@@ -228,7 +228,7 @@ def _print_step_hierarchy(s, level=0):
228
228
229
229
230
230
def sample (
231
- draws = 500 ,
231
+ draws = 1000 ,
232
232
step = None ,
233
233
init = "auto" ,
234
234
n_init = 200000 ,
@@ -237,7 +237,7 @@ def sample(
237
237
chain_idx = 0 ,
238
238
chains = None ,
239
239
cores = None ,
240
- tune = 500 ,
240
+ tune = 2000 ,
241
241
progressbar = True ,
242
242
model = None ,
243
243
random_seed = None ,
@@ -253,7 +253,7 @@ def sample(
253
253
Parameters
254
254
----------
255
255
draws: int
256
- The number of samples to draw. Defaults to 500 . The number of tuned samples are discarded
256
+ The number of samples to draw. Defaults to 1000 . The number of tuned samples are discarded
257
257
by default. See ``discard_tuned_samples``.
258
258
init: str
259
259
Initialization method to use for auto-assigned NUTS samplers.
@@ -305,7 +305,7 @@ def sample(
305
305
The number of chains to run in parallel. If ``None``, set to the number of CPUs in the
306
306
system, but at most 4.
307
307
tune: int
308
- Number of iterations to tune, defaults to 500 . Samplers adjust the step sizes, scalings or
308
+ Number of iterations to tune, defaults to 2000 . Samplers adjust the step sizes, scalings or
309
309
similar during tuning. Tuning samples will be drawn in addition to the number specified in
310
310
the ``draws`` argument, and will be discarded unless ``discard_tuned_samples`` is set to
311
311
False.
@@ -362,7 +362,7 @@ def sample(
362
362
>>> with pm.Model() as model: # context management
363
363
... p = pm.Beta('p', alpha=alpha, beta=beta)
364
364
... y = pm.Binomial('y', n=n, p=p, observed=h)
365
- ... trace = pm.sample(2000, tune=1000, cores=4 )
365
+ ... trace = pm.sample()
366
366
>>> pm.summary(trace)
367
367
mean sd mc_error hpd_2.5 hpd_97.5
368
368
p 0.604625 0.047086 0.00078 0.510498 0.694774
@@ -1103,10 +1103,10 @@ def step(self, tune_stop, population):
1103
1103
1104
1104
1105
1105
def _prepare_iter_population (
1106
- draws :int ,
1107
- chains :list ,
1106
+ draws : int ,
1107
+ chains : list ,
1108
1108
step ,
1109
- start :list ,
1109
+ start : list ,
1110
1110
parallelize :bool ,
1111
1111
tune = None ,
1112
1112
model = None ,
@@ -1303,14 +1303,14 @@ def _choose_backend(trace, chain, shortcuts=None, **kwds):
1303
1303
1304
1304
1305
1305
def _mp_sample (
1306
- draws :int ,
1307
- tune :int ,
1306
+ draws : int ,
1307
+ tune : int ,
1308
1308
step ,
1309
- chains :int ,
1310
- cores :int ,
1311
- chain :int ,
1312
- random_seed :list ,
1313
- start :list ,
1309
+ chains : int ,
1310
+ cores : int ,
1311
+ chain : int ,
1312
+ random_seed : list ,
1313
+ start : list ,
1314
1314
progressbar = True ,
1315
1315
trace = None ,
1316
1316
model = None ,
0 commit comments