjPd/sYip5+7iC8mPzZ+TxacZb/GDMshI3VNKF9tt6Y0kVZ3ovBoSQ0l90z/mpCpQ0oanVKlpNe8At88dIy74d1LvnMer/RA8m71m8RrWKkDMbXK255WocK0yH5ldnKkUEc2IDE+Sb0xGnSNHRuqX/KNuNfhst2lhNHOk3DrNk7+/JSP6nu6Y3N6JfkNH03vQe7z/m2Y+SxVP+UYubiAs5SXlXFt+GiwHDhzggw8+4Pz587Rt2xZHR0fdb2BGRgZjx47l7bffztXcAkFhY4sh8lQypkaPHs3OnTs5fPiwWSMEwNHREUdHx6exJPM87f4vln44C8MrY0rorWwzWFbPbNhGjYxwtbdJI0TXxRZzXWw1PXj8uh+UtDxddYpEoTetyJcUVU+FXMbMHrUYEZ+Gc6VGxBxeT+zBtShcPHGr08nseVnPglk7QulYoxSn7zwx2qhMeWK0XXtNNeozjaZ5nVOZDajVxvmqMmQMqj6O3x+5GImVdavtLykMFJtsXXguJy6VGuFUvh5NUk7z54blJMTFospIZcPXCzm4fQv9Rk/hkLI6EfHZNxmW+v/kmlzcQJjLS4qIS2XEhjMGhpItBosUOnXqxOnTp/nxxx/Ztm0b9vb2ODo64uTkxIMHDxgyZAi+vr68/PLLNs8tEBQnCtQjolarGTNmDFu3buXgwYNUrVrVpvOferLq0+7/YumHE2z3yhSk4WJBR0UNvJc+zmTTNckCXQN30PqnDOm9SiR6REbaf0qPnn1s2ii0G87D2BRi9n1F4oW/KNtnOvIKTayeay1sY+l6+hucl4u9WaPAzj0Ex1I7kNvH6Y65KXzp/sJ7dCjbmUblSxgZQ8FhMZLCQKM7VOGrf26YfEybPJuze7D+c4yJiWHWrFmsWLECpTI7EbdZ8+YMnfgpvpUC8XN3MrlGW6qrjJAqxqeHLXlJf4VG2J5InQeUSiW9e/dm//79HD58mIYNG+bb3ALB06DIhGZGjhzJpk2b2LZtG9WrZyeweXp64uzsbPX8p2KI6G/eiZE2C3XlGos/nObeEjPCaHeOwdXdcOFnwxBKfoeTzJQaK7vOpfV2N5NGRA/5MZY5fGV97t7fsVfWSpJwGWA1uVaNjHQXf+wmhKCQWCqp3fwi4pN4orxGfEY0ynQXtn++mn///gu/Pp/iVNY4ydoSUjcq/Y3X19WRD345b5BXYkx28zqU7mQmaZrXAfh7ODGzh7GSqqVNFzRG08L/1aP/tyeNHjNVTvxQ7c18BtG191C61S1tMP7y5ct8+OGH7N692+D4gAEDePHt8awIfmLWs2Cz5yGXNxBS85K0Df1yU9adF5KSkujQoQP379/nxIkTlCtXLt/mFggKmiJjiJjLBv/+++8ltc8ucEPE1MYqhd7fQZ3Xc39dqz+cltD7Ub2yy8r6zd8N5hozXhdzpatSPSJa487iJpSz6iY5Gn4ZlDVKQhdlC2iv+0j1n5G3wRNvTs+6T9rDSEr1+dTmqhBJG5Xe63op3pnuO1QSOulaZlWW8aM1ctb8e5O/rzwyO35424pMCqpplLeizfEBwwZ6+tVJ8sAevNW8PE0qeBt4OmKuBvPhBxO4ciU770Rm74hHs9fxaNpLpz+inXZY24p8czjMNs9DLtslSFXDHd2hMl/9c9PquIKo/omMjKR58+a4ublx5MgRPD0983V+gaCgKDI5IkVYPd6CR0ICeW2CZ1XF1BJZCqeHF8LBuVhef3YOBjVethymkRrWkStMeoOCagew8q2GRkbEPbd6pCj8cU6JNLPWLMMqq4ttUO0AjXDZzUcobx/FTxZL5UqVUaSchCVTjUNVLcdAyK8mQljSBeG0RpTCPQSnMhuMHo8jhgoTHQn7rAQR6z/AuVJjPJq9hmNZ8yW+WnThjIRYrhxPpVaLIOPXNYdBXAs44mhaC8VgzhwhkpxM/f0iKhVGfV7Msf18OJOCauryVrTX0ub45LShtFU4M+zX0zqkMXtCIoz8eQGeTnyxaR9hR7YxY8YMnjx5gjojjbgjG0k8/2eW/khbXcLLmn+NjRAwzMPpEuhvaNDlsoGkdDVcaV4Oa52ic0OpUqXYvXs3LVu2pFevXqxfv54yZZ59zZV84XmsfCymPJ+9ZnLtkcinHJELP8PvQ3N/PoBzCUh5In28pXBSPlYJmYztX9khvQePufWYJOv8138AV59c/eBkhyySLVakqNWgSnUnakdT4oP/IOPxHU2Jb9PXcKneEpmJ65kKZ6g9SiPTf13NGMTmtFDMhUjMGS22or2r3xsSzpTfLlIj7bwkj1bf9I85oQo0Oq7vyZClJfG/4RNIOLML1NlS546la1Ci01DJniYjz4NEj4hy4A6C1bV0n81G5UvQ7ot/rOYlmQtXadEahp929KVa5SoFsuEdPHiQ3r17k5SUxMiRI5kyZQp+fn7WT3xeeZ4rH4sIRabXTJEl1x4Jdd77v1z6A3Z9kPvztdhihID5u0btRpjz9dBWCYVulza/Sglh/6K49Bst5KH0rOtPi8o+mjtXKT14ss5n71T4eYDE9ydr+/hzmubHv87rGmPLhvcnOCyG8LhUFC5hyO3Nl8XKZKBwTsCzWSUChnyF3/9mIXd05vH2+Tz8Zhjxp3egSs++I9aGM/yJMZhHHf8QtfZ1VSk1P5YmtkHtDf8M+/XIUVmc058YVtovoas8WPLzNof2rj6odgAr+jfUVR1Zw9w4/Z4yyXJnvDsPp/SQFThVaqQbk/bwChHrP+Dxzi/JTLBeJm7keSjfUvNZsuC5SHH2p+2WVN5cc4JxW87x5poTtPviH3rU03wmTZ2pBqa/XJPmlXwI8HQyOaarPJgjjmPZ4jCHakfGawyiJbWlf28k0r59e8LCwpg2bRrfffcdlSpVYtq0aTx5YuPvwPNAfv2mCZ4az6chItWVmxNnb02II7f8OR1+eRvSjJut2UYuEuJMhZMsbIS6Y3unaMZZInS75sd33SuafjWmfowDe8D4EI1npvd3mv+Ov6g5rn/+ia9tfGJZoao7x2w8T4N2U5PZJUgaL7NLQCaT4VypEaX6fo7/20twKF2dJwfW8GDlYGIPr0edFG0+nIEmZBm39QMuHdtt0eCSy6C0LJqm8itWQyRgaLTkFv1wRfNKPmS6SrvrjsLL7GNqIDwulZhETfmuvW9ZSv1vFn6vz8TOO7ucP+nSPzxcM5zYo5tRZZgPcxiFVLIaSCqBU06O7HZ14ZSTI9pPrRpYF9+YB/GGVUgRcal8cziMYW0rGjVU1DJ712X+Co1gRneNt0f/pTdnGBbUhufh4cEnn3xCWFgYY8aMYenSpVSsWJHZs2ebbOD4XJJfv2mCp8rzaYjkNscjJQZOrtI0iAv717YPc8gfcGxZ7q5rhC3RNJmmiV5WDoYBUjvuWtrkLd59DICD87NfL9B4LPQ9F+bOt5VcGpfaTU2dabmlvZac4xz9q1CyxyTKDF+Da60OxP+3jfsr32HWzgdcjzb9+ZDLwDMjigN7f5W2RmJpKr9CaVmMkRGiP6fWaMktJVzsaVrRW/e3Qi6jR4/ePFR7m1VkVak1arrBqhpW5/d2dTDwLDhXbkzpIV9RovNw5E5uALr8kYdrRpAUesggz0yGJudEf41a9ru60LVyVYYElGKyny9DAkrRtWxp9rtoqvOG2e008hhpZ95+Ppxp3WqaXLNWTwQw6ACtMwxlxoZhQW943t7ezJ07l1u3bjF48GA+++wzKlWqxBdffEFycnK+X69YkR+/aYKnzvNpiEhw5Zpl3zTzd/3mUClh9wTbr5Wb9Zk631w4KZdJfjqk3H0c/Dz79Vpcy/D1sni+jVgyLrVhHxMGZNOK3gR4OqFKrogqwxNzGVMyZJRw8EOZXNHk43aepfDuPIwyI76naetWbLuaSc0VSby6JZmjdzNNTyrxabeqXyvPIRIpqEw8+aA6LxDZciaYkIfX/j0rY4CkCh9/T2emvxxomCWksMOjUXfKDPsG90bdkWt7DyU84vGOL4jcMJG08Gu6b4IpYbr9d/Yz4eAEIpUpBsejFAom+PlyIMsYMeUx0nprZmy/ZHLN+qGlLoH+HJnckc1Dm/Njp0yNYWj22Rb8hleqVCkWL17M9evXef3115k2bRqVK1fmq6++MlCofq7I629aYWLhd+pZ5/k0RLJcuXkm/qHmrn/vVMsfnNtHNKWmNpPHDVo/B8MUUj1D5sbZmmuTkOUl0Rojeaoe0mLB4wNWw0ZadVOtailg1hj5uMUUAjxdzJqHMqBMKV/GjRzK7fFurOnuxNVoFa2/T6bld0lsvZyBUm83P64OtOht0D63cg06Wwx96KM/zsvF3mCtclQ0l4fSQ36M5vJQo005LiWTr/42FjNr0PVt1P/7kSRHwzBNBD5GybTmkMvg7yuRzN4VavLxMv5+/PzDakJCLtK4VQfd8bSHV4j4cQKJfy5ldpcAE5LrSuYFz0ONsdSsOuvv+T4lUFvxGOmL0OVEa6wEh8XoVHJb+0vcJC5vL/BNpWzZsqxatYqrV6/y4osvMm7cOKpVq8Z3331HRobtSrm5pihspHn9TSsspIS3n2GeT0NEi7NX/sxz4mvNB2dhVU0IRp/Q7fDLQJOnWcS5RO7GufhC85GGORjmsOoZsrLJ5/auYsc4zY9Unu9KrHh8JCataUuPS8obk/rgLdSZhloN/i7+LGq/iBcrdDGZK6D/98wetSjfoAsxCh8GN3Dg0khXtvd1xl4Br/2cQs0VSXx9Kp2b6SU4qQpkVobms2HkbSDLDA2aR9PKJbnnVk9yiMTfw5FVbzVk3mt1dGvTT6pc5vAVWxzmcMRxrFG4YvH+ayzdf83AYAJQ1OqJ+5QrKAfuYE/1OfRN/5jWaUslV+qo1JrSXHNlxNNfrklQ7QBq1qzJqSN/s2PnLspXzlZifnz2L4b3aMPs2bNJScn2fJyJOkNksvnPkVomI8LOjjNOmtYRefEYGSTJSt3Igr95aptKpXIvsO69poSseJvmVX159913CQwMZOPGjQYqtwVCUdlI8/qbVhiI5NrntHw3dLvmzrygaDkWXpydN62SdlPg0Dzr4wZs02zCua2VtyDdDlj2qEgVkjKFdt25PR80PyhavZCcmgFlGmt+CM026zMuxdZXVo1TXcPXK41Srn409GuIQu81tab8qVSp+ejzz/k8YwGQnUNw8n4mC4+n8/vlTFycHVE0fB33Bt3o5nbVREmuDwntZ1O9Q3/dNf/YtIqvzQiLyWRwqulSlNW7G8ih7w0J5+Afa43Woj0PjEuEwbQ6qz57Q8KZ8PN5ktPzvsGZE3zLyMhg5cqVzJw506A6pGzZsixYsIA33niDPWF7mPzvZKvXmB/1mG5JyUZlxjKghKs9MUnWPQcGZcNWlH1NP0vyv1eVlj+nw/GvDMqiz0Wo+OR8ADtOXKdWrVp8OqovvVpVR+buX0DtH6TL6xcoeflNe9o87bYiT5Eio6yaVwrEEFEp4YsqmsRTs9jSr9QMTYdByO+SutaaZMA22DbCeujif+ug1qu5u4YWM9LtVkXBbP4x1qPtRGg/Vfr5MrnBjywuPtBtEdR+1YzuiMT3MJdy/dZ6oewNCef25g8ZbrfTqCT4RrSKRSfS+OacGhUKXOt0xqtJD1r5xBmIlC3u21DTaVhvzoN/rGVsxrcGRkuKsz/O3b8w/V6plKizfuhM3SOq1JoQS+u0pQZ5HlptjKmtvahXs4bJjUupUrP8wHW+PXKLxLS8GyTmlEmjo6OZOXMmK1euNLizr9OwKeNnj2Dxoy+tzv3tw0jKproZPU+Ar/s1YPauy9L7HGkxu+GZo4A2lT+nW0yEP6loxvQNR/nrWjINA+TM7uDISw3LIXtpQd435KK6keb2N+1pk0tV4OKAMEQscesQ/Cjhg/jiZ5pks7Mb8qHcNhf0/k6z+f462PI4jzL58yXXxnfvHNH8plZsAxVaW5/X5h/jLNp8AJ0+sX5+ta5wbZ+JCbI2hJZj4Nhy266tj75cf16UGHOeW7YZKV/WwTElwmT8U6WG0GQv2pxoTfyZXahSEnCp1gKPpq/phL3e71yNcZ0NG0UqVWpj1dkKrcyvU+IPnb6nwJRomiUxKK1RticknB+P37F6LXOM7lCZqqXczTa5W73tEJMnfkjc9f8MjpdsUwqf10pgV8JYKFqmVlNKqWTPvXAmyT7g9xTD5nFeLvaaEJZayQ+bNxup1WpXsKJfA0q4OhobnrlpE5Gfm0pmOnxWytBIN8Oh25l89HcaR+8p6VhRweKuztQdszFvG3NR3kifhrJqXq9x8VdNKMsaeW0rUggUGYn3Iom2jNQad0/ClUKMzUXfhODV1sfFP4B/5kKldua/BFK+LDn71vz7hcbrUPcNqN7N9DkqpSZHpfkI44Z71kh+ovkSupWC//0A+3LKt5eBFz+HP6eamSDL8Dj+FXnyXmlj/XlRYtSK1Ok/fxcfnFPMJyjLZVDbNZb323qxtum3JFw6SHzwViLWf4Bj2dp4NO3FZncHRnesYrAhK+QyWlT1g6q9jOZUqpScijjNybu3UWW60dS/MS2u75KUCNZSFkIwNegi/0/XV0YfdVa8WvW/dShq9TR4TJvACeTJENHv55Kzyd3ekHDmHU/E67WZON78j5i/vyUz5j4Aj/6N5PHJKPxe8cMnyAe5g+YZy7LusSanyLjYYilb//E1umZccgZ/bFrFYs8tBDlEAKAE/nQsyRracs+hKa/WaM3sXZfNhOJ6aLSF7hzTJKYGf2P9ieZnxcapNZKMEIB2Fez4d7CCXdcz+eDPNBqsTuTdc28ze2sofv657BxclKtUzLSjyDfyQ721uCbX5jPPn0fk7zlw+AsJA/MhPJMrZODkBam5UEw09SWQ8mWRksti6pyc87r4QEADuLnf9nW/ONdYpv3OsbzlkFgkR/PA3Ma4rbjFpaCVaN+b2YiUGyeJP/k7aQ+vYO9Tlg8/+IAZE97D0dHR4hz77+xn5tHPiMvINoZUGR58FhPOqxIrth6r3ZADXiSa1CtRqSFK5sO53ocJqvOC0eNKlZpGc/4iNjnvlRr60vBdAv0NOgfLUdFYfYnIM39z4sgR0lOzk1ftfezx7+OPR1MPAhw8mVz1DTo0GEnrLw6ZTJTVNfSTaTL397s4M8+nBJF6HZtVGZ6kRXYnMyG787LJJnyF4R3YPVGa8ZODdKWar0+lM+tQGio7Vz6ZOYsxY8bg4OBg20RF2SNSkORXXozV8PbzkSPy/FXNlG8tcWAhGSGoITU2d6fnzLKWko0tVctD/xxz8ybH2G6EaOf+dZBGtl5f7Kyg76KCspKBJSoxKlVqjt+MZtu5Bxy/GY0yZGu+iNRpJdpfsjuFS7WW+A9YSKn+C7DzLsO8j96nQoUKzJ0716yc9/47+3n/4PvEpht6pOR28Xzi56IT9bKGrywRb5lpIwQ0Xhx/ovlh82b2hoQDGLwmX/19I1+MENC88nJUbN/2MzcOfE/5hDPIUemqf352nsuhVid5OEbB4CbuuuaDGdEZ3Ft5D+fvnFlUdxWdm4wl+E6cSSPEQK0WjREywc+XSIXhD77MLg6nMhuwcw8xWB9o9EV0FUaFUbFRokKuTnNQyBjf3JHrY9x46+XWTJo0iVq1arF9+3bbmpVK0WRy9gFl5rOjj5Gf6q0GUhJmavHy2lakGPD8eURUSviisu29WvKVLIPD2dswaTbn37md26M0jD0Hy+pZTyJ7daW0nBktbgGaHclSTDxnYqkkTFj+eanKsYSLL3T7UuOBCTskyUMW3HYd4066G9yVX3AaihspVs6UjlItZ3TGGPaomumOzevkwz+/fs+6deuws7NjxowZfPjhh7qNV6lS0vW3rkQmRZrcC7Q5EnvvPSS/fsrGpo/mlHtHpr8cKLmzL4CLgwIHhZzYFOvGiqk8lRi1GyVI1BgpOap/Qh8peWmvP/fDssM7dnZ2jB07lsa9hjJ1501y0lweqmvopwS6li2tMUJMNBxSq0Gd6UnSjcnkvH8zSLJ92hUbNuSImOXtnYQklWDChAn89ddfdOrUicWLF1OnTh1p59uaJ1bcm88VhBeouCTX2oDwiFhCroDu+SW1nks8SkOf9TDxRnbvlQHbQGHZ/S6NLEXHU2ukSR1LzZnRkhhuPTEvVz+KWevRl9Av01hj1OQnjh5Quzfs/kDzYyIpTAcb95802HBHKbbmqxECoJCp+Np+KV3lwTo58/91asbq1au5e/cuw4YNY9KkSfzvf/8jIUHTG0eno2HmhjSnjkZ+EIUX4XGpjNx0RrIRApCcrpRshJjq4VKCRMB0r53AkgpOvKWkVO+PsfPUxNMzMzNZtGgRY3u3J/HSP0Z3+vqaImecHDXhGDNdD2UykNvHoXAJM3rMQF9ESoPH/MTOAVqMNvmQWp39zxQqNaS5BED5ltSuXZt9+/axY8cO7t69S/369enXrx9nz561vgZzz9kcxV0foyDyYiz14noOeP4MEcj64qwH91wmaOUGF194bY3hB0ybTFXndbh7XLPJ5xdPbksbl1cVeXME9pQuyqaPgYR+rbzd6ZkiLV6TBGxjWfUn9ut14l9yVAyx2yv9ZBfjJElLaKXI9eXM/fz8WLRoEVu3buXPP/+kWbNmXLlyhUfXpa3jkSLv/hDDvjIqFC43sfM4h8LlJuSx2Z4WS839ZDKzdgJyGZSRx9C+mgcB73xNQIcBODlp+sI8jookeueXRG6eSvqj27pz9FVopb4+VV0Pk/O5GjXhe9qbyouzNdpFOYx2JXL+VDZCjXl5/vO1p+g8kDKZjFdeeYWQkBCWLl3K8ePHadiwIZ07d2bfvn2WQzaBPWDseYmf9WLefK6gEkz19wMbu4gXd55PQ0Rb7dF5puYOOV8x80vZ7Uuo28f0B+zP6dLEy2xBauy4fOvc992xROi27PCXsxfU62/7HLmSxS8YSpDASvsldJUH01R+hRKyJGknOrhrDNAXP5M0XJYlRb75RaVJMbFXX32VU6dOAdC0aVNCfpBQWQX4ZObtB1+/r4zcPRTXKvNxKb8G5zJbcCm/Btcq8w1yKHKLteZ+1vAjFrm9Iw5N32DDnqP06JG9+afdCyH8+7HE7F+NKjWRYFUNYtRuqNVQUqLy6APfq7hWmYede4jFJnz6m4qyfGuOh8Vm5xaZ1/TPPS/Oho8ioevn0HQYYY0+pkbaDwzP/IARGeOJwHCNWnl+ZfXuRlM5ODgwevRorl+/zpYtW4iNjSUoKIjGjRtz6ZLpnjwA3Dtpg4FfjJvPFUf11iLO82eI6EsRbx2eTxohMs2/lmPNuyf/nGraFZmbrryO7lj9EjQZmvVlsUJqbP703bFEShyc36jJgSkwF4wZnLw01Tx5RLsxzrBfT6mcbd8tkZ4AG3ppyoydTWxYZmha0kyjPKB69eqcPHmSrq0bMXntAyKX3iY90nSTM5lajWuGAw1SzfdSkYJ24zrg6oJTmQ3I7OIMr2MioTM35EWCHQy9HHZepdi2bRu7du2iSpUqmoNqFQmnd/BgzXuUD/kOTxJABg1T0yiVmakr+bWE3C4epzIbULiHmGzCp8/ekHBaz/+bN9ecYNyWc7y55gSt5/+tS/bNV+wcoMUo6PYF5V7+kJKebsiAfaqmtE5bRt/0jxmbPpq+6R/TJm0pF9zbmjaitNPZ2fHGG29w6tQp/vnnH9LS0mjcuDGrVq0y7R3JTXJ5UWw+Zw2RYJrvPF+GSH60nG8xxniD18Z/X5wNXeeaPs9UXDQ3XXmdvaHHV1l/WPgS2DloSmKtsW+aRgehz4/SDJdcoeapGyBaUmPzzbMiz/JW+MhyYbwmRNiWiGzFrevu7s7P80ay8TVnuJXM9Wk3iNgSjjI5+85eu6m2eFQGB5ltd+EpTqXolz5Nt3Fp+so0xrHUDs3cJsImQNbjuQ/TSG3ulxPDsJEGbcikW7duXLx4kTlz5uDsrKkgUiXHcnDXNtp+n8z5CCUKYEq0xoNn1RiRaT7NARX30SXQz+ywvSHhjNhgnEcTHpfKexvOsPtCXhs+mie7maNmrSrknFAFsl3VkpOqQFTIrRpRWmQyGe3bt+fUqVMMHjyYESNG8NprrxEdneN7lRuti+Kqj/G0c4GecZ4fQySvLeedvTV5JV3nmI//qpQaYS6TmIiL3jlm+ybZfalG0l3Kl8BVgidA6x7Vj2vX7Gn9PLAx90Gt2Ygd3Gw4p2gSrfaw0jXXFFnGmFMJ6wm4ziU0uTFW4ucyd3/61bHn9ihXBnZ0IebvGK5Nvkbs8VgASimVLIp6TMUkW3N1ZDj3WMjAfgM55d6RE1kbl8IlDLl9nNk8DUsJnVJwd1JQrcmLJDqWsvgtzfmYfthIK9+eM2Ti5OTERx99xOXLl+ndu7fu+LF7Shp9k8To3Sk0ik5mUdRj/KSEaWQQm/GIM1FnTD6sVKmZtSPU4vMYvfksuy8UgGckC20zR39PwxwWf08nQ/0TiTg7O/P111+zdetWDh8+TL169fjpp5/IzMzy3kkp5dXxFMIXBd0N+DlPMM1Pnp/y3byWgg7YBpXb5881tGVdUuV9tbSfBu31GnxZU0yVOn/zkRCk5z2R2j9i7DlNXDgxUuPpubxN+nPJKy6+UL7V071mFn3TP8aTRJ0Cqc35DFIbGlorc8x6n9Tx4chQczdexdADGfx5IY1+rZ35tr0dT+S+fJgxnE0On0tbW46SQf2eOrdTj/Lt1dlWp0h50JcxTf9HXEoGa4/e1h3X9q/JKaOekyD5CVY6aMKVpl7anP61h2ofZmUM0DXuk4HVjfbP1dMZ89HnXIvO9t74usiY18mRgQ3sWVXCi29KeJo9X8v8Sn3o1ma60fHjN6N5c80Jq+cDrMqFUWALFvsi5VKi/P79+wwdOpS9e/dStmxZRo8ezdChQykR/q+EUt6n0HwuP1RPBXlCSLybIi+xSI8y0urBbS3rstUt6VPZ8G9rEsZS5z/xNbzQzFDZtOtc+GVQ1gATegja8E/FNk/PCGk7EUrWyP7BVClh0VHLHXbdAzRLzk1jvhyogIgs978KOdPsJzHD/kecUyJsm8i3qsa7Zq1HiTacZ+4HOytWLft5IGpklPOQs/dVB5aXhgn7Unj0UEGZHq9z0jFQ0xgvJRKzr4FzCU0DxRz9hfTl209FVOTbq9af3vsdGvFes6q0nv+37pgpXRCtomzOzr+xeFi8p9Y+dr36eyy47s+B5Co6g8bb1Z45PWtb3dhffPFFLt5fyuLj6cw+nEZSBjxOVvPujlTWnMlgxKsKaGLdECl5dDn41DN6fwxKeq0wa0coXQL9JYVJcoP+e2hAHjbrF154gT179nDu3DmWLl3K9OnTmTVrFoMGDWJst8+pfnW5+c+2R2nzXbPzox+MOdVTa98nQaEhPCJWkUn/4NrqEbHqeTBznlRsmT+nCJlHaaj9OoT8allkx9bnkBf0n7/VZmN6d11gXcLe5PmGBpgauNZuBVdKtM++s0SV/UOaGKnJuZH6PLSuY62qrLl1WJN4NvFa/HTThbd/jUXm6sPStZsYViU2z0JbWvG0qOQo1GZey1Iu/uzrvZfgsFidR0Ano46xEBnAiIzxBsZID/kxljl8hTVuV3mb0LpT+XhbCDFJ2cm4OfvUmETPm/QgXskHf6by86XsBGEZULKxO/JKLji+4IRjGUfsve11QnIGQnEmGk/a4hEB852HQfO6n4k6w6PkR5R0KUlDv4YoCmqzzqW3IjIyklWrVvH1118TFRVFt5deYnzfznSuXxaZa0lN3C7pkaGxURBei8LoBvw0musVQ0T3XVPkpmW9dtPVNrWy9kHLTd+A0O3w8wDra3Hy0vw4SOmIq4/U+U2tFeD1H4x7wOhfv6DUT3Oif8dutjeMHjkNppA/4LfBlnVJZAp4fa3GKMuNymFu3v/8UmnM+jFUJURwOcGFGy51SH8Sxayxg7h79y6bNm3ilUqqXKs3at37/9zbz+Y7c5AhMzBGZFmfl0XtF9G5fGe2nXvAuC3nkKPiiONY/DFdkqtSQwTefJDxHiWJJwovZKjYLCGUFI0HTVO/RpkjvGOyD4wpsjZjNWpkwIFbmYzZk8rlx6Y/IwpXBX69/PDtpMk9WRT1mM7JWaJ2Od4fpUpt0B/HGkv71qdn/TJGx/ff2c+84Hka0bosSrmUYkrTKXQu31nS3EYU4GadlpbGli1bWLx4MefPn6dWrVpMnz6dPn366Iw4IN8NIR1Pu/eNCAGZRRgi5rBVivj1dSA3tSlZ+KDlRuI5dDvsGCtNdj43H/K9UzXhF5uR8INka55LXnEPgMw0yxUoLr4w4bImdKQlN96q3NzlSH3/tfNL7dhqrg24uXVmHU+IvM1b079hx4Gj9B81mRFjxtPM7iqKpCjJz2tvSDizdmRLudu5h+ASsBO1IlY3xt/Fn8lNJ+s2R61HQF9GXSoP1SVwIwUPmfVNvG/6x5xQBRodl6FJyjwyuaPlkEfodtJ2TsQxWRNey1CqmX3SnnmHk8hIM10SXWNAKZbXJtsIAZPvz96QcN7bYDqZVYs2b+bTjr5Uq1wFZdkWBN+JIyohlftpway+MsPI+5TT6LOZp7BZq9VqDh8+zBdffMGuXbt48cUX+frrr6lcuXLBei2k/h6Z+z7ZQkEZU88IwhCxhFWXvhaZ5i485QmSPmj6G0L0TTjzg213niolHF4Ix5ZCujWxLBvCRZB3r4WlHySpc+eq/0weyGlQSN3w206E9lPz5lq11jdC8mdQD733QOudUFzdQb2QubpNFNAYauVawK1/dIatSq3mw4NyFh+Ow6VmW2q9MYlPe1vwFuh9loMf2fHmnwojr4OcTGq5HqZxuTRqlq7Gq+2G4+CQLSOvVKlpNe9vmib+LSnMYnD5rK+blJSJsemj2a4yX3lhKeShRZmZyZj5K7BLitIl0SozM6kec5ABT77hQpSKw1Fqgm9k6Nb1y/+cea2mffYkA7ZlN2rUM/B2X3jI6M1nTVZYmcqbicSHT9IHsE/VGNcq85HbxZnuIYSMUi6l2Nt7r+1hmqe5WQO7du1i1KhRREZG8vHHHzPx9RY4bO5l/cTcGEJPyyNSGCGgYoYwRKyhUmp6mkiJ55tF74N2ZZfxxuIeAI0GaxJMpd5RS863sPFDnpuwlD6vrdE8H1PegbzObZacORo20vs7UDjYvuFD/rhWzXkqzN5FmUaNjHQXf+wmhKCws9N5J+omHLapakelhl9DM+i/LRO5dzlKvjqVb0d3MzJGlJe2kblrkoFxkzOp1NwG+rDFDBp0fRvQeAOm/HaBGmkXbPaIaNcr5XmZ84hoMRnyMPHe7A2NYkSW90L7zmjCSmMI4AkyGUz8M5WFxzW5KA4K2PeWC+0r2GlK++2dzHpNd18IZ+QmQ8+ItbyZfnb9uVTOeh+otV3X0sS/idVxBtw6JK3RZX6FL4CkpCQ+/fRTvvzyS6qV92dV2ye0LW+lViI3hpCU31ATOT0287RDQMUQ0fTOGnIFxN3P4yRZEsWHF5oWSUsIh4NzNZuh1L4Bd45J3DRtlEe2qAQogb1TNV86XQ+Y2tnCbHmd2yx5NGqib+ZevM5SUy5r2gTaxy9t1fxdq1f2+2+jlo1KrXFxj419g1Zf/MP4P35hzPa1PMoI4WMz/VjMIZfB64H27BpcElVKAg9Wv0vvrm2ZPGUKhw4dIj09nbP71iH/ZSD2SYZVQP7E6OTtzTWkK6mOpt6xsezcsopPd1zivQ1niE3JJFhVIxeaK9nPy9x5+gJmclQ0l4fSQ36M5vJQ5HqCarcfJxueqK+srPd5DpKfMtLcUCFnmf1Q3cd6fhdHBtbTeEHSldBzSzLnIpSaMGHOz5neZ6hb3QBWvdWQgKy5df10ZKYb+AF0d/xL0uv0KPmRpHEGz3/rcCuD8l/jw9XVlfnz53P27Fm8vLxo90MyQ7alEJ1swUuaG7EzuUKTZG+J2r3z7qXIbeO7gtY2KaY8vx6RhVXzR3FTF74xgy3Wt635FrbeMZgKCeQqZGIiNGVqbhdfm5vLAVC1K1zfZ/t5WtwCNL/oearkMZNYbClfyNrjNobItPoYB1xdcCy1A7l9tqx6qcxMpkQ/McxTkMhr8R9w+Ho8qWFnsA+/SGzMY5xd3RjV2I6ZLZW4OhhbN9qkUhlQyobE02BVDbrI/8u15oparTHbzFXbABbLggP080QkxPSVNboba25c2aHL4cpQqun1Uwq7rmsqbEq6ypnayp6B9ezxccl5X2f4GdKG1JS3DtP66CCLz/uUkyNDAqxvxDZ5RCR54wo+v0GVmcGaN8syZWckdnIZC7MMvOxk1jyENYqyR8Tc78OLcy0XBBRTRGjGGk+r0kOLVPecreuq1x96LrftQ5vTLZ0cbUYvxBomfixyzp0QDr8PtWHOLHJrwGhxcNf0eMkPtO+dtU2s5Rg4ttz8431+BGW6JEPzh8wX2atqqrnbdw/V9HbRmwqyZcgNKjckop9XsbhPXcooIxn2/iRCj//DCx4ylgQ50b2anWGVQy7RGgUNZDcYbrfTrCqrOf5R1qWG/D4BBoaGxkADJJUFbx7anBYVvVBnbVCml2Bl89Peyd45QnJKOp2n/87xs9kN4BwVGo/T8Eb2tC6nMHzt3t6JsnxrnYFT8/GfVDsy3uLzVgLNXqhGql2qyddMUo6I/vfRxRe2jbBunDuXgGYjoO2HBbsZhm4ncu1bTPgzlU0XM2hfQcHKl52o4ZsVrinqVTO2VsjZEpJ9RqpuhKCZNaS61RxcLSSOysDJU9PLxBoJVmSctT8YCeG2bcLnN8LV3dB8hPRcFFMiaLIfc+HN0AsPaefLOXeY9Ri3SZIfZ10/GrNfcucSmsdMeaPyywgBzWfFYkgl69jxryw8LtNI+7+6UtIl96qaZuU9qHAutcPICAFQy2TI1Grm+5SgQ3IKtmwZ5WXZoZe7Man4V6xI27Yt+Kl+MGP3ptJzSwovVbFjaZAjVX3ythlpwzqxuOWq41AHxQUeqkvwZUZv7qgDdF4WgCOOYwHT4Q2VWtOg8K+0xkQlpBJ8cBtNLW7CJj7PBpMqUFZsRzB1iEpI5ZX/t3ee4VFUbRi+ZzebTW9AEppIESlRkBKKiKAgiIIoqKBSLCggAmKhfCpioQgqiopYQAUFO00NgoqCgEEpGhAVpCgkJCSQ3nZ3vh+TTbbM7s5uyiZ47uvi0sxOOTM7O+edc573eR8bTPqM2zjy12EAis3w/m+lvP9bKW3r67i3s4HRHQKJCZbY//shxq8pKc866q47w5pA50PYogdi07txotH3yLJ9bR9r1sz0xOmugxBfBNGg/J62zlXE9tXZGbYbQtxdq3i/0XTG7j3BxC+LuHRpPjOurs+sBUsJ8vW4vk6ZeIt1Svqj0ah5DgEVhe+8LS9SGeO1Oupp8t8MRDTPPbqT0Mhw8XVKMOCJfDfzuL4+MKwUlT04rHgTTVtvWnMJ3LDU3nRI62iGux+0tfaEL0LWS2+BXWodd9mP/LoXlYrGWlKeK0NYnDbtjtvprbJOTpbdXg8ZiVQ5pryjtdZ2cblXSSItIIA9QUa6FqmnmjptI8PIgG951TwUCzrW7D7BBfVCSCeKi+vrSbo9hHV/mJiaVETC0nwe7hHIrCuMqtM1WrAGBTFSnk/bA8RzlgcDPmVC6dRyYWp33UG76Ri14zYik0TdIfSHTnHR73O0RUEu7mfHFGaA7sPvZWPOHN78pZR39peSVah8p7+fsfDgpmJmbCnm5vYGUv/eR2qjioKSVt2Me2+VehzKGYBObooxbgOS7bRcSJxdqrQTXgqiVVHrDFU6OTM61/bxnmg3BNpcR//jO/h18gnmvvc185etZvUtM1m6NIp+/XxITdb6bK+KYnvWwneq07E2GZKatX9WbF5e2lynPZCow54m/81ARGsH6enN2hiu7XihDdSXV8UDw5GcU4qB2fB3IWGo6/Xc3bTNr9A+muHuB20Vju14Wdu+bAmKguAo50AjOFop/BccXQkNiKTB+r1saLVZzwrhaWUpOOPxLcq2cJsUoG1kJ0Ov/Y1HkqARWSTqDrHL0o7U7CKy8ortOsehbQwMaBnAgh+Lmb+9hPd+LWXRNUH0ahuLTpJcakRcUVnncscRDgs6YjmnadtBgXu47tCX2n9hKveztYqu4z6SLW2IqNeAhddk8ezVRj49aOKNPSX8cFwRIBabYdWvpfDra4R1PErM1fciBRiwoGNO6WiWGhY7ZQc5FvCTcxMoyG3HwzcYaB5nqXBWBeU3quYfU5ninuU4dIYqmYGFwfHMKR3NmryO5cs0udraUjaKGtwcnu56O7dNnMH48ePp378/t912Gy+88AJxcWXfiZa3fY/PdpvfdVVQFky5bZdPoy8eRugcqeO29v/drJlKZ3pIiv25FjL+dFZIa3lg6AyuP/PEp3fCgbXqn1lvWjdKf8+VNDUo6w+uL9NNeElwjJJxpDbaYTUy83lotex8rl3g5h5wGFqtqlLlYXFuy4dbbn6XX8N7l7dGNmkLdBtoqRbrwEBdcnmGyT9nC8o7R1A6w2CDxJN9gjh4fxiXxesZ8Ukhie9JTEm9tnydmkQnQSNJGeEASCdK03bXyduQNaQCy7b3s01mg/nvH3h6/W+qv1Lbaxaol7j9UgPfjw3l4MRQpnZTpmWs5O37irT3H8WUnQ7AJksiE0qnkkaM3T7TpXp2lvdKpdwu3N9jIINaDKJrfFf0h75Qzfzh4Hof3r7dXxV3mYHGgjTmlj7HAF1y+bK07CImrNpDUopvVYXbtm3L1q1bWbFiBZs2baJNmzYsW7YMS8pa1+dsi9tnu8PvuqqwTklfMlw9Q7Iyzw8tzzktU8e2Vd9rITUiVn311VdZuHAhaWlpdOjQgSVLlpCYmOhxu2oTq1qp7LQIeKfpCG8I1z7nUwaFz9yy0j4S9saIp9xKHVRvcnejLpWpQeM2E6msfUOXavNCcPx+whtB57EVmpqCTNg007X5mKZ6MJ6QnKsVh9RXrb9h7zlhIbrVM5gD8pFVFIu29U6OthlPq/gYSF7mVTbYKTmGF/R38UlBJwBm6D9gXMAX6KWK79ss65hyqAPLNv+JKTudS7p05eO+p7g46JxXV0GrN4g7ppRM5DQxxJHFM4YVhFGoKuaUZcglSJM7q0UGSZKQrHWJHJ4JrorzWVEv6FePxwtHsm5fFue+ewuzScmy0QWFU3/wwwS36Kz8bVORuHenBG4cenO5s6rqVIcn0XT3CT66KLvBze/ROo3Uq/ilipE8NLraeuDMmTM88sgjvPPOO/RooohZO8TbdvJuMnw8mQrWJJXxWtIiqq2lnia1Kmvmww8/ZPTo0bz++ut069aNxYsX8/HHH/PHH38QGxvrdttqD0QATCXwQlvfszS6T7TRMmi8lH1mQUxz3zJKvMUxVc3bm9ZdsOZu/rG6A61R68qyADwMwdp2/qqOt27S56oiULXS/ib4Z5fb+Vs1HYIh/FeCGr+vTOTY9LjWrJnn0zPpFxCNZP2OUz6DT+502QxH4aMFQK5IhXWXhXJv4SQ+/elfsnd+iC4whC59r2HkJYFMCVzn8fRz5GDCKHTat7dkyuHUkyqmrBzPx3Z5PkbCJM/ambNyGOl9nuPiuHDVTt5VcT5bbAMK27Tl2Yb3SD+dwfCPCjhytmK/EYk3EdFtGPqQyPJlUSEGfnmsv1PnbU37Tc/JZ+Dm/gQWpLnO/AmpV7mMMx+xNZZztK2vlGDSYub7B1ow/qN/+eOMhVsTAniit5G2Daz7c5PtVN3CTW/27215EW9SmGvYKVcrtSoQ6datG127duWVVxSbZ4vFQtOmTXnggQeYMWOG221rJBCpCvvzwrPed1gh9arGx0QLtpGwLzftgbXw8RiVldy8kVR3DRqrc6rWuj7e1oWoDv2OE2U6kT6z2F8Qw7zt50i2tCl/s7TSJeJzzsX9yOmACklXvMnE9MxzSuqubf0aN6NQrjptLR4hsgxnCaNL8euU5GRy9rvlFBzaRsPGTfhsYBbdm7iXm/3W9DZeORLLs4a3qW8TSHiDmqdIVTBJ9zgjR4yi02dXEFR0WrWTV3vzd4ejc+q5IpkxawtZ/4dNhV9DEOGXDSKi643ow6IBZ0t62+BUc90etxln3iCp67RUsKaEq40OVUowWfZ8LjHLrNhbyjPbijmZI3PbJQaeuDKQ1tasrisegRZX1lyWiC/CUG/Ki0D1VX2vIWqNs2pJSQm//PKLnfpZp9PRr18/du7c6bR+cXExOTk5dv+qncpoDaxzyu2GwNQU5Yu+4iFtm9dUEAL25+iNqtxihiNbYeNUFyu5mX+sKl2FKzzoLbjlPUVEdnQb/PoRbHwQzXOoVSb480TZ/rfOpUPyw6wJfIbtxsl2c+4Ae3NuYPipK3g7q4AF6WdYnnqapH9O0S8g2v5h5UEf4MrDQ9FfZNFQci1ClSQl8+V+/VoCI+ox+MbBDB15G3JpIT3eLmDYRwX8mel6Drpd35H8Gt6bZ0p9qQRt39aqptgCS955j2AXQYj1uLYaFXeUO6dS0d6oIInPbw1m3tVGDGVPXbm0iJzkzzi57G6ytizDlKdkn1iximStI2RaBbpcekvZ//h+scrv/G4TNK2fTpRL1123TsWeKHt2Beol7usSyOEHwnhlUBDfHTPR9tV8xq4t5EiWBbYtdK0bqWq0aOxc4fjeHxSlaOJssT6/tAZuVaHn8zPVGoicOXMGs9lcoXouIy4ujrS0NKf1582bR2RkZPm/pk2bVmfzFCrTYdqKnqyCJakW6n9tzzFfQwAU0VgJlBYnwMobPLwR2ai7bWnWUxn18ZbgeoqOQ+uPyjYIHPa28t+pvymfWcVtn43T7okCVSz48w5bO3VQ3qy3GScz3vwhidlnGJRfQFcpGH2fWcp52jysLLnOv6mq5r6AjfxonMyawGf4vPVGTo4v4Z2hIfx8yky7V/OZ+EUhp/McUpkjGqO/8HJmD27nJM7UgvXZXQX+aqoEl5zV3MlrWS9Rd4hGKkGdTpKY0cvI4clh3N/VgE6vjCLJphJyf9nAqWXj+GTpc2RlZWG2yMzZcNAuFG4maRSAXjxIPUD3AlNglLKP3g+77eSsVvs/W1o7BV8VVEIw6fB8NgZITOwayJHJYbw4wMimIyYufiWPu9cVcvSspXJBjxZ8FYZagxdHT6mibEWA32eW/fPLm9Ejfwh0q5ha1WvOnDmT7Ozs8n///PNP9R/UYzSpQkRj1xGrLy/RRh+nndrd6CHwcei0LWb4Yqrn/ba/SXFb9aYzthp/WesoHN8BgxZp395KYSaYCilPH7TDxY/KUbVuFdl6G0xYR44qa3ZUCawP8dmGlVyr+0n9DbMwW8kqOvRF+aKklFQmbaj+4ClMKrJrj06SGNMhgD8mhTG/n5E1KaW0fDmPJ7cWkVsMICnfFzAw9DAzL4/gLBFOL4ZWHBdbZN9+UhYZzsjaflfpRGnOwnG3XlSIkuXmKVi5IFLHK4OCGTtxIuFdhyIZlKrFsqmYVW+8TIsWLZj4yGOczKh4ARigS+bBgE9dXjcFSQniZUuFN9Do9UoH12cWIGm+lrpb3lGeb246OdtU4y66P1WDrwpcvLB4wsXzOShAYnI3I39PDmNhfyMb/zLR+pU87ttQwIlsS/VliXh8SVE5T4/BiwR73rWvS2W7rZbaNJ5Gh2tx6i5Us49I/fr10ev1nD5t/2A/ffo08fHxTusbjUaMRqPT8mpFi9dFt/EQdYHiBxLe0P08ZPMrlGFCbxi0EDb9T7vIzFb97Um/YdtpH92mLfNj/wd4/fjPPOKsT4hopLyd/fGld/sqPKf8Nzi6Il3Xuj9PqvfKTKtY3768GiVz9AOpPFYzrmcMy8v/tsfe48FaOVaiBaeMro2yXCNRGBRLSVE+kXg2HlMbmQgKkHj48mDuviyQedsV/5Glv5iZPfUexpWaMJTdGx2sZyC5DTXL0UlQEhBKoMmVw7Ez1g7ysdKxPGFYRUPprGoXbNV9WA3ktJiMWde18vh1bakfbizPcNl8MI31a/8Ck/M+HMkPa0LMVdcQ1W042bs+pmD/V5hKS8jOzuaNF+aiD6tHvUFTCG9+KXMNbyPhaVRIBlORfTaZVbfQZzrEtkX66lGPTs8WdOiLsysWuDDuKg5RfEQ2FXdkiE5jgOHJZdoRtw6mSpr5gz2M3Ns5kNd2l/DcjhJW7Mvlnk6HmdV9LU16DvPueJ7Q+JJiyU2reMv3Jnix1XB4q0PR4mlSS6kRsWpiYiJLlih+EhaLhQsuuIBJkybVDrGqJ1Fiz8lwzdPqn6mppgEWtrLvQD1hFby6FF4qgkaXNu4H1sIXD9kHMmqpat8+Az94GSR5RLJJ73MhBO0xCfavtm9fWEMozYNiV8JFSQn6bnzdKcXVLT6Jjx0U6hYzLGypLWgLjvHuu65izKM30OvD0nIdgXWe3nOn5cAtKzGfPoj++3mVa9CAuRAWx4lseOLNDby3ciWtoiXmXm1kWNuK+jVqQYivOO7LWotmkyWRgbpkXgtcDC6MwyaWTuYcEcRyjmZSGg8GKN5A7mrX2PLSiI7c0LGx3bIf/zxN8/e7ewxqrMLXxhEGXuxeQNaJQzz4yjoO7Um2c+q9q2soS/rrCDH4csUchI8WM/ywCLnMjdn1HiXnN2nbUhT5GRDaAHNYPMnmNpiP/eixkB+gmEDe8Jr3b+gahZ55JTKvJJewcEcJeSY9942fwIwZM2hk42zrNbbP+bzTsGmWx00mGp5iyA23KMZuviQIeCuur4XUqqyZDz/8kDFjxrBs2TISExNZvHgxH330EYcOHXLSjjhS7YFIZSo1uotWQXE39YhDB+hL7rtq1dt6MOgFZ4+Pb57xfrTGU/uRPXTGKmm0YXHKg1aLD4grpber1Dmvs3VUftgWs8Zg0iFY0viQqkr+7LWYa7ZUpMHrsPCzcTzR5GkPRIJj4BGlZgrPtVTKBviK7cPUYubXR1sxfd0/JB02072Jnuf6GbmiWWUGYu3fimUkZFnmRZN9LRrbzBZXPh/rTT0YErDDbnmWHAbYW9LbBjaOOGa5AKzbd5IvP3rDY0G+uG43c3vEflrvfQbJ5vf7Q0Y4t31p5OSxv8uXta6nY9WNwXRt7MvbrUoqaMpa5E/vRHJZmsBF+qi7CrJfz9TuleHob6QF62/+6PceX6hyimWWlN7Korc/oaioiPHjxzN9+nTVkXi3eFmx3BpkXlEWZC69oxMDQw97l9XijddTLR7tqDVZMwC33norixYt4oknnqBjx47s27ePpKQkj0FIjaBFlKg2r+lJNQ3KDy3CXRSuMnXiSnjpLghRa0dBlmLA5SjYqurUrYhGykiN2w67bNjxn5/sdRzu6u/YojYUenC9s8vioosgZa334mO1OdTjOzSOcsiQe0p5MF0yXJnCc/uda8MrfYMcZfd3ou4QMZIXQQgo53p8h3IfdteWJeGK5AybIOP4Di4Ny+Kr20P5ZnQIpWaZ3u8UMGR1AQczfJy/dxBAFwbHMaF0KkvMw1hv6ckuSzun9NpNlkR6Fb/MiJLHmFwyiRElj/F06R3cG7DRSX8TRR5R5PF86bDydXsVv6QahIQH6fnyt1Te3vY3JaaKjik2PMilc2o2YbxoGsZmSxd6m3bS+vv7nX6/verncmxUBvMHRhJcdjn/zLTQ4+18pnxVRHq+q+DBFcpv0HzsR3YeyWTdvpMcyDa4CUIqtrF79rl77n0yVpni1jpNqabh8KSHsGrB+sz0mCUS0aAJ/3vudY4dO8bMmTNZsWIFLVq04OGHHyY9PV1bGw+sVV4oHc+37Lqp6ZlA0cyYy+7BORsOYm7aw7usFl90KHWcGhGrTpo0iePHj1NcXMxPP/1Et27dauKwnvGlUqNW1XSb6yqCiu4Tldx+W1yJiDzZBXvbDtsf84W9nFPFHAmK9izeDY5WRHBTf1Omi7TgeK19LU7lMvjKhE/GwJ9JntsfUh9uetN1oOetWNW6frmwz82x299kJx50XFdGQpIk/k6cQ3FIvGI9ropUno1ii+YUT1fnoPX7dMCaPTHya32FvbfNdbyqeQDJ40L54KZgUtLNXLI0n3vWF3Iyx8tOdeA8u0B9/03bXJqM2RIVGsRPlnast/Qk2dKGxw0rAfXKvQBjAjbzpSWRZEsbEnWHGKLbUW6JbyW3yMzKXcd5+ovfafP4V8z78iAAZ/MVEzVrAPR86XDOlo20REt5PGT4lB+ND9Dp1yeRZedvWCcpIuDp3WT23hdK10bKY9osw8vJJTZiYO8Gs+d88C0j39zFlDX7WPaFxk4s7zRmi5ndp3bx5bcz2B0UiHMIWdaOlE/hSvfT7eXknISfXq8IOg6s1Wbhbh0VaTcULYL2yMhInnjiCY4ePcrDDz/MG2+8QcuWLXn++ecpLS113b6UtW6NAZVD2Xefadjb88tAanYRycezPWe1XDNXOa/fPoG/v3d/XCt+FNVXNf/NondWfOkMvRUeWf9d80zVioi0tuPoNmjZR1mk0ysF49xNGw0pE+26K289+GXFPAh8Dyh8KU6lRYi68xXo8YDyX1ftv/5F98PCrooUusKaMaTTu67IGVIfBj1vP10W29ZpPSk4ChLvI7FZS9DfVGbX7eI8Bs4nsWUDGkYGkZZdhIz2GixO+CTUVbC+Ce61tGBKwCdsXHuY/m0eQO+wL50kMfISAze1DeD1n0t4+ocSPvitlKndA5l+uZHIIA3DOFlHbXwyINEi252/GlHBBkZ3b8ZL3/yFREV6rSt0EtQnh73GeyklwGGaJprVpqucpoEsMiz74SgWWWbjrxVp1P11P5frTmyJ46xbQbH1s4vr6/nxrlDmby9h3vZiCk2QVwJzvi/h1d2lPHZFIOO7BGIM8Hzt/iwILf9/rffJlqJTzP90AKcLTkO4HsLjiDOZmJF5VjHTK6fseeNNpoqnaUzHgm2q0ySSvTeHC0F7dHQ0Tz31FFOmTGHOnDk8+uijvPvuu7z22mv06tXL/rgH1ysvNR6QZAtPld7BGTlKdUrQSnpuEVx6nTKS89NSe+1ZRCNIGFY2reVl1lt1ezXVIDVSa8ZXak4j4qEztJ2L06pBuOlNRT9QXeplre0IjlYCB0fXUE9aFK16FV+uoW07tDqjgnYhakh9uO559zVkXHFwPax/AIrOeT6OLY5qdq32z2XiQacHlC2Oc9IO52E1vgKQsLDdONmLzBkVoa6XNYLMsmRXmwag1BCJ4aKr4ODnLrc7VyizcEcxL+4qIcQg8b8rApnY1VOnKsHwd+ws+ZPymjPh/f12d5Ca5XpEiJKRN6nkbe4JSPJ4Xmr+JY7utI51aGxDRp3X34V7UnMtPP1DMW/uKcVmJohmkRIz+kRwz6UWAlQOZAHSZHtXWM9tk9hSvxHTwgOQHX7X1vICL6SfcQhGgDbXw6GNlThL53YQ0UgRQX88FpcvId0nKhl6Gp+ze/bsYcKECSQnJ3PnnXeyYMECGjRo4PX9b3WUdcemAee4eO8z9vsMjoJuE6HBxe7PS5XzTyPy3w5EoHo7Q7sslkrYHKvhVXaIGwW8u45Sa2fq7TV03FarQNcbIeqYjUp7j26D49uVZjW/QpmeclsPonLOn16L8Lyxkld72JZ9R/t/P8SyvQUk5bagv+5nRSgpeZp7dfH9aLgOFhkKCCIUJVvHUZPiKSvGtpM/mWPhya3FLN9XSrNIiWeuCmJEQgA6V0IXp8CsEZ/GPsBDKc0AV+LUGJ4qHY0MvB64uMoydtxl1Gi2ZPeSw1kWHv+uiDUp9jnCCbE65l5l5PrW9tlJyDBepX2ONvQVSJiBAa3bc7pU3d3atuBijXSFbouL+tYxWywW3nrrrfLszfnz53PP1RejW6n99zvR8BRf5bZy9QrGrWH7mGdaqJI+rkXor4bImqlxaiQQAe86Q58rKVbxDeRVO2oggq5MtUutAY83wZe1Fo3WPHyLGV5s773PgSPWDBQt19nb0QfHDC6Va14cEs/+hJlEBhucsjE8jazYcXA9bJisOkpj7XzPEUo0+ZVyPH2q9A56Sb9xVcB+DmaYmbGlmA1/mujUUMdz/YK4uoXn2WPr3T+hZDIyOrfZKtmEESnlVak4zlUdmiG6Hbwc+IrP+7ReX1BPxd5zysysb4vYdMR+OuTypnrm9zPS64IAZJSgz1XBPrWgTY5ozGdt7+DJ9NUe23nv2Wy6FxXRqai4ZgISd/hYSyUjI4Pp06ezYsUKEhNasbRnKp0aajibiMYk9f+aCe/vB5xfwXRYSIl+mODCKnQ89lcFYR8QgYgvVGslRStVHBB4W5jN8Yda1dUpa6La5aKLtNXp6Xgb7FuN5qHcqqwW3GeWYiDlCV+OaVsV2ZPPgKO5UdNu9inUnr6fA2th3SQosfd6OUc4y0uvYZrhU+/arsKUkok8blhpVwhv23ETj2wu5qeTZga01LOgn2P5d3XMskQOoUR5k7pchVgr0IYHBVBQVMIYfRJPGFZ53M7iwuNkQulULpMOc1/ARpcVhgG2HjMx45sikk/aC3+vbx3As1cZSYjVk0Y9ehe/SBfdn3bTVRZ06LCwYbCO9hGFJGcE8OCuEE6zm+DGazSfu7pupIbpPlERM/vIjz/+yIS7R3Pgz7+5v2sg8642Ehro5kYqG/1Uq5rdMDKIl7rlkviDZ62JR3o/Ag3a1CmDMhCBSM2g6t/hbvjQhqqsgnhwPWx4oMKN1B2OhjneVo+sDaSs1SQk04z1nM0lVVctWOuoiC8VirtPVITP1e0z4CbIlYG3TQM16Sw88VTpHaqdtSzLfPa7iZnfFHM4y8Idlxp4uq+RZlG1qiqFHZNLJrFR7smHV2TQ+Kc5bgWxYB31CKOYQBo6eJzY+pZcq/uJZwzLqWcTrGXLIURKBeV/y7LM2kMmZn1bzKEzFQGJBNx+qYGn+hipHxVCuFRkcxxlump/eG+2T7+KzQdO8s7q1cRyjqPBRRy74GvN5+5WN3LJrViimnI8P5Dme+Zq3qdP+OJPYkNpcRGv3NKMx75Kp1mkjo9uDiYh1uE3JOlh+HJoP7R8kdkik3xUKVpoddnVH/i0ap4pNVw1t6oQgUhN4TgCkJuqFFjzhG1AUBX8/b135mB13bXv68fdW/J7Rdk595kJW6vwIanl4eHLiEhIfeUhWBkzOE9oMFQqDozCWOK78ZmMRElIPL+1nUqXX1yPHpWaZd7aU8qT3xeTXSQzKTGQWVcYiQn2w5CHB0aUPMbN7UIZdngWskPitaPI1XbUY7Oli5Ow1jH7wlF8G0cWLwW+5tQGk0Xmvf2lzN5azL85Fb9vgw7Gdwnksd6BxIbq7Nqwv+fLXNokijMfP0gcymijGejftAkZep1mC1xXupH9iYsYv78Fp7MLfBbvykFRSFoE5NbpS/B9dPbgen5/9TZu/aSQv7IsLLk2iLsvM5Trbhj+rrNZpBqVHmWtG6JUV3jTf/+303cri9Xzw8rRbdq2q+q0qwt7aU+F1VKAyeqDUltv/muehsadnW3tfaLsnH9eQZXWjdGS49+sp/ditYIz2u8zX30GNKSGG0vOIpe13duQQLniMsbrn6NLcDT84npdg15iQtdA7rjUwPM7i1m0o4S395Ywq5eRB7oFEqQhbVVzu2R1LYYnrBqRy3r2Z9ifI0HF/cVxv2nYj3rssrRzfwx0dut01x1UXS9AJ3HXZYHcdomBV5NLmLu9hKxCmVILLEkuYfneEh7qEchDPY1EGCVkJC7b9yTyzrM0kOXyoEMPzMrMZFpsfWUKSMOFkSWJtIAA9gQZ6VpUXL583vZzpFqKAB1zSkez1LDYaTrKEz8XN6GrFo+cnJNKFtqed9TdX22yrdwFJ20b6PnpnlCmJhUxbkMR3x0z8fp1wYQbJdBpHJXzaFHgDhXDy6qguqfPfaT2jnPWRTxW8nVw0KsqvCkDfb649rUfCg//qaT1VRoZ8nx5WLhBS7B56Avf6tRofYCHxWmr3um4jkbBrtRhhM/ZJ8WBUUqwq7H6dbhR4sk+QRyeHMbIBAMzvymm9ZI83t1XgtlS+e/N110ofbREg5tfZHr7XE3C43dN/ehd/KImIzZXJFvacEqOcdnuoACJh3oq1Wn/d0UgZYWByS+Fp34o4eJX8li5v0QRLxdmAbJTYNCvoJDnT58hzuydC26GXunYZCCLCOLIKjeDc+U46wqLrNjud7akaG/A1rkq7q+nlCldLYZpScoIXbBBYtngYFYPC2b9HyY6vZHP3lSL9sq+ds9lL6mOqrkH1yuCfNtr8GJ752vgB/67gYjW8sre4E1AUNVoLQPti5usv9Bi+VzrTH00Bps2DzzvD6HXFvAWZHp2q1Szy0/S6I558SBlTj442rvmA8aScyRv3eDhN+NMfJiO164L5uD9oSQ21jN2XRGXLcvnq79Kqcwss4yON0zXMbJkFmflMO0haURj/rzyVb40deHPI4c1bTImYAs/GKcyQJfsc3stZaML4D6IigxS0qGPTA5jYhcDAWVP/LQ8mdFri7hiRQH70swur3z/wkI2/XOK5amnufdstqa2NbAJXGLI4aXA11gT+AzbjZMZoEt2stzf0fQ+lDEy+1ZUQXzpHqthmu3vQeVFbUSCgT33hhIeCN3fzuO1b44iH/tR2zGsz+XgKG3rJ97rubSHL1hT8h1fMnJTleV+Dkb+mxqR6hZqViaVtbJ4GnrzVk/iL7R+R1WZ7VIlqHi2qFGZdkc0tjF4AlXvlp4PwI4luNUBgXdZV7YYQmHkamVaEOz9Ws78Ab97frA9EfAgs2fNRq+TNFdXBXuPkp3/mHh0SzHbT5jpe6Ge5/oH0aWR50DflWZjYulUokICy7wfrEezUjZ1V1YJ25phcjJHsQr3xjfEnf+IN6il37rjSJaFRzYX8fmhCg8SnQTjOxt4+qogt9obMzCgaSPS9XpklakaR42Io5eMq3OOCjHwy7BCTF88irGgItX1lFyP1aY+PFQF2VmucdBhuBGQF5tkHtlczJLkEob168ZbHycRFRWl7TD+fO5qqSbuje2ARoRY1R01JdSsjXNxB9fDV496GHqvBQIpb74jn31dHPYb3lDZvSedzYC5zo6tVsIbQeexSr0WT9+5LxkztozZqDxY1ALea+Z6sIy2PV8vbaUdqURwOKLkMR648050OknJNgg1kKg/hP7YDx6rq0JFRyfLMhv+NDFjSzG/n7EwvrOBRdcEuU+9VMGq9fh1+A8M1O9x+zJhdbN1dHP90TiZOI1iTIus+JpMLJ3MTyrF+rRiK2TNQHlO9pAOMtmw1uU2mw6bmJxUxJ+ZFRk29YIl5l5t5O7LDEpwqMKWkGCmxSp1s2yDEbdZMzZYZGW6pnvxK5hsJIqrx3UnPSef1R9/aCfavV63y2cvFq+wBgAa7t3Pfi/lrq/0RNerz4cffkhiokMgqfbsB98dqD3t29Nz+shWWHmD+3UARq2rKAdSBYhAxBXnSXlln9DkOVILsmZ8+Y7cOruWvcEWnXNft8VuhEBtP1RcF+vDIDdVqSIc2kCpgaImkHM1ylbZkRxr5pXag+n4jhocJVIPDgufa4ux8LRqh2xrABYRbORcYUXxsYaRQbze4W86JD/sdUtMFpnXfy7l0c1FNInQseqmYBIb+/A7ti3HrvLQN1tkei341s43ApTRiXmGN4mR8r0+5Bk5nMdK7yTJ0t379qqgxV6+2CSzeJdS8ye/tOJ+79xQxyuDgujexD6XwTqKtCUkmPn1ojkdUPF5vMnEdC98RDLlcGaV3l0+MvLSiI7Ehgdx+5s77LKDJCysDqyabDYzsCfISIZeTwOz2d6Ezfb3pCFgOHrDekbcdjt79+5lwYIFTJ06VcmqcTeSC747UIPvI/nfPqMpsKf3I3DVY57X04g3/fd/SyNS14WavupatBSLA2c9SXXoaDzhy3fkVh+zUjEXGzhP+X/HdYKjlNTdNtdp19lYs6UuvQV63A8BQbB1nnp5dMc5aCsaRZousWpj1Ko116i+p+yeshXw6fSc6DYbcJ7nty2VbkFnF4QApGUXMW/7OZ9aEqCTmJQYyN77QokMgp5v5zNnazEmb8UGttWUVSphJx/NUg1ClhoWlzuhekt9KZelhpeZof/Ap+3VWG26CgnXWot8fTh/J07nxvseYGRCRVDxS6qFHm8XMHRNAWtSSskrsd9Bv4IK3ciC9DMsTz1N0j+nvDIziyGXpYbF5TqZ2PAgEou2szNoCmsCn+HlwFdYE/gMzxuWkiWHVVovsiUkmAFNG3FXwzimx9bnroZxDGjaiC0hwcoKtr8nDTq/5i1bsW3bNiZPnsy0adMYMmQImTtWqVcGzzml6DBO7FSeNZ6eL2q4qjru7hljReu18+OQxH9rRETrcHhV+3xoxd2wW2V0LVrfvm2H5vxleFaZ70hr/Ry1InO25+bN8GdlRtl8cujVMGrnL92Mzfy22SLzwTNjuc28zq4gnlnW8aZpEPPNt7ncjR4LO4KmEEuWSo0OZ9TSbkvNMk//UMyz20ro0kjHqhuDuahhlJNLrKfzUGPdvpNMWbOv/G8dFvYb7yGMoko5ulqfxBNLp/CVpZumbdSK+/XX/exWN3JWDmO5aQCvmm8snw6aof+ANv+uZXJSEb+l2zu0BgXAta0CGJlgYFi7ACSkKnGutY6M3Wx8nR9uKET/8Rgn/xVrAGIdx/SleKB1OkkGuxulfDopu4R+fZ9Rpiutv3UvdH4bN25kzJgxhJhzePeGQPpeqK/wHFEjvCF0vlPbFC5UfiRfqz5l9PqKqupVgPARcYWvJetrAk1Deg4PZccy2a7Q+oZs9eRwNY2j9XiVoTLfkaOvixqHvlBGLzydm1bBmDcjOI77tI7AOH7v5d4iLqaRPGVeefQvKNOImArdC9i8xeY+0x/awB2Wdc6VW7Fwb8BG9sqtXIo0zeh4omQUrwe+hIzkMRhRe+Yb9BJP9Q1i0EUB3PFZIR2X5fPC4DDu7dkQKTcNj347bogND7L7e5L+MzvHUl+xnsfThuWcKw2lATluy8urCVWz5DCiyXM6O2uH/qJpmF0AYmW++TbWX5DCnvuO8truEuZuK+F0vrJRkQk+P2Ti80MmbmwTwOphwR4qJGtDJ0EjMnmxWx76Tf9DzX9FJ5U50EphBAWHElzo3WifGZhfL9opCAFF4yLJMgvC9PT9bJwyTWP7QuJYIsFFwHD99dezb/0yRo4cwdXvFdC1kY4p3Yzc3D6AQL3KdcpNU55Bt7yn7TlTmWcMKILy4GjPYlWr8NwP/LemZvzl8+EJt8Nuo2DDFFwbkOE5r92bzt2j4ZmG41WG6vyOquPcKpsO3W4ITE1R3sKHva3895HD6tNIWr0FtAwvD5in8lklsd5nZddZUvGm0EnKYWcbVqLD4rQLK5ssiexOXExJSOVeCro3CWDf+DDuuMTA+M9OM+RTidN5FiqTXp/YPIb4CCOgjEiMC/hSdT0zsDvIyJehIewOMqL1rqov5bI6cG759MTOoCncFLzHrsXWqaB47Ec9oslT2qV23YGRAVtVjzlQt4tLdMcI0ElM7mbk5LQwvh0dwoQuBmJDK3b2+SETN6wpoKDUfXDoDYnSQbcdrU5SzuvfC4eTKYd7te89QUZFy+JihMLWhA2wn+pwMTWnRtMI+OHOEDaMDCYqSOKOzwtptjiPOVsVR2CHoyr/0fqsqewz5tAXnrcd/JJfdZH/rUDEnz4frtDSObo1vdKga/Gmc/e3jkbLd3TNXOX43mpXquPcqmKUTe2BpxageOMt4EnvElrPNzM1VRyCQw/XWQc0kjJJ1B1yu1fzxYMJmHaAF/V3Vqp1YYGKMdX6EcH8dOgUCcsl1p0Is1/JCwMpvU5iZOIFACTqDqmOhnjUJHhBLFk8Lz/PAF1yeVXX2QZFXO0YcEiSaxNUnaRc97H6JIbodpSbjOmw8Ixhhd12ep1E3+YBvHZdMKemhfHJzcEEl42fbzpi5tr3C8gtrqJgRONuWv3+KtHYT615EhZYzdU8UbGejy8kYXHoJInrWxv4elQoByaGMvTiAJ7bUUynN/LYfdJxX148ayrzjLG+5LoaDQmOqXR9nqrgvxWIgHZBYk3hsXPUiLuo2ZsArDYYnrn7jno+oKSmenJIVKM6zq06R3C8eCNTxV0w4805htR386FKAK9x37EuLLsllOyZxOYx6AMCaDv0YbcuojKShzYqDL7YQMqmlfTodSVDV5zknt+vIHfgK66DPDdi7QvrhwLQT/ez03GsmoTTDp1gul7PtNj6XgcjVquvFyPX0CjCQKLuEI0k7+u1WHnCsKp8tGW7cTL36z+3q37siF4nMaydgU13hBAeqCz74biZfivzySqs+FJcBQWug4Wy34bWaVAVW3hPWpUGGl1h7dcrCxK+m6f+oqN2Xzg8B9o10LP0+mB+mxBGvWCJy5fn8+LOYmfTPa2lILx9xljMStruhsm4jfQCgpQpKD/z39KIWPFi/q/aqaoO3VPU7EqPENHIXoBVW3Q0at9RQWaZiZcHfYcrsWl1nJs1yPtoND5rOnxBq6DWlW7Gm3McOE/RlPzxJfz6kX19H8f7x4t9K+mZqleM2YPblXtZDLykCXtPPUnDnZOdapQoGhJg0PNl3inu0y5jO1/HunWDefPNt5j64INs3JHCUy8s5e5mOrtCbZ7E2rHhQQzQJXOX3r4CsSZNQr1o+hYU4t0dIRNcmMYPo4M48nd92O7Vxi6JJ4sHA7QZhl3RLIDNo0IZ9EEBWYUyySctdHkjj8ndArnj0kDqqZihWftdZ0GxzW/DY62ssi08BB1qouVORcXEmUweTdg62dTGKWfbQuWfrW7E3X2h8hxoEa1j+12hzPqmmGlfF/PtMTMrbgiifkjZGICW34rWZwwogdEfX8L+D6Ew0/O+c0+51pbUIP+trJnaSE1XaPTUgWnMo69xrxWtynE1wzHrg6LNddV3bjXpplsVGU0WMyy6SAnuPGGbRaI1M0nDdU7q/zVzNv5hlwrbMDKI2YPbMTChodNW5gPrnNw37a6xpyyk7hPh4kEk5TVnzsY/OHHsbzI3Pk9J6p9c3rsXC2ZNpme/G+H3DfDxGNfX45aVmFsP4swzrWkgZ9oFRruDjNzV0HPnsjz1tF1hOM0Me1u57j48M1wV9fO2AN3+NDMDVhWUi1lBqW3ToW0zZnfJY2DT4vKskVNyPdabejAkYId9Fo/jb0OTz5F7rD2Z4zlW1oStbG3tbsUuHIK/+LOUMWuLkIHhbQ2M6BZP75f+Qm8I9Hxy4P4Z4+a4HqmmLFFhaFaX0PLQtlM8+2CE4y1uDcKq4XhaqFTA5oNpmS/UhJtuVToDp6xVCoG5w1pW3ZfATMN1Nltkko9mKc6q4WXTMe56RTUzOYe0SzlpOpLNA1mWdEhyhTD2lBxTXqflf/p3ee/HNOZ8X0yHOB1v3xxLh+hC3HaIwTFw8zuqKZFfhoYwPdbzNNHI7Bz6FxTam2ppYcxGaNaTwoXtMBakuQwgfKkkbEH7XP1fmWauWR/JsRPOHV9kg3g6XnYpMe0vZ1/gZVjQlacZtw7JZ/aIK9HrdMr3F1JfaWh+hiKqPPCZd432gIxyx1WFCRuSTikSqP5hxUsMKPfoH186mSieyrXw8k8lfHiglGPnZOIbxHDLiNsZMXIk3bt3d5/2C87PmKbdYPuLSqE/X6mmch4iEKlraHloQ83Wr/FnvRw1KmuJbvugOPRF7To3rVSHM/DXj8OOl13vrzKBmZZ7yJfgzc2IUJKlK0+v/42mefvpJ/3C3QFfIUv2HayaN8XPp8zc8Vkhx7MtLOwfxP1dDe47hbY3wO/rnBZrHRGxEmcyMcOmM3Q5agGUBkZjfPRPzDoD/5s7l7mlzyHhfcDhCln2zqtjcskkPk1vSu6+r8hP+QZLsb2Zm2QwEtr2SsI7XU9gXAtAyfZ5OWqN/aiW1vahrpJQGwmxfscmYxSBJeeAMmfVmMZkXDaSBoZwOiU9WRYEVmEX6Nipq92rkg7ZYib5pJk1KSY++t3CqRwTzZo149Zbb+XWW2/lsssu8xyUaCrZ4YFqqDFjRQQidZHqemhXhpo8nqdjVZVJlwf77lqN1mvg7RvOgbXwxUMO2o8qCsyq2qTPzYiQDEwomUKSJdGjxbla51VQKvPo5iJe3V3KgJZ67ukUSHq+TFqehbQ8mVILPN3XSJMIHQSGq5qjeSoM5xhpeDc9AIXB8ZxIfIIBm6J4QP+ppoJw35sTuFKf4nG950uHMzLgW80F9EaUPMYuSzsALKXFFBzaTt6+ryg+5ZgNJRHeZQg392nHmyGvKpk9mo7gjGMwIpctUA1QkJDCG8KNrysjLlruv8qiNs1hKoHdb8KR7+DwZqdNLDJsP2FmTWFvPv5mN2fOnKFt27YsWLCA66+/Xj0gqYKpLEAEIlr4TwUiUDc7x6pAS4dUJcXt8J9rblVQHc7AnqY6qgtfppg8jAhZgDRZqWGTqDukuRKuI0mHTdy1rpDUPJkAHcSHScSHSfybIxNqgK1jQ8uCkTAoyXPa3pWTp6vRDseqte6wXq3xJVMxYvKqIJw7jYi19g9AN91BXjO8TCR5HmsFqRmtlaQfJXdfEvkHvkUuqQiumscE8N4NgfS6wPccCV+mnNwG5tb7f+9K+PVDn9vl8liagx1lNNM0aS/fbv2eRYsWsXnzZq699loWL15M69at7dvsdmS0km2uIkStmbpKZdM1q5KaqjOjtYaClhRkLfjDNbeqqOqsn4PrlQfau9fDZ+Ng0yzYMlvRI1X3SJsvxnJe+JO4Sg3WwsBWAfw9JYwzj4RR/Fg4/zwYzu5xYey8OxSTBfq8k88/2RbVIATgqvxCFp0+Q6ApxG65qw7UyVTLulzl8kgAsmIIZ6206w2uHFettX8s6NhpSWBG6T12nzuu/1Tp7apBiA4LveMLuXNgB258YBbRV44BvQGAo1kmeq8o4KFNRRT6aIhmvYbL9cOxXKGxMKKrzETbF7/wRj61xw7HFFpXzzZVlJThgJPJXHPNNWzatInPP/+c33//nYSEBKZPn05ubtkIXFVZPlip0dpU6ohApLbjj8Jzth2Ut14d3uBth+TOX2T4u7XTNbcqqUrPksoU0aosvhrLeeFPkk6Uz80DJQukXogOnU30cGGUjq1jlWCk77tlwYgKadTj0+z7yDz8OAXHx1GS1UPTMR3Nt1wFLlKZMRng1l9FbTtHdBKcI8xp+SZLIhNKp5JGjNP6OknxIhmo20V33cFyc7TbwvawL2JaedG6T8MWknLl99xy9zjiGikdvQy8sKuEjsvy2fmPSVvDVdhXGM/vQZ20rewYmFvMsHUBLGxZ8Yz78UVNu5JB1Q9YBkgYVhHAay006kjZPS5JEkOHDuXgwYM8/vjjLFmyhIsvvphVq1Yh53qvr3FLLXg5E4FIbaamAgLHY9ZUB+VrpV01k66EobXPNbeqqSpnYH/b+PtqLKfxgdlMSiPZ0oYsOcytyZYvk9K2wUgfx2AkOJoD/VbRq/ilsjo6OswFLTHlJmjat1bzrfL1ySnP/tEcjKgsiyLPrhKulU2WRJ4uHaV6rRpKWSwNfNmuUu6zpkVElKTbrRdPFqvjV/HQ6P4s6GfEWHZr/plpodeKAh752rfRkQwiOJtfpGQUujtbx8D8wFqY30zJMvGhztK3po5ILn428o4lFc9HX0ctHO7x4OBgHv/fLH7/+l16XXIho0aNotedT7EntSp+m7Xn5UwEIrUVf7yx1nQH5WuH5GoKq7a55nrCl9GuqjhHf9v4+zrF5HFESOkwHwz4hGscOlUnynbhS3l5azBitsAlS/N4cmsRZwtlKDxLm0aRxEWG2LXQXNAcS2mky8BHkmXiTSZ1Uy03pBPlcuTCG6w6kIr6Pxb0IUcwROxlSPgHmHAeTZHQNkFq3fftgd8zqmdDfrk3lMTGSrdjkWHRzhIuW5bPrn+1j47kyMG8YHidXjvuchNMqATmXz+u+MNoqcDsgi76P9VNFiSQkZGtz0evpzvKgoKm3eyfCQfWwuIEmm25h496HOCb0SFkn/yTLm/mM35jkUodGy+OB76Xy6hihFi1NlIdaZpaqK6sjJo+Xl0Q/VbWlKwy51gdoldvqIxp3sH1SiFId7uXIYsI6ks5HptSHBiNscSmMwsu69A11OFJz7cwf3sJr/9cgkEPkxMDeXDu6yRHDWTCqj1AxdkFhKcQ3HgVEnIlTLUqOCNHkFj8WrlOw+rT0VNKYbJhreb9ODIocBTHY/ehM2SXL3NMMfaVF0qH8WDAp5gsMi/sLOGJrcWUlPV7Ogke6hHIU32NBHmo7CvLOKVkOyHpoMckuOZp5W8tnjlVxZiNyn+9yvIrM0xL+cTjSEqpGZb+XMxj3xZTL0Ri1Y3BXO6tADiisTKV5Hg8b40R3SDEqnUdf72x1nSdmeqq01KbRL9qVMVoV2XO0d82/r5MMVlHj8wl0OF297uX0BSEABivf8658vEjhyuWjVoHo9dD70ecto0N1fHCgCCOTgljXKdAnt9ZwoXXTmLb6ldYcP2FxEcGVTQ/tx2z04uIdZh+iTObeSH9DFfn23fynqaUHi+9szwIiQkNxIKOXZZ2LDYP90o3YsuWkGD+afS9XRACvtfIcSQAM5IEBr3E9F5G9t4XStdGFaMjC3cooyM/aRgd8dhxyRbFBfXgerCYkb+cVqm2e0XeaZtnm0ba36i0V8N0jkEPk7sFsX9KIxqF6+j9TgGzvyvCpOVLv+IR5d4eMFf9eDWhEVPhv1lrprbjr8JzNd1B+atOiz/xOP0lKdNfba6rvvO2PiQ9jUhU59yx1tpHUD1+D1bCG6qPtjkuu7AX7Htf9ZrFhelYeE0wU/o15aWCoSxevBjdyy8z8f776TPsLkoMobTK30f7zencWKCUps/Q62lQVuNED6qxuKtU1WWm6/nK0g0JiI8M4vtH+vLL8bOkZRfy9Be/83ThHbxmeNmrVFdrjRw1KlcjxwaHtrRroGfH3aEs2lHC7LLRkUNnLPRcXsDDPQKZ4zA6Yj0fr9J3k2aQnGYiUUspg6oiLM7m2eZ+9K6cv7/DO2GrTPOQPL4fG8LcbSU89X0xX/9tZuWNwbSKcROmSSjTPy93cHG8GnoGOSBGRGoj/npjrc5Ksq6oa7qOyuJvfQZUnei1srirDmzFqxRIB0LqU2X3ssM1M6O4qH4ZGsJPRiMmWeZZ00gKopuy8a2nuf/2Ibz6yivc3LcTyR+/RrMAZapHD3QtKmZQfgFdVezd3zFdw4iSx5hYOoVUB93HGTmCCaWTmW++DVC6jMtb1gOgR8t63NipCXNvTOAsEV532D8bjYr9uZcpxlqwyErNmZ1l5me2BOgkZvQysufeULrYjI48t6OETsvyST5ZMYLkvYOs8lva9a2zA251YAFk23uq3RDoM0vbxj4IZ0G5fk9caWTbnSGk51to/1oej3xdxDlX2pEfFsLzF/v/GeSA0IjURvxZeM5fdWbqgq6jKvC3PsOW2mbj74jPxk1lv4/2N8HOJa7X8eVePrieLd/OYH6wbFe3JLTUwLTMHG4pzChfdkYXywv/duTFlRupHx3O4l553NQ2wK11t+JW2gZ9yFHqhRcw6WIjl8ghvLmviKTcFqreHRJwb+/mzBykdPT7v3yTDskaPTZQOv6vwkKYoaFGzoL0MwzKL3A52uLofGqdLZhQOpXNli5u3W5NFpnnfizhya3FlJYlI+kkeLRnIE/2MWL0oB1xxculQyulm9GCRVZSbiXHe0qL3i84yudAxJb8Epnnd5bw3I/FBAVIzL7SyPguBgx6H31sK/kMEhqRuo4/31j9NUJR23UdVYW/9Rm2aBmR8Cc+pUCW/T4ShsFON66jPR/wrlJxWSbDlvxjTAvXc1pvP6tdEFDCM3FBdjqKepYM5jbazMF1L3NZ524M/7iQa98v5K9MtcwECTmiMVcMaUHjS18gpNmbFMa8z8KM5Txy9m2GdjjIlJZpZVkt9sjAsh+OMu/LgwB0aNtG23mVkW+MYy03a1rXmmIsSc46FouM03tTGvWYUDqVTZZELOh4qizdWO31KkAnMfMKI3vuC6Vzw4rRkfk/ltDpjXx2n1S7bp7ZKbfzWTejleLgOOcgBGye5W7yjLpN8OGIkmLCZjOCHRqojI789UAYQ9sEMCWpiISl+aw7VIpP4w016C9SbYHIsWPHuPvuu2nevDnBwcG0bNmS2bNnU1JSUl2HPL/w55RFbe+g6jL+mP5yR20OAH3RQEU0guHvKNkA7ubc930Av37kOWXRxsvH/OndzP91qfJQd/j6rJkwC+pFY92bVHb85ikvsn7dWta/8j/+yDSTsDSfezcUsj+tYk2AbxJHseyPOeSUnrHbd7qpgIfP/Ej7s4/zs3G8k9+HlTd+OEqJyaIpzZmQ+nDTmyT3fpeOOc+zObO/1ynGjkZoStAxmW09V8Cwt0nu/S43G18v81RR2B/em/09FiNJ6l2PBCTE6tl5dyjP9DViKFvtYIaF7m/nc8dnhfyeYdakprBOCf1kaee13woAxnBcXUPH3QQHuvndeHqW179YyfLRTFmbrl2g+sLaMFzHW0OC2Tc+lGaREkM/LKTvuwX8ckprIFfz/iLVNjWTlJTEhx9+yMiRI2nVqhUpKSmMGzeOUaNGsWjRIk37+M9OzdjyX5my+C/hr+mvuobW9O4Bc5XfhvX3cXyHd6mTrlIWHerhaK2suzz1NF0dPUHKUtAL93zMi49N5LXtmZzMlenZVM/APnEkjLmLFzO+52yx+hC9tR7NVyeUejTjy0YZHPnfoDaM691S0z1mbjOYXgu+JTW7CFBSjIMar1LWsOl/XaUYjyyZhYyu3Mk22dIGCzpiQgOZe2MCAxMaYrbIJB/NIj23iNjwIBKbx6A/vl3z9/PbaTNj1xWyJ7ViJEgCbu0QwmM9JdrHVtTPdTUlZL1OA3TJzDa857GonyzDOSmMiOGvoP/kTutSDy3V8NtVe5Yf+sL74nXhjaDzWKjXUtlPQSZsmmk/elhWlFGWZZIOm3h4czEHMyzccamBuVcZaRrpLvDxcdrSgVpb9G7hwoUsXbqUv//+W9P6IhARnLfUdn1GbcBXrZRWHY7tfsD+4asyt/9laAjTvdBR2GE7324xU3r4B575cBlLPkzi7IFsDPUNNJ/RnMD6gW73vTz1NF0Ki0klhl7FLztpRjo0iWTdpF7KHx7usZ1HMhn55i677QPCUzDGrUdnqEh/jjeZmG7jI+Kp6J01IFh6RycGJjR0+lzr92PVoZSaZRbvKmHBjyVkFtrfB8P7d2fWLYlclPElYcUVrq6n5HrMKR3lFKxZ/Vb6Sb9wd8BXyGCnV7ENYMbePZkexT96kbHlpXbPVAIvtLWveu2O7hMhKAr2vOOcaXbNPAitVxHkyBZ4r+I5YrLIvL2nlCe2FlNQKvNcvyDu62KwK2EAKD46g1+qcR+RGk3fzc7OJibGtQNgcXExxcUVbxI5Odq8AASCOke7IUp6XHWPdtXlETVf07u9ntsu2+9X0ytSFlX0KVot2FXXs22TTs/3RjOfX3CQxo80pd7JBhxffJxji47RYlYLAiJcP5Yz9Hql1gxZJOoOscshE+XP07mYLTJ6neTxHkvPVUZCrJ1zLOdIz48i+fCjJIZuYpTxc+qbzXQprsjucSySp4Z1dGLOhoP0bxevtMXVtXCDBQk9Mga9xCOXG5nQNZClu0tYuKOEjAKlIZ9s3sUnm3cRclF3Lu81iDbxYXajM877VPxWdtGO3fLFyggJFSMkaVQEMINyi6CjzTU8+r2SdeISm2wTTwaMB9fDxqnKaIYmJNi/pkzU6hCU55xSzNqGv2sX7Nqm6AfoJO7rEsjISww8urmIiV8W8fHBUt4aEkyLaJvrNHwFtOyjsU1VR40FIocPH2bJkiVup2XmzZvHnDlzaqpJAoF/seozqovKurfWBrzxG7Hi0SfFBbmn4IdF0Ge6qj6lU1ExcSYT6Xq9nTuqFev0ib1Vu7Mni9liZn7yfOSytgU1DuLCRy7k6LNHOfb8MZrPaI4+WD1YtA1y1CoMF5ZaSD6aRY+ytF5391hseJDqdMUpOYY5haNZX3gvsw3voZcqzse2o3aHDKRmF9m3BZSpGtPFtNbXJ9p0RjV7xpUzbligEpBM7BrIG7+U8NyOEtLylGtY8NcuNv+1i+0tuxLZcwTGRp41F5ssiWwu7lIRhDkEMLHhZYZ01muoUbP055HD/J7domIqyvEkHab8tCF7dvv99E4lAmw/1GUQH2GUeP36YIa3M3DP+kIuWZrHgn5BTOwaiC6ycfU+j9zg9dTMjBkzWLBggdt1fv/9d9q0qVBunzx5kiuvvJI+ffrw1ltvudxObUSkadOmYmpGIPAWlw+7OqpD8XZkx6VGQgO3rFSKqanoGLaEBDOtbHrGs1W7+rXenbabuzbd5bTvon+K+Hvu3wRdEMSFD12ILrCiM7UGOUn/nCofnXCl0XhpREdu6NjY42maD6xD9/FoZNn19MRmi+uOWgu2bUlKSWXOhoOkZhcxQ/8B9wVsdEoBlmXl21puHsg9AUlu911YKjMwuTs/7voFc559Jx3UvDNRl4/A2Lit03Z2I0Aq52Q1its+/Sr7IEKjZklJwVZGqhpGBjF7cLuKKSqfU9K94JaVFfebGzPA3GKZGVuKeO3nUl4bFMSEhR9W6TOhWjUiGRkZZGa6H05q0aIFgYHKXOepU6fo06cP3bt355133kGn034TC43If5i6PKXgb/xVq6i24asja0RjmLxPcZ9UGVXZEhLM/HrRdj4iMbpwZmRlce3Z1PJlBcHx/JP4BK2uvM2uQ/vy7y+Zvm266qHz/8rn2MJjhLUP44JJFyDpJacgR5bhLGEUE0hDx5GM0tGKtsFmFEKVsntEzjmlmhfiSQeildXjutOjZT2SUlKZsGoPMopodKlhMYDTiIgsK86xW+WOrAl8xuP+R5Q8xs6SVuT9upnsXR9jzrXXWwQ160hkr5EENWkPqAtWrddtkyXRvb7Fg2ZJ7Zo57U+rALsyRDS2/23bPkszjzhpTLafiabL3YsIuqxqfYtqjVj15MmT9O3bl86dO7Nq1Sr0eu8eeiIQ+Y9S01MK51vQU9PFC2sz1u82NxWSZmoXBo7ZqMzHu8g8MQN7Bj5JRmxrGoQ0oFNsJ/RA8tYNbNyxjz8LQsvftB3fil/dmcTrfzrXrrGS+2sux186jj5ET8hFIcS3DOL++ibGx5gIDJDKm6ImtJQksNz8Hvr2N7g/Px/e7r3BdlQBKM/O0WFxa2pm7cx7F7/InoiHiSjJQK3Tl5FIlWPsOn3ZVEpeyjdk7/wIc0663frGCy6lf6+OrG35OZIkuRwB+jW8t/0IhiMuRtosZX9OUMlmshthOfCpl0JqH3H3266h512tEKuePHmSPn360KxZMxYtWkRGRoXjYHx8fHUdVlDXcTWlYC3GVNVTCueDjsIRf9Uqqo3YaiQCgrTX/sg7rQj/XOhT9APn09Xh/khKSWXC1wZkutotT8suYsKqPSy9oxP928WzcqseS4NIpIBsVXfS8EvCaT2zDe13pHLiWAG/r81laik8HggPXRHB3YkhNDIUOHXkOknpoPWbZkLb6913Lhq/ezUdiieszZo9uB16ncTOI5nlKcKJukNu02d1EjQik3dafEdE63tg6zxcCZUdBbNSgIHwjgMJu6Qf+Qe+JXvnR5jOpQFQfOJXNn7wK30v0PPElUaubq4vd7i1XreXoz4kYNrj6APcdIsuNEtpLrJ0wEEv45NJWNn5B8doqgoNKN+vq4CjurVpPlBtgcjmzZs5fPgwhw8fpkmTJnaf1WJXeYE/qemCcDUd9NQUtcm9tTZhrf2xda7nda3XRmN2k9kiM2fDQXd3LnM2HCQ8yEBadgkBlsEENV7lZJVufTSag8ayr2s7unU7yO2WFE6mZ7ExJZtnvv+JN5JzeaqPkbEdDU5CSElr5obG777AWB8K1T+TgMgQA0EBetJyisqXxzuMAFmzc0B7YNPr1Ao4BQRHIyMh2XTAckg9LIMW8euGCKTsImcVlD6AsEuvIbT9VeQf/J7snR9iOqsEDdtOmOm/soChbQJ4c3AQ9UOsUygyxoJU+Gen507a4Z7YnqZn9DcBHqew0nOL4FINQmpJp6TfWrEKs0F7IJ15xHl6tha/YIlaM4LaQ01OKZzPOgp/1iqq7VTT967myaHGpL6teOW7w4DVs2MDOkN2RfNKIyk+PRhTboJay7i+9GvOfP0aa1JMJMTqeK6fkYGtVOrXeKoT4uEekZHIC4ylQ87zbjvY1+/oRP82DTj00yYKz54kOLoxbboNsBtVsL023XUHNWk/bNsBMnlyMOFSRURUGBzPoY6zuOm7MuGwu31YzLQ59DYndm7k0JmKDj4+TGL5kCCuvchQsXLivdB2iFfTFVq/+wf7tWZKv4s8C6m7jYeoCyC0gVId2rYtKWuV7BjbQMUOSRFaq6X51rBQXdSaEdRNanJKoTZUwa0uakt13dqEtV7Mgc+h01jc1v7w4drYvvW7p6JzMOUmkH94OgXHx1F4cgQFx8eRf3i6ahBi3TLD2ITVw0JIvieUesESgz4opN/KAvakOniXOIx4mC0yO49ksm7fSXYeycSMzuU9YpGVUeuH80a6DUKiQgz0l5LRv3wJ7TffRpefH6H95tvQv3yJ0tmW0blZNDGhSvJCsqWNV3VfJJQ0mjCHYRljQRodd07hs75niI8Mcr8PnZ7ohF6kTAhl1Y3B1A9RzjctT2bQB4VM+rKQgtKyBiW/obwMLU6wOwd3JDaPoWFkkDtDfQAWb/mTpJRU15bvVpv3n16HTbNgy2wloLC9FxOGKl4fLpEd/qvyWdIM92UN/IAIRAS1h5qcUjjfdRT+rFVU27CpF8OndytTM8FRypujLZW4NuWeEx7o0aK+Q6elw1zQElNOR8wFLfH0SE62tKEwKI6ujQP4bkwI60cEk5or0/kNpQ7L8XOyU52QpJRUei34lpFv7mLKmn2MfHMXvRZ8S5Klq+o9Yluozh3din5E9/EY54DeOrV5cD1JKalcufA7svKVGmMWdF7XfZEk50q/iq5DpuOBBWx/5EpWj+vOSyM6snpcd167rRPxEUan63ZaqsfISwz8NiGUa1tVjNi8uruUzm/k29disTkHT+h1ErMHt9OUJD5nw0HMFtm+nlf3icqHjqMcrtrQfij0nOxcn0bSKRWn3epIaucLlghEBLWHmiwI91/QUYjihRXD4I6dZeE55YHdZ5b7a2NTedddgTxPb8USiqdE95b1mD24Xfkyb7Gg40S32cr2ko7BFxv4dUIoy64PYsvfJlq/kssjKRdzNlsxA7OmzVrFolasAtokS1fMk39jouEpJpdMYkTJY/QqfsljEKLDwmzDe7h78y7c8Aj3r/rZ6dibLIlMKJ1KGq5dtrWgA6Sck3DCvlMdkBDPjzOu5sF+rcuX2QZAsaE6vrgtmFcHBRFcFo8cOqMU1Zu7rVgJFHwYPQg1uh9FsxWtKiegV55lB9e62UKlDQfXw44lzoGLLMOBzzS1tba9YAmNiKB2UVMF4YSO4vynsnoQLzOqrJ0+qN65dt4UtuZeVuIjjBSZLGQXlLq6IyvSQA9tcGpbnrEhz5/sxMJ31hMYGMj/HnuMj/LbcjpfXU9g3d+imztw+1s/qa7jCq1aD3fpv/WCdfx0xX4Cfpjn1bEdeSLgQd7Lq8hUsk2XdrzOjj4ih86YueOzQn6xKap3eVM9K28MprnV+tyxqKLDvWLrkaIFO8M5b3RxzXoq638ytkwDUglqIHW/1viIVBYRiPxHqamCcKIK7vlNZcTPPjrTqgUYTu6aZahVpt18ME1zMOMqPTM1NZU5c+bw1ltvIYXVJ6r3aELaXoHkotT8Ne3i+Pqgd2/IQ3Q7eDnwFY/rTS6ZxHqL+gimDgv7I6YRXpKu+rlWHIMdx2tVYrLQfd435dNDVmfVgbpkxgZ8TalZZs73xczbXlI+XRQeCPP7BXFvZwMBtplJDoGo2SLbVTDWgtXkDdBeoLH7RGXkpNKOrDX3giUCEUHdp6ZMxkQV3PMXrQ95xwwTDyMpMhKFwXHsv2kbiS0bOKXQqgUYTvVG3OBNMOOOVz7byqPTZ1B4+CcCG15EdJ+7CLrgEs3bu6MqRkS8zaBR46wcRufi151EtbajR8lHs1SzWhyP/+MJE6M+L+TouYouMSFWx4sDgujXwqopsQ9EtWbMOLap/H6oVqdVF4Uia2HWTI1W3xUINFNTpjs1VQVXUPP4qgPykFElIRNSmMZLK97leHgnpwBBr5M8W6y7YWBCQ/q3i69UMAPQucMlxA57nKITv3F263JOr55JcKtEoq4cS2D9C3xunwT06HM9hXveJKgoXclsccDqfJpsaeO8gzJ8MUtzZLlpoGpmj60ew1VGkzWDx+ryevkFAewbH8aDSUUs31cKQEq6hf4rCxjcOoDnrzFyUT09ICEnzWCXoTtfHfRuNMdq8laOlgKNjr4iWugzy8nK3W2hSD8jRkQEAsH5ia86II0jKZNLJrGhbNpBtTaJn7FOG6RlF2GRLRQc2s6579/FlJNBeKfribriDnTGEJ/3X14zRnLMelBCk5kBj7Amr6PL7SszIiKjjIZ0URkNseWlER2JDQ9yOWrhqu7Nzn9MTN1URPLJigDAoIMHEgN5/EojUUGSV/b39UIDefbGBPV7xO0Usbfds809DX59wRI+IgKBQOCrn4rGkZR0orDmV5SnZdYirGmlADpJR2jb3jS653WirhxD3q+bOPXWePJ/3+az03V59ovskP0S0QjplvfoPcS5wrAtWj1FZDWfE2Bm6T0e3Uyto0muMpo2WRKZWDqVDMl+BKtH0wB23h3Ke0ODaBSubFlqgRd2lXDRkjyW7i6hvkWb3XpMqIGdM692Hai6S7W3pvZqwuGeto4qXzJc+W8tHuUVIyICgeD8xlsdkA9VVsFBhFiLUNOcmHLSydryBoV/7SKoeSdi+k/AEO3biI5V/Nk6JJ/Zt12F/sLLSTqY7nRMNVxX4lX++Lv1XQT98blDtVzXdV2sbYnlHKbQWJZMvx99QIDnjKbbOzAw7KgyepB3WjEUKyO/ROa5H4t5bkcJRaaKbSMbxGO8ahLBF3ZUPTe3lXzVUNPFHdsO72mcSqll2jYhVhUIBAJbvBU/u6qyalOp1bEjvOvyC3licPsqbnjVYBXQ/ng4g1e+O1K+vOBwMlmbX8ecf5bIHrcQ2W04UoDBzZ7cs3pcd7ILS7xKZ3VMqQUgojHmAfPotT6M09kF5cFFOlHlVY2tWCcw1PdTkeWiWQRsMSOXBaK2+pcT2RZmbClidYpNNAIEt0okuu/dGGIa2y33RWDsxJGtsNJDJWWA/s9Aj4nO97QfK4uLQEQgEAgqi8pIiru38XqhgST/r5/XotKaxFY3Yn3wW0qLyN6xhpzkzwmIiueCwQ9giVds5r3tHF68pQPPbfrDq3RWqBjJeLhnJJe1a0OyuQ0//p1lFzS5IiY0kK6F292OrFgzRbRkNCWlpLJ17XLmlj7ntD+LDDv+MXFTUhQZqTYjbLoAwjtfT1TPEQSFhvPIgDaM6XkhgQGVVD/4mvkFfq8sLgIRgUBQ9/Dj25u7NpmP/chjK7dwtDjc6W3ckdo6PWOLq2mK0jMnyPz6NYr/SaHPtUM53agXeeEXeCVoffy6tjz9xe8+t+3Bfq1Zs/uEV4HMizcnMOibawgsSHPhVqvdO8PWnExthMUaiCaZu5B/YCvnvn8Hc17F57rgCMIvG0T4ZdfRpHHDyo+I+OqF46MPTlUi0ncFAkHdws9vby7R6dG36E1Ip3rs+vGYx9W1F7/zHwMTGrL0jk5O0xQXtGzNW19sImPvFh599FFOf7UWkDDUa0pgw9YEt+xCaJteqvu0emTEhBlVP/eEHgt9gw9z5NsdNCOK07gP+GxpXZSCsSDNzRo29VXcWAKYLTJzNhws77o3WRLZXNxFdVpIkiAs4SpCWvcg56dPyUn+DNlUgqUwh+wda8je9Qln2/Xmrj9vYPlDN/sejHhI75WRkCIa2Ze9sJiV35JL+31JsY1vc53/A/0yRCAiEAj8i6u3N2vRr1rgcNuvXTxvawhEtBa/8zduvUouGc2IkbfR7eHlGI5sofDUYf49eYAzKVuQS6cSdkk/u31ZRyFmD25HZHCg923RJfOE4T0ayVlQtvkpOYY5paPd1ryxBj9tw7Vlr3iqr5J8NMtpJMaCjl2WduVTR9frdtkFJLrAYKKuuIOwDtdw7oeV5P/+gxIIWEzkp3xLfsq3jPjxPbZ+vJyOHS7V1k5brJlfH41Wgg4HvZIkyextP53LbAMKbyqL14RXkwZEICIQCPxHHXl7s6aA2morHIkJNZCWU8TOI5k+GZCpUo3TVe6M145u/5AvoubRqIvSycuyzKiNYaxOepmAyDg7h9Z4G1Gm2SJ7vE46qUL0O0CXzNLAxU7rxJPFUsNil1WAbYMfXehhbSfsIS3b1WiW+hSNfaAUEBFL/esfIqr3GHL3biRvXxKWojwAsv/6hc6dLuPee+/lqaeeokGDBtraa6XdEPb2eIm4HU/atSGNejxVMopN39VnaaN/K7J+0g9p228tKnwnNCICgcB/VKYeTA3jSluhRpVkTPhruurgeuSPRiPLsp1Qs9gkM+j9An5MC6Te6JcwRDdiUt+WPNj/Yrugy1Oq7Ku3XUZ0qJH0nHwGbu7vUtvhKk0aHK5vJQtYusooAtfpxe6yp0ARAOcf+I7sXZ9gzq7o8CMiInj88ceZPHkygYFlwz8egk2zycQDC17FkJ9GPSmHTDmC08SUj8oM1CUzJ3AlcWSqnLsbqvk3JcSqAoGgblCZrAA/oJYCqobXHhKO+EtsWNapyzmnVIODzAKZxOVF/CPHEjfqeT56oJ/qqIqmVFmNQaitg+mkvq24vFV95xEnHwtYuvs+dVjYbpxcbgHviLtAyYpsKiHn53UUJn9CcWF++fK2bduydOlSrmyQ7T7YPLie4o2P2GlgbEdjXPuwuKNmCt+JQEQgENQN6tCIiBXrG3RadiFPf/F7eVVXR1SLnGnBQ9G9au1INHwfh7MstH/TQlCjizl9cBdBRnVdiGOqbOdm0fxy/Gz5393yv0X32T0em2S10vd4Lb00rrPNkFGjKgr7WbUljcynyTl2iOUff2nnZDu6g4GF/Y3EhlYEMlYn2cOt7qTV4RU4estaR2Mmlk7mCcMql4GSI2ZgT1AQGXo9Da54lE6JD6CvJYGI0IgIBAL/4bHoV1mna5sV4Ges2oqdRzJdBiFgX3jNq5Ref4oNNegGWsXouH7YDaz/8CM6XHoJY8aMYdSoUTRt2tRuPVsNSlJKKlcu/M5u5GFQ+Cle09CkdKIAlYJxjnhRwNIxQ0YNrUX5XK3npC1pCxOnNmPCFgPJv/0FwHv7S9nwRynzrg5iXGcDOkkRpFpkaPHXO8jITkGGVWPzjOEd6ks5mtq4JSSY+fWiOR1Q1uX/8TZx/2xkRuIM+jXr537jGkDUmhEIBP7D13owtQCtqbpep/RqFRFWh9hQY52d6XcNZ9u2H0hMTOTZZ5+lWbNm9OvXj/fee4+8vDy7da0jD47TH5tyW3BKjnGqJWPFIiu+HSfCLuHhG/RYQvayO203ZovZdcM01lfZ9Xemx+k1awDkCbX1rFMm8dhn9HSKOMuOoad57cGhRJUlWJ0tgvFfFNHz7QL2pirnppNAL1lcjnToJLQHIV1GMi2uQUUQYm13QTrTtk5jy/EtmvZTnYhARCAQ+Bd3Rb9qQequK7Sm6nqd0qsxGNC8njdYR6hcBAcyEnJEYxL7DKZ79+6sXLmStLQ0li9fjtlsZsyYMcTHxzN27Fg2b9nMjn938diWlehCjgD2pezN6HiqVNHBOAYjMhKSJLE58Q5CLlrE638+wvRt07lr010M+HRApTrPpJRU7n9/j8f1PBXlswZKyZY2dst1WJhteE/5f6fLKKPTSYyMSOaPSWGM7lBhp//TSTNd3sxnalIROcVVo5gwA/NzD7jISVOWLkhe4D64qwGERkQgENQOaqOzqhvU7NJtqbxGxLcskErjo/AT4Pjx46xcuZKlby/l1LFTGGIM1B9Un5irY5BNURSfHowpN8FumwG6ZF6OWmNvShbRmC2Jo5h2ZHV5h1nRCqUdL/R5QdO0gq1W5diZAhZv+dOrOjjeZs1o1ZZY+f6YiQlfFPH7mYpArVG4xMsDg7ipbQCS5PreOUsEUeTa+YtUILE7phF3RXq+R5YPWE7X+K6a26wFb/pvMSIiEAhqB3WobDkoGojZgxWRootJJc+6BjX8PV1ViRGqZs2a0X1Ud2Jmx9DisRaEtg0ldVUqx188jjk/k6DGqwgIT7HbZpMlkaT+mxVB8rC3YcxGzJP3MT/1G6cgBLx7k09KSaXXgm8Z+eYupqzZx4teBCHWtk0onUoaMXbL06jnMnVXq7bkrByGRYYrLwxg3/hQ5l1tJLhs9uRUrszwjwsZ+mEhJ3MsTtvKSBSHNCRi+Mtld4T6fZJx2UhNbckoyNC0XnUhxKoCgUDgI67s0uMr6yNiDQZUUzt9L/VutpjZk76HjIIMGoQ0oFNsJ/XMCS+En477n588HyQIaRVCSKsQIrtF8u9b/3L4ib9ofFcTwtpvwJTbDtv34GOZxXDZFWX7kFm59xtOF7jWwMjIpBWksSd9j8s3eU9ZMVpxZ/WuhlZtyXLTQB4M+ASLDIF6iRm9jIxIMDDpyyK++Eup8Lv+DxNbj+Ux/+og7uuiiFmtY0LG659Tvied3uV90iCmIfz9kce2NAiK8bhOdSKmZgQCgaCSaKnq6hNVOF215fgW5ifPt+vg40LiqjRzYnfabu7adJfTclO2iX/f/pe8X/OI6RdDRPdZyKUV2oqGZVNYmw+mMWfDQTLkXQQ3XuPxeAuuWMCgFoOcllunzbytAgwW9CFHkQJykU3hmAua4+3EQbn/iJSluqWt/0h/3c9Orq0nLTGM/a0L327egiX/XPnyy5vqeWNwEO1aXuAcjLq4T8wWMwM+HUB6Qbrq6JIky8SZzSRlg76KjfKEj4hAIBAIytlyfAvTtk6rtN7CFSUmCyt3HmN72mZ+LnhFdR1ZlsnakkXah2kY6sVS77rHCWxwYfnnD/ZrXa7f0IccIaTZmx6Pa6ttsA0Gz+QWe10FOCA8BWPcBnSG7PJlltJIVV2LJ7zRlli9RhxHW8xFeZz7bjl5v35d0caAAB773yxmzJyF0aitwKD1uwfsvn+prOt/If0M/QrKArYqFIeLQEQgEAgEAOVvxa6mOiQk4kLiSBqW5JPB1bwvD/LmtqNYZG0BRNE/RRxfkk9p5hmi+95FeKfrkSSJqGAD5wpLy9ayENpqAVJANmpaTcc2a3W8dUVAeApBjVcp+7Y5nrV3LDp5h0/BiHONmnrMKR3ltpifI0UnfiUz6RVMZyumXppf1JyJz07kyiuudD29ZoPaaFi8ycT0zLP0KygsW1K1ImgRiAgEAoEAcD1d4ogvmRPzvjzIsh+O2ixxH0DIMsimSHJ/n8q5798j95cNBLfsSr1rp6APjbJb11Vw4DiKU3ktiLY25x+eji/TNGqjHRKe6xXZtbC0mOwda8jb/RkWc5lAV4KonlG0vbUtTw15yuOIlvnv79nz0c2Ks6rZTKeiYlTDjSpyMRZZMwKBQCAAtGdEeJs5UWKy8Oa2ow5LdRSfHgxUjCZYsf5dfHowOkMwMf3uI3b4bIpT/yJtxQMU/v2L3fqm3ASKTt6BbIq0Wx4XEscLfV6gb9Or+fGvM8z49LdKCVL1IUfRGdSDEFCCIJ0hG33IUWJCDbx4a0ce7NcaRTbqHgs6dlnasd7Sk12WduUC11CjfZ5ImFFHSKDrUQidwUjzYYm0eLI5wc2DlYUynPvxHDun7uSW0bewavsq9+eZn0HXomIG5RfQ1VUQAn6pyiuyZgQCgeA8pkGItrLzWtezsnLnMVWzL2sAYYzbgGSjt5BNznqLkJZdaXzXEkJ/eoNDH88mvPMQovuMRQoILN+XKbdduYD0sQHdGHVZXzalpNP1vS1uLfa1IgXkalpPF5DL3CGXlGdCXRwf5vN0kEW2EBMaWN7+vGLnFF2HLSiNWosxIIgWj7cgc0smGesyMOebwQJnfzjL6D6j+f6uH7j2jonoIxo4i6b9aZTnATE1IxAIBOcxHjMnfNSIPLEuhfd2HnezhpKB0rutkYlXdCIjoyFPb/xDtSLv1W1iuWjoZI4nvYEhpgn1Bz9CYINmNm2sMId7Lul3h+mgyqFVGDu+9ULu7zHQblllBbKVaaO5wEzm5kzOJJ3BUmgTyOj0hCVcTUT3m7ngwuYVaeQ1bJQnit4JBAKBAAC9Ts+MxBlM2zoNpaSaTeZE2eTC9MTpXgtVm8WEeFhDh7mgJb3i29I1vgXEw4D2jV2mOb8+/zHujm1LxvqFpL33INF97yLssuvKvDMUc7hNKalVGoQAmAuaYymNdKkRAYgLiWd8t/5Oy/U6icTmMSQfzcJikYkOMXC2oFRlD5VDbdRGH6In9oZY6vWrx5lNZ8j8OhNLkQUsZvJ+/Zq837aQ3b4P9xy9lbcmD1aCkYELylxzHVUq/q3rJEZEBAKB4D+AauZESDzTE6f7lLpbYrLQ5vGvXNZiASV19dDT1xIYoE2OmJSSyuzP9vL7utfI3fMFwS270u7W6Twzsif928XT9dnNZOV719Fbq9W6wyqMlcBO+GEN1BZd+Tzh5k5OAVRls3W0omXUxpRnIu3jZmTv2o5cnF/xgaSj3iVX8t37S7gkob1i4e9kgNa4UkZ5atS6rJni4mK6devG/v372bt3Lx07dtS0nQhEBAKBoOrQ7KyqEeesGXvu692cmYPaedlGZbrjiy828uqTD2EMDODdd98lolUXRr65S/N+vM1MUfMRiQ+J55r4e/lse4zTlNKQDg1544ejbo5ReXM0231pzeyxFBWQs2cjubvXYimqqIQsSRLDhg3j8ccf59KE9tVe16nWBSJTpkzhr7/+4quvvhKBiEAgEJxH2PqIWNFJMO4K74MQR9LS0hg7diybNm1i4M2j+a3BVQSE19e0bcPIIAYlxPP2j8c0ra/DQlfdQbpenEm7NvE0aNqTjMwm3P/+fq+zcqrSHM12n2rpzKAEIo5eJ5biAnL3fkFO8udYCnPKl0uSxOTJk5k7dy4hIZ6m13ynVgUiX331FdOmTePTTz+lffv2IhARCASC8wyrs+rxrAKaxYQwqseFmqdjPGGxWFiyZAmPPzGb3Px8whL6EdFtGIZo9To+YUY9y0Z1oXuLeiQfzdI0iqJmPiaHN2Jm4R2syevoVXurwxzNdt+OAU6Yvj4Zxwe63KelpIi8fV8i/baRrDPp5ctbtWrFihUr6NWrl09t8UStCUROnz5N586dWbt2LfXr16d58+ZuA5Hi4mKKi4vL/87JyaFp06YiEBEIBIL/OGfPZdNx5CP8+8PHWApzCG3bm4juw+1s4gFeu60Tgy5VghRrzZm07CKXoxou7dgBZFxW2VWn+szRbI9hnfIJ1Ufz45R76L3we5epzNaMo82Te/Daq68we/ZsioqUaSZJkpgyZQrPPvtslY+O1ApDM1mWGTt2LOPHj6dLly6atpk3bx6RkZHl/5o2bVpdzRMIBAJBHSI6KpJlC+fQZPzbxPS7l6J/D5C6fBLpnz1DceqfgKJJsQYhoGS1zB6sTA+pJcTosDDb8J7y/5LjZwqzDSvR4cnno+x4XpijuSIoQEdUiMHNUZRsJFNOR0Zc0of+L25z66cio2QcBQcHc8Wwu3l+9SYSLlMcdGVZZvHixXTs2JGff/5ZwxlWD14HIjNmzECSJLf/Dh06xJIlS8jNzWXmzJma9z1z5kyys7PL//3zzz/eNk8gEAgE5ykDExqy7M4etO47nMb3vkG9QVMpzfyHtPemEfP9c/QIScdxkH9gQkOW3tGJ+Mggp/0l6g7RSMpyCkKs6CRoJGWSqDukqX1azdHcrVdksjB3aAKrx3XnpRGKi2tcuH2Bu/gII/f1bs4bPxz1mLETFWJg74mz9FrwLSPf3MVzu3LJ6fcYF1x7L4ZAZb9Hjx4lIMB/bh5eT81kZGSQmZnpdp0WLVpwyy23sGHDBiSb0NBsNqPX67n99tt59913PR5LaEQEAoFA4IitkVi9EAMn925l3ry57N+/n549ezJr1iwGDRpk3/9YZHYdyeT+D/aUF9cbotvBy4Hq1YJtmVwyifWWnh7X02qOVnB8HOaCli4/b1hm3mb1WLE939jwIDo3i+bKhd9VKm1YAkoyTxC482V6Xt2JqTOnVjqLypZaoRE5ceIEOTkVSt1Tp04xYMAAPvnkE7p160aTJk087kMEIgKBQCDQgizLfPXVVzz77LPs2LGDDh06MGvWLIYNG4ZeX9G5WovkAXTTHWRN4DMe9z2i5DF2WbRkAFkIv2gBBGSrfuqNRmT1uO70aFlP9bMfD5/h9rd+0tAe11iFr5L+HFhAClAcdmckzvDJV8aRWqERueCCC0hISCj/17p1awBatmypKQgRCAQCgUArkiQxaNAgtm/fztatW4mNjeXWW2+lXbt2rFixgtJSZRTEdqom2dKGU3KMS8Mziwyn5HokW9p4PL5StE5HYdpgJUNGZZ8SlBUF9Nz1pueqj3YkpaRy//t7PG7vjnIDt4BsJJ2EFKCMvKQXpDNt6zS2HN9Sqf17i6i+KxAIBILzBkmSuPLKK/n6669JTk6mXbt23HXXXbRq1YpXXnmFwsJCBiY0ZPv0q1h5dw8WSXcBzu6r1r/nlI4qr5rrjoISM1BR9M/iUDU4PiSe5/u8wNCLBqpt7kRsuLOmxTqaY51a8g0LxrgNgIofSVn0tCB5AWaLuRLH8A5h8S4QCASC85oDBw4wb948Vq9eTVxcHGvWrKF3796A0rmv/eB1nnDwETkl12NO6SgvUncdsRAQcpSoiCJeuaUPXeM7o9fpMVtkLp//LWk56iMetgX+9Dp7jUuvBd9W2k5eq45l+YDldI3v6vNxRNE7gUAgEAjKaN++PatWrWLOnDncc889XH311Tz//PM88MADDExoiGXEeIas7UGrot+I5RzpRJFsaaNpJMQ1OkwFLTlTAHJhy3IRqF4n8eSQduU6FZXSc+UpxzuPZJYLVC2yXCU1bbRm9mQUZFT6WFoRgYhAIBAI/hO0bNmSzZs3M336dKZMmUJycjLDp8xhwZZjnCkwc4bKWdK7wlHvMTChIff2bs6b245iOychlVnjA06jH1HB7rxFtCObwjWt1yCkQZUcTwsiEBEIBALBf4aAgACef/55unTpwp133cXHm3dS/8ZZGKLiq+2Yx84U2P2dlJKqWjDPIlNWRNDZ8KxyupAKzAXNsZRGogvIVnV5k1CyZzrFdqqS42lBiFUFAoFA8J/jlltH0Hrcy1hKCkh7dyqFRyuXieKOxVv+JCklk+89zQAAFXtJREFUFVC0HnM2HPS6kF5VcfflLZh4yUOKAalDJGL9e3ri9CrzE9GCGBERCAQCwX+O5KNZ5IQ0In70i5zZsIj0j2YT1XsUEd1vtjNCc4eEapauKk9uSCEq5h9+OnGM9NI0oDk1ORbQMDKI2YPbMTChIdCei+PDmZ88n9MFp8vXiQuJY3ri9CrxEfEGkTUjEAgEgv8c6/adZMqafQDIFjPZ2z8ge+eHBLfuQf1BD6IzKkXgJvVtyUVx4Rw7U8Dq5BN22S7Wzv2PtFxe3PKXy2OpVc21lEZSfHqwT5V4QwP15JdoT6+d1LclD/a/2C4LB8BsMbMnfQ8ZBRk0CGngN2dVMSIiEAgEgv8ctj4dkk5PVO9RBMa34swXL5D63jQie9xCyMWXc3mrBuUOp5OuamVntZ7YPAa9TqLY5LoontU8zBEpIJugxqsoOnmH18HI5KtbseyHo26L3dlyeasGTkEIgF6nr1SKblUhNCICgUAg+M+R2DyGhpFBdiqJkNY9aDj6RQLC65H5xQucWjqWNS8/xcGDBwEl9bZHy3rc0LExPVrWK+/c1czHFFybh1n/Vj7XVt3XSmx4EHNv9By8SCijNonNY5w+M1tkdh7JZN2+k+w8konZlb1sDSBGRAQCgUBw3uBYIM46auGIXicxe7Di52Gr9TDUa0L8iGcpzTpJD9M+PvjgA15++WV69erFvffey/DhwwkODrbblzWocfT50IcctZuOcUSSQDJkow856rYIniPxkcH0aFmP1+/oxIzPfuNcgXNGja0nieP5J6WkMmfDQbv22mtIahYxIiIQCAR1mNr0ZutvklJSy8vdT1mzj5Fv7qLXgm/LM1Ycsa07Y0t8ZBBvTR7Mx8tf499//2XNmjUEBgYyevRoGjduzNSpU8tHSaAiqHFEq3mYdb34CCNRIe79QmxHOAYmNOSXx/rzYL/WTj4j8ZFBLL2jk1NgYbWJdwya0rKLmLBqj8trVZ0IsapAIBDUUWrbm60/sXawjh2adSxArVO2onUU5a+//uLNN99kxYoVnDlzxmmU5OkNB3j7x2Pl62u1U7+r5QK6N+xGYvMYNh9MUz0P67m4Og8t5+DJJt6VvbwveNN/i0BEIBAI6iCV6XjPN2qygwUoLi5m7dq1vPHGG3z77bdER0czevRoul17KzO/y7JZ00JoqwVKlVs35mFJw5LsslWqK8DceSSTkW/u8rje6nHdywW6viKyZgQCgeA8xp0plozS8c7ZcJD+7eKrpOOt7SQfzXJbh0UGUrOLSD6aVekOFsBoNHLrrbdy66238tdff7HsjWW8vfxtXnrpJSLatCeow60ENbsMSdJRfHowQY1XIcv2glV35mEDExrSv108u45ksvPvM4Aiku3eonJtf2vbEU3rOVrSVzciEBEIBII6Rk13vLUdrR2np/W0TtHYcjzwOPsS99Ho4kaEJoeSmXSEnA+fIDAunvDOIwht2xu4A2PcBiQb4aon87DNB9PsRkVe+e5wpUZFvvz1FN8c0lbIznUWUPUgAhGBQCCoY1RVx3u+oLXjdLeeL9MhW45vYdrWacjI6Aw6oi+PJqpnFPm/55O5KZPMLxdz9rvlhCZcRXiH26nfSmZEjyj6tb7IrXmYq2k3q6DU22k3s0XmsXUpmtatFxqomu5bnYisGYFAIKhjVEXHez6h5gliizs/DfAtk8RsMTM/eT6yQ7ggSRJh7cK48MEL6fx8N3oNugnLn99z6q2JRH31EW2zQuga39VlEOJp2g2UaTdvsqOSj2aRla+taN4NHRvV+HSeCEQEAoGgjlHZjvd8wzZ91vGauPPTAN87/j3pe+zqtDhvK1NcL59Fr0wk83Qqq1evRgJuvPFG/ve//+EqT8SbaTdPWFO7v/IiJbd/u+qrQuwKEYgIBAJBHaMyHe/5ijtPEHdTGb52/BkF2vQWGQUZGI1GRowYwXfffceiRYuYO3cuY8aMoaTE2aJd63TaVympbn1jbD1V3tt5XNM+/TEtA0IjIhAIBHUSa8frqGuI/4/6iJgtMpHBgTw64GKy8kuICTMSH+FZcOqr3qZBSANN29muJ0kSDz30EI0bN2bMmDGkpqby6aef2qW3HjuTr2m/7+08zns7j6vqWFxpTDzx9A0JfgleRSAiEAgEdRRrmqe3mR7nG+6Epp6uha96m06xnYgLiSO9IN1JJwIVHiGdYjs5fTZixAji4+MZOnQoV1xxBV999RWNGjUiKSXVbRVfNRwFrO6mmtxxX+/mDLrUP8GrmJoRCASCOoyrQmz/FSprWe6r3kav0zMjcUbZOpLDNq49Qqz06dOH7du3k5WVRffu3fn1txTmbDiouq47HHUsnqaaHIkJNfDabZcxc5CzRX1NIQIRgUAgENRJqiLDpDJ6m37N+vFCnxeIDYm1Wx4XEscLfV5w6RFiJSEhgV27dhEVFUWvXr04+ttut+u7wlbHonWqaXSPZqwe153d/+vPoEsb+XTcqkJMzQgEAoGgTlJVxm6V0dv0a9aPvk37sid9DxkFGTQIaeDWI8SRxo0bs23bNq645jp+++hx6l/3EKFtr9C0rSPW6TktDGgXX2vM7kQgIhAIBII6SVUau1VGb6PX6eka31VTW9SIjIzklXc+ZtDw2zizfgGmnAwiEm9EUitQ4wZrmxtGBpGWXeRWJ/LQx/t5ckjtEDWLqRmBQCAQ1Emq2tjNn3qbyy+OJ+G2WUR2H865rcvJ+PQpzHlnNW8fFWIoD5xcTTXZkpZTxPhVe/jy11OVbHnlEYGIQCAQCOok55Oxm14n8eQNCURfOZbYYU9QnPYXp5bfT/6h7Zq2P1dQyuaDaUDFVFNchNHjdpNW7+XLX7UbnlUHIhARCAQCQZ3kfDN2698ulodv0NO0VyhN73+EoKYJnFk3nzMbFmEuynO7rbXislWYOzChIc/f0tHjMS0yTPzAvyMjIhARCAQCQZ3FV0fV2saW41sY8OkAXv/zEYqjVxLebjXNHobY4bdScGQ3qW/fT+HRvS63V3OA3XLQtQW9I/4cGZFkV4b3tYCcnBwiIyPJzs62c54TCAQCgcAWq4dGXTR2s63ia4esBBh5B67n9MdJFB3fR3in64i68k50geq6l5dGdOSGjo2Z9+VBlv1w1Ou2vF5FwZs3/bfImhEIBAJBnccqNK1ruKriCyjzLTKEXryN2FufJG9vEme/W0Hh0b3Uv24axsZtnDaJDQ/iy19P+RSEgDK9079dfI0GcWJqRiAQCAQCP+Gpiq8kgc6QTUDoccI7XU/DO19GFxRO2qqHSX13Kud+XE1J+t8gyzSMDKJzs2geW5fic3u0VvatSsSIiEAgEAgEfkJrFd/J18STnXEhy3+Ehnc8R/6h7RT8tYuc5M/I3v4++ohYug4bzobt0WTll1aqTVr9WaoKEYgIBAKBQOAntFbx7Xlhc7p2b09i8xjFAbbdlYS2uxLZXIoh/XcuLjrEls8/4NN3lhLUMpHwTtcTdGFHr03RQLvvSlUhpmYEAoFAIPAT1iq+joXzrEhIxIfEl1fxHZjQkMeva0dMaKDyud6AqeGlZHUczYpNP/Po089jyj5N+kePc+qtCeT8sgFLcYGmtvjLd0UEIgKBQCAQ+Alvq/gmpaRy/wd7yMovsVs3LbuIBz87RO/Bt9Jp6pvE3TafwAYXcvabN/n3tTFkbX6d0sx/XbbDn74r1RqIfPHFF3Tr1o3g4GCio6MZOnRodR5OIBAIBII6h9Yqvq6rDVvQhRwhIGIfszev57Hr2hDcNIEGQ2fQePxyIjoPIf/Qdk69NZ70T5+mZ7wibLXFn74r1eYj8umnnzJu3Djmzp3LVVddhclkIiUlhVtuuUXzPoSPiEAgEAj+K5gtZrdVfHceyWTkm7vstgkIT8EYtwGdIbt8WXRgAwY3mcBn22PKqwnLplKkozvI3fYe5pIiFi9+ida9riMjr7hafFf87iNiMpmYMmUKCxcu5O677y5f3q5du+o4nEAgEAgE5wE6TPktKM1thEkOwnHSwjGbJSA8haDGq5z2crYkg5V/P82ikc8Tbu5uY/J2AznZM5k8eTJ33jmWIUOGsGzZMuLj/eu/Ui2ByJ49ezh58iQ6nY7LLruMtLQ0OnbsyMKFC0lISHC5XXFxMcXFxeV/5+TkVEfzBAKBQCCoVSSlpCrZMNkVwUbDyCBmD25XPl1in81iwRi3AVC8RtRYuPs5koYl2Y2qREdHs3LlSoYNG8Z9991H+/bt+eCDDxgwYECVn5NWqkUj8vfffwPw5JNP8thjj7Fx40aio6Pp06cPWVmujVLmzZtHZGRk+b+mTZtWR/MEAoFAIKg1JKWkMmHVHrsgBBQB6oRVe0hKUWrA2FYb1occRWfIdhmEyMikFaSxJ32P6udDhw7lwIEDXHvttTRp0qQqT8drvApEZsyYgSRJbv8dOnQIi8UCwP/+9z+GDRtG586dWbFiBZIk8fHHH7vc/8yZM8nOzi7/988//1Tu7AQCgUAgqMW4FqBSvsxaVdeu2nBArqb9uzNMq1+/PqtWraJ9+/Zetrpq8Wpq5qGHHmLs2LFu12nRogWpqUr0ZqsJMRqNtGjRghMnTrjc1mg0YjQavWmSQCAQCAR1luSjWU4jIbbYVtXt0bIeAxMacm/v5rz18xFN+9dqmOZPvApEGjRoQIMGnk+qc+fOGI1G/vjjD3r16gVAaWkpx44do1mzZr61VCAQCASC8wytdurW9cwWmfX7UzEXNMdSGokUoD49IyERFxJXboRWm6kWjUhERATjx49n9uzZfP311/zxxx9MmDABgJtvvrk6DikQCAQCQZ1Dq526db2KERQdxacHA+BowiHLikbE1gitNlNttWYWLlxIQEAAo0aNorCwkG7duvHtt98SHR1dXYcUCAQCgaBOYRWgpmUXqepEJBSzMavtuu0Iiik3gaKTd2CM24Bk4yMimyK5rdUD5UZotZ1qC0QMBgOLFi1i0aJF1XUIgUAgEAjqNFYB6oRVe5DALhhRs113HEEx5SZgym2HPuQoUkAusikcc0Fz+vbtWSPtrwpErRmBQCAQCPzIwISGLL2jE/EabNdtU3gr0GEuaIkppyOWgpY0jAyp8cJ1laHaRkQEAoFAIBBoY2BCQ/q3iyf5aJaNE6qz7bq3Iyh1gWqrNVMViFozAoFAIBA4o8WJ1Z/4vdaMQCAQCASC6kPrCEpdQAQiAoFAIBDUQfQ6iR4t/VuwrioQYlWBQCAQCAR+QwQiAoFAIBAI/IYIRAQCgUAgEPgNEYgIBAKBQCDwGyIQEQgEAoFA4DdEICIQCAQCgcBviEBEIBAIBAKB3xCBiEAgEAgEAr8hAhGBQCAQCAR+o1Y7q1rL4OTk5Pi5JQKBQCAQCLRi7be1lLOr1YFIbm4uAE2bNvVzSwQCgUAgEHhLbm4ukZGRbtep1dV3LRYLp06dIjw8HEmqe4V8qpqcnByaNm3KP//8I6oRVyPiOtcM4jrXDOI61xziWlcgyzK5ubk0atQInc69CqRWj4jodDqaNGni72bUOiIiIv7zN3lNIK5zzSCuc80grnPNIa61gqeRECtCrCoQCAQCgcBviEBEIBAIBAKB3xCBSB3CaDQye/ZsjEajv5tyXiOuc80grnPNIK5zzSGutW/UarGqQCAQCASC8xsxIiIQCAQCgcBviEBEIBAIBAKB3xCBiEAgEAgEAr8hAhGBQCAQCAR+QwQidZzi4mI6duyIJEns27fP3805rzh27Bh33303zZs3Jzg4mJYtWzJ79mxKSkr83bTzgldffZULL7yQoKAgunXrRnJysr+bdF4xb948unbtSnh4OLGxsQwdOpQ//vjD380675k/fz6SJDF16lR/N6XOIAKROs6jjz5Ko0aN/N2M85JDhw5hsVhYtmwZBw4c4MUXX+T1119n1qxZ/m5anefDDz9k2rRpzJ49mz179tChQwcGDBhAenq6v5t23vD9999z//33s2vXLjZv3kxpaSnXXHMN+fn5/m7aecvu3btZtmwZl156qb+bUreQBXWWL7/8Um7Tpo184MABGZD37t3r7yad9zz33HNy8+bN/d2MOk9iYqJ8//33l/9tNpvlRo0ayfPmzfNjq85v0tPTZUD+/vvv/d2U85Lc3Fz5oosukjdv3ixfeeWV8pQpU/zdpDqDGBGpo5w+fZpx48axcuVKQkJC/N2c/wzZ2dnExMT4uxl1mpKSEn755Rf69etXvkyn09GvXz927tzpx5ad32RnZwOI+7eauP/++7nuuuvs7muBNmp10TuBOrIsM3bsWMaPH0+XLl04duyYv5v0n+Dw4cMsWbKERYsW+bspdZozZ85gNpuJi4uzWx4XF8ehQ4f81KrzG4vFwtSpU7n88stJSEjwd3POO9asWcOePXvYvXu3v5tSJxEjIrWIGTNmIEmS23+HDh1iyZIl5ObmMnPmTH83uU6i9TrbcvLkSQYOHMjNN9/MuHHj/NRygcA37r//flJSUlizZo2/m3Le8c8//zBlyhTef/99goKC/N2cOomweK9FZGRkkJmZ6XadFi1acMstt7BhwwYkSSpfbjab0ev13H777bz77rvV3dQ6jdbrHBgYCMCpU6fo06cP3bt355133kGnE/F7ZSgpKSEkJIRPPvmEoUOHli8fM2YM586dY926df5r3HnIpEmTWLduHT/88APNmzf3d3POO9auXcuNN96IXq8vX2Y2m5EkCZ1OR3Fxsd1nAmdEIFIHOXHiBDk5OeV/nzp1igEDBvDJJ5/QrVs3mjRp4sfWnV+cPHmSvn370rlzZ1atWiUeKFVEt27dSExMZMmSJYAydXDBBRcwadIkZsyY4efWnR/IsswDDzzA559/ztatW7nooov83aTzktzcXI4fP2637M4776RNmzZMnz5dTIVpQGhE6iAXXHCB3d9hYWEAtGzZUgQhVcjJkyfp06cPzZo1Y9GiRWRkZJR/Fh8f78eW1X2mTZvGmDFj6NKlC4mJiSxevJj8/HzuvPNOfzftvOH+++/ngw8+YN26dYSHh5OWlgZAZGQkwcHBfm7d+UN4eLhTsBEaGkq9evVEEKIREYgIBC7YvHkzhw8f5vDhw04BnhhIrBy33norGRkZPPHEE6SlpdGxY0eSkpKcBKwC31m6dCkAffr0sVu+YsUKxo4dW/MNEghcIKZmBAKBQCAQ+A2huhMIBAKBQOA3RCAiEAgEAoHAb4hARCAQCAQCgd8QgYhAIBAIBAK/IQIRgUAgEAgEfkMEIgKBQCAQCPyGCEQEAoFAIBD4DRGICAQCgUAg8BsiEBEIBAKBQOA3RCAiEAgEAoHAb4hARCAQCAQCgd8QgYhAIBAIBAK/8X+xTTDG0gwjaQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "y_pred = loaded_model.predict_proba(new_X)\n", + "\n", + "y_pred_mean = y_pred.mean(axis =(0,1))\n", + "y_pred_std = y_pred.std(axis = (0,1))\n", + "\n", + "\n", + "fig = plt.figure()\n", + "for group in X['group'].unique():\n", + " idx = X['group'] == group\n", + " subset = X.loc[idx]\n", + " plt.scatter(subset['x'], y[idx], label = group)\n", + "plt.scatter(x=new_X['x'], y=new_y, label='new data')\n", + "plt.plot(new_X['x'], y_pred_mean, label='predictive mean', color='black', linewidth=2)\n", + "plt.plot(new_X['x'], y_pred_mean+1.96*y_pred_std, label='95% HDI', color='black', linewidth=1)\n", + "plt.plot(new_X['x'], y_pred_mean-1.96*y_pred_std, color='black', linewidth=1)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12 | packaged by conda-forge | (main, Jun 23 2023, 22:34:57) [MSC v.1936 64 bit (AMD64)]" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "38cddf6ddbdd5b2c272b3966d7ba771f190788ab997f447ea08a7b503dd704a6" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/pymc_experimental/model_builder.py b/pymc_experimental/model_builder.py index bd30b163..0d3b2870 100644 --- a/pymc_experimental/model_builder.py +++ b/pymc_experimental/model_builder.py @@ -13,12 +13,14 @@ # limitations under the License. +# Modified by Stijn de Boer + import hashlib import json import warnings from abc import abstractmethod from pathlib import Path -from typing import Any, Dict, List, Optional, Union +from typing import Any, Dict, List, Optional, Union, Tuple import arviz as az import numpy as np @@ -74,8 +76,8 @@ def __init__( sampler_config = self.default_sampler_config if sampler_config is None else sampler_config self.sampler_config = sampler_config model_config = self.default_model_config if model_config is None else model_config - self.model_config = model_config # parameters for priors etc. + self.model_coords = None self.model = None # Set by build_model self.idata: Optional[az.InferenceData] = None # idata is generated during fitting self.is_fitted_ = False @@ -172,7 +174,7 @@ def default_sampler_config(self) -> Dict: -------- >>> @classmethod >>> def default_sampler_config(self): - >>> Return { + >>> return { >>> 'draws': 1_000, >>> 'tune': 1_000, >>> 'chains': 1, @@ -187,13 +189,12 @@ def default_sampler_config(self) -> Dict: raise NotImplementedError @abstractmethod - def generate_and_preprocess_model_data( - self, X: Union[pd.DataFrame, pd.Series], y: pd.Series - ) -> None: + def preprocess_model_data( + self, X: Union[pd.DataFrame, pd.Series], y: Optional[pd.Series] = None + ) -> Union[pd.DataFrame, Tuple[pd.DataFrame, pd.Series]]: """ Applies preprocessing to the data before fitting the model. if validate is True, it will check if the data is valid for the model. - sets self.model_coords based on provided dataset Parameters: X : array, shape (n_obs, n_features) @@ -201,18 +202,16 @@ def generate_and_preprocess_model_data( Examples -------- - >>> @classmethod - >>> def generate_and_preprocess_model_data(self, X, y): - >>> x = np.linspace(start=1, stop=50, num=100) - >>> y = 5 * x + 3 + np.random.normal(0, 1, len(x)) * np.random.rand(100)*10 + np.random.rand(100)*6.4 - >>> X = pd.DataFrame(x, columns=['x']) - >>> y = pd.Series(y, name='y') - >>> self.X = X - >>> self.y = y + >>> def preprocess_model_data(self, X: DataFrame | Series, y: Series = None): + >>> X_prep = X.copy() + >>> X_prep['x'] = (X_prep['x'] - X_prep['x'].mean())/X_prep['x'].std() + >>> if y is None: + >>> return X_prep + >>> return X_prep, y.copy() Returns ------- - None + Union[pd.DataFrame, Tuple[pd.DataFrame, pd.Series]] """ raise NotImplementedError @@ -258,6 +257,28 @@ def build_model( """ raise NotImplementedError + @abstractmethod + def set_model_coords_from_data( + self, X: Union[pd.DataFrame, pd.Series], y: Optional[pd.Series] = None + ) -> None: + """Creates the model coords. + + Parameters: + X : array, shape (n_obs, n_features) + y : array, shape (n_obs,) + + Examples + -------- + def extract_model_coords_from_data(self, X): + group_dim1 = X['group1'].unique() + group_dim2 = X['group2'].unique() + self.model_coords = {'group1':group_dim1, 'group2':group_dim2} + + Returns + ------- + Dict[str, List[Union[str, int]] + """ + def sample_model(self, **kwargs): """ Sample from the PyMC model. @@ -374,7 +395,7 @@ def save(self, fname: str) -> None: >>> model.fit(data) >>> model.save('model_results.nc') # This will call the overridden method in MyModel """ - if self.idata is not None and "posterior" in self.idata: + if self.is_fitted: file = Path(str(fname)) self.idata.to_netcdf(str(file)) else: @@ -433,17 +454,11 @@ def load(cls, fname: str): sampler_config=json.loads(idata.attrs["sampler_config"]), ) model.idata = idata - dataset = idata.fit_data.to_dataframe() - X = dataset.drop(columns=[model.output_var]) - y = dataset[model.output_var] - model.build_model(X, y) - # All previously used data is in idata. - + model.set_model_coords_from_idata() if model.id != idata.attrs["id"]: raise ValueError( f"The file '{fname}' does not contain an inference data of the same model or configuration as '{cls._model_type}'" ) - return model def fit( @@ -462,7 +477,7 @@ def fit( Parameters ---------- - X : array-like if sklearn is available, otherwise array, shape (n_obs, n_features) + X : pd.DataFrame (n_obs, n_features) The training input samples. y : array-like if sklearn is available, otherwise array, shape (n_obs,) The target values (real numbers). @@ -492,26 +507,15 @@ def fit( if y is None: y = np.zeros(X.shape[0]) y = pd.DataFrame({self.output_var: y}) - self.generate_and_preprocess_model_data(X, y.values.flatten()) - self.build_model(self.X, self.y) + X_prep, y_prep = self.preprocess_model_data(X, y.values.flatten()) + self.set_model_coords_from_data(X) + self.build_model(X_prep, y_prep) sampler_config = self.sampler_config.copy() sampler_config["progressbar"] = progressbar sampler_config["random_seed"] = random_seed sampler_config.update(**kwargs) self.idata = self.sample_model(**sampler_config) - - X_df = pd.DataFrame(X, columns=X.columns) - combined_data = pd.concat([X_df, y], axis=1) - assert all(combined_data.columns), "All columns must have non-empty names" - with warnings.catch_warnings(): - warnings.filterwarnings( - "ignore", - category=UserWarning, - message="The group fit_data is not defined in the InferenceData scheme", - ) - self.idata.add_groups(fit_data=combined_data.to_xarray()) # type: ignore - return self.idata # type: ignore def predict( @@ -526,7 +530,7 @@ def predict( Parameters --------- - X_pred : array-like if sklearn is available, otherwise array, shape (n_pred, n_features) + X_pred : pd.DataFrame (n_pred, n_features) The input data used for prediction. extend_idata : Boolean determining whether the predictions should be added to inference data object. Defaults to True. @@ -545,9 +549,13 @@ def predict( >>> prediction_data = pd.DataFrame({'input':x_pred}) >>> pred_mean = model.predict(prediction_data) """ + X_pred_prep = self.preprocess_model_data(X_pred) + if self.model is None: + synth_y = pd.Series(np.zeros(len(X_pred))) + self.build_model(X_pred_prep, synth_y) posterior_predictive_samples = self.sample_posterior_predictive( - X_pred, extend_idata, combined=False, **kwargs + X_pred_prep, extend_idata, combined=False, **kwargs ) if self.output_var not in posterior_predictive_samples: @@ -682,7 +690,11 @@ def predict_proba( **kwargs, ) -> xr.DataArray: """Alias for `predict_posterior`, for consistency with scikit-learn probabilistic estimators.""" - return self.predict_posterior(X_pred, extend_idata, combined, **kwargs) + synth_y = pd.Series(np.zeros(len(X_pred))) + X_pred_prep, y_synth_prep = self.preprocess_model_data(X_pred, synth_y) + if self.model is None: + self.build_model(X_pred_prep, y_synth_prep) + return self.predict_posterior(X_pred_prep, extend_idata, combined, **kwargs) def predict_posterior( self, @@ -710,9 +722,13 @@ def predict_posterior( Posterior predictive samples for each input X_pred """ - X_pred = self._validate_data(X_pred) + synth_y = pd.Series(np.zeros(len(X_pred))) + X_pred_prep, y_synth_prep = self.preprocess_model_data(X_pred, synth_y) + if self.model is None: + self.build_model(X_pred_prep, y_synth_prep) + posterior_predictive_samples = self.sample_posterior_predictive( - X_pred, extend_idata, combined, **kwargs + X_pred_prep, extend_idata, combined=False, **kwargs ) if self.output_var not in posterior_predictive_samples: @@ -746,3 +762,13 @@ def id(self) -> str: hasher.update(self.version.encode()) hasher.update(self._model_type.encode()) return hasher.hexdigest()[:16] + + @property + def is_fitted(self): + return self.idata is not None and "posterior" in self.idata + + def set_model_coords_from_idata(self): + az_coords = self.idata.posterior.coords.variables + self.model_coords = { + k: list(az_coords[k].to_numpy()) for k in az_coords if not k in ["chain", "draw"] + }