@@ -225,7 +225,7 @@ class GaussianRandomWalk(distribution.Continuous):
225
225
sigma > 0, innovation standard deviation, defaults to 1.0
226
226
init : unnamed distribution
227
227
Univariate distribution of the initial value, created with the `.dist()` API.
228
- Defaults to Normal with same `mu` and `sigma` as the GaussianRandomWalk
228
+ Defaults to a unit Normal.
229
229
230
230
.. warning:: init will be cloned, rendering them independent of the ones passed as input.
231
231
@@ -265,7 +265,7 @@ def dist(
265
265
266
266
# If no scalar distribution is passed then initialize with a Normal of same mu and sigma
267
267
if init is None :
268
- init = Normal .dist (mu , sigma )
268
+ init = Normal .dist (0 , 1 )
269
269
else :
270
270
if not (
271
271
isinstance (init , at .TensorVariable )
@@ -361,7 +361,7 @@ class AR(SymbolicDistribution):
361
361
Whether the first element of rho should be used as a constant term in the AR
362
362
process. Defaults to False
363
363
init_dist: unnamed distribution, optional
364
- Scalar or vector distribution for initial values. Defaults to Normal(0, sigma) .
364
+ Scalar or vector distribution for initial values. Defaults to a unit Normal .
365
365
Distribution should be created via the `.dist()` API, and have dimension
366
366
(*size, ar_order). If not, it will be automatically resized.
367
367
@@ -452,8 +452,7 @@ def dist(
452
452
f"got ndim_supp={ init_dist .owner .op .ndim_supp } ." ,
453
453
)
454
454
else :
455
- # Sigma must broadcast with ar_order
456
- init_dist = Normal .dist (sigma = at .shape_padright (sigma ), size = (* sigma .shape , ar_order ))
455
+ init_dist = Normal .dist (0 , 1 , size = (* sigma .shape , ar_order ))
457
456
458
457
# Tell Aeppl to ignore init_dist, as it will be accounted for in the logp term
459
458
init_dist = ignore_logprob (init_dist )
0 commit comments