@@ -2134,14 +2134,6 @@ def test_dirichlet_vectorized(self, a, size):
2134
2134
err_msg = f"vals={ vals } " ,
2135
2135
)
2136
2136
2137
- def test_dirichlet_shape (self ):
2138
- a = at .as_tensor_variable (np .r_ [1 , 2 ])
2139
- dir_rv = Dirichlet .dist (a )
2140
- assert dir_rv .shape .eval () == (2 ,)
2141
-
2142
- with pytest .warns (DeprecationWarning ), aesara .change_flags (compute_test_value = "ignore" ):
2143
- dir_rv = Dirichlet .dist (at .vector ())
2144
-
2145
2137
@pytest .mark .parametrize ("n" , [2 , 3 ])
2146
2138
def test_multinomial (self , n ):
2147
2139
self .check_logp (
@@ -2151,33 +2143,6 @@ def test_multinomial(self, n):
2151
2143
lambda value , n , p : scipy .stats .multinomial .logpmf (value , n , p ),
2152
2144
)
2153
2145
2154
- @pytest .mark .parametrize (
2155
- "p, size, n" ,
2156
- [
2157
- [[0.25 , 0.25 , 0.25 , 0.25 ], (4 ,), 2 ],
2158
- [[0.25 , 0.25 , 0.25 , 0.25 ], (1 , 4 ), 3 ],
2159
- # 3: expect to fail
2160
- # [[.25, .25, .25, .25], (10, 4)],
2161
- [[0.25 , 0.25 , 0.25 , 0.25 ], (10 , 1 , 4 ), 5 ],
2162
- # 5: expect to fail
2163
- # [[[.25, .25, .25, .25]], (2, 4), [7, 11]],
2164
- [[[0.25 , 0.25 , 0.25 , 0.25 ], [0.25 , 0.25 , 0.25 , 0.25 ]], (2 , 4 ), 13 ],
2165
- [[[0.25 , 0.25 , 0.25 , 0.25 ], [0.25 , 0.25 , 0.25 , 0.25 ]], (1 , 2 , 4 ), [23 , 29 ]],
2166
- [
2167
- [[0.25 , 0.25 , 0.25 , 0.25 ], [0.25 , 0.25 , 0.25 , 0.25 ]],
2168
- (10 , 2 , 4 ),
2169
- [31 , 37 ],
2170
- ],
2171
- [[[0.25 , 0.25 , 0.25 , 0.25 ], [0.25 , 0.25 , 0.25 , 0.25 ]], (2 , 4 ), [17 , 19 ]],
2172
- ],
2173
- )
2174
- def test_multinomial_random (self , p , size , n ):
2175
- p = np .asarray (p )
2176
- with Model () as model :
2177
- m = Multinomial ("m" , n = n , p = p , size = size )
2178
-
2179
- assert m .eval ().shape == size + p .shape
2180
-
2181
2146
@pytest .mark .parametrize ("n" , [(10 ), ([10 , 11 ]), ([[5 , 6 ], [10 , 11 ]])])
2182
2147
@pytest .mark .parametrize (
2183
2148
"p" ,
0 commit comments