We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
pymc3/tests/test_sampling_jax.py::test_transform_samples FAILED [100%] =================================== FAILURES =================================== ____________________________ test_transform_samples ____________________________ def test_transform_samples(): aesara.config.on_opt_error = "raise" np.random.seed(13244) obs = np.random.normal(10, 2, size=100) obs_at = aesara.shared(obs, borrow=True, name="obs") with pm.Model() as model: a = pm.Uniform("a", -20, 20) sigma = pm.HalfNormal("sigma") b = pm.Normal("b", a, sigma=sigma, observed=obs_at) > trace = sample_numpyro_nuts(chains=1, random_seed=1322, keep_untransformed=True) pymc3/tests/test_sampling_jax.py:20: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ pymc3/sampling_jax.py:212: in sample_numpyro_nuts _sample = compile_rv_inplace( pymc3/aesaraf.py:888: in compile_rv_inplace aesara_function = aesara.function(inputs, outputs, mode=mode, **kwargs) /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/aesara/compile/function/__init__.py:337: in function fn = pfunc( /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/aesara/compile/function/pfunc.py:524: in pfunc return orig_function( /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/aesara/compile/function/types.py:1983: in orig_function fn = m.create(defaults) /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/aesara/compile/function/types.py:1838: in create _fn, _i, _o = self.linker.make_thunk( /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/aesara/link/basic.py:282: in make_thunk return self.make_all( /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/aesara/link/basic.py:739: in make_all thunks, nodes = self.create_jitable_thunk( /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/aesara/link/basic.py:683: in create_jitable_thunk converted_fgraph = self.fgraph_convert( /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/aesara/link/jax/linker.py:13: in fgraph_convert return jax_funcify(fgraph, **kwargs) /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/functools.py:877: in wrapper return dispatch(args[0].__class__)(*args, **kw) /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/aesara/link/jax/dispatch.py:597: in jax_funcify_FunctionGraph return fgraph_to_python( /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/aesara/link/utils.py:718: in fgraph_to_python compiled_func = op_conversion_fn( /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/functools.py:877: in wrapper return dispatch(args[0].__class__)(*args, **kw) pymc3/sampling_jax.py:87: in jax_funcify_NumPyroNUTS from numpyro.infer import MCMC, NUTS /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/numpyro/__init__.py:4: in <module> from numpyro import compat, diagnostics, distributions, handlers, infer, optim /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/numpyro/distributions/__init__.py:4: in <module> from numpyro.distributions.conjugate import BetaBinomial, GammaPoisson /usr/share/miniconda/envs/pymc3-dev-py39/lib/python3.9/site-packages/numpyro/distributions/conjugate.py:10: in <module> from numpyro.distributions.discrete import ( _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ import numpy as np from jax import device_put, lax from jax.dtypes import canonicalize_dtype from jax.nn import softmax import jax.numpy as jnp import jax.random as random from jax.scipy.special import expit, gammaln, logsumexp, xlog1py, xlogy from numpyro.distributions import constraints from numpyro.distributions.distribution import Distribution > from numpyro.distributions.util import ( binary_cross_entropy_with_logits, binomial, categorical, clamp_probs, get_dtype, lazy_property, multinomial, promote_shapes, sum_rightmost, validate_sample, ) E ImportError: cannot import name 'get_dtype' from 'numpyro.distributions.util' (/usr/share/miniconda
The text was updated successfully, but these errors were encountered:
It did not fail in the latest runs on main. Does anybody know which commit fixed it? The trace above looks like a deterministic problem...
main
Sorry, something went wrong.
Odd, well if it's fixed that all that matters I guess 🤞 .
No branches or pull requests
The text was updated successfully, but these errors were encountered: