|
| 1 | +Tutorial AverageLearners (0D, 1D, and 2D) |
| 2 | +----------------------------------------- |
| 3 | + |
| 4 | +.. note:: |
| 5 | + Because this documentation consists of static html, the ``live_plot`` |
| 6 | + and ``live_info`` widget is not live. Download the notebook |
| 7 | + in order to see the real behaviour. |
| 8 | + |
| 9 | +.. seealso:: |
| 10 | + The complete source code of this tutorial can be found in |
| 11 | + :jupyter-download:notebook:`tutorial.AverageLearners` |
| 12 | + |
| 13 | +.. jupyter-execute:: |
| 14 | + :hide-code: |
| 15 | + |
| 16 | + import adaptive |
| 17 | + adaptive.notebook_extension(_inline_js=False) |
| 18 | + |
| 19 | +`~adaptive.AverageLearner` (0D) |
| 20 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 21 | + |
| 22 | +The next type of learner averages a function until the uncertainty in |
| 23 | +the average meets some condition. |
| 24 | + |
| 25 | +This is useful for sampling a random variable. The function passed to |
| 26 | +the learner must formally take a single parameter, which should be used |
| 27 | +like a “seed” for the (pseudo-) random variable (although in the current |
| 28 | +implementation the seed parameter can be ignored by the function). |
| 29 | + |
| 30 | +.. jupyter-execute:: |
| 31 | + |
| 32 | + def g(n): |
| 33 | + import random |
| 34 | + from time import sleep |
| 35 | + sleep(random.random() / 1000) |
| 36 | + # Properly save and restore the RNG state |
| 37 | + state = random.getstate() |
| 38 | + random.seed(n) |
| 39 | + val = random.gauss(0.5, 1) |
| 40 | + random.setstate(state) |
| 41 | + return val |
| 42 | + |
| 43 | +.. jupyter-execute:: |
| 44 | + |
| 45 | + learner = adaptive.AverageLearner(g, atol=None, rtol=0.05) |
| 46 | + # `loss < 1` means that we reached the `rtol` or `atol` |
| 47 | + runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 1) |
| 48 | + |
| 49 | +.. jupyter-execute:: |
| 50 | + :hide-code: |
| 51 | + |
| 52 | + await runner.task # This is not needed in a notebook environment! |
| 53 | + |
| 54 | +.. jupyter-execute:: |
| 55 | + |
| 56 | + runner.live_info() |
| 57 | + |
| 58 | +.. jupyter-execute:: |
| 59 | + |
| 60 | + runner.live_plot(update_interval=0.1) |
| 61 | + |
| 62 | +`~adaptive.AverageLearner1D` and `~adaptive.AverageLearner2D` |
| 63 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 64 | + |
| 65 | +This learner is a combination between the `~adaptive.Learner1D` (or `~adaptive.Learner2D`) |
| 66 | +and the `~adaptive.AverageLearner`, in a way such that it handles |
| 67 | +stochastic functions with one (or two) variables. |
| 68 | + |
| 69 | +Here, when chosing points the learner can either: |
| 70 | + |
| 71 | +* add more values/seeds to existing points |
| 72 | +* add more intervals (or triangles) |
| 73 | + |
| 74 | +So, the ``learner`` compares **the loss of intervals (or triangles)** with the **standard error** of an existing point. |
| 75 | + |
| 76 | +The relative importance of both can be adjusted by a hyperparameter ``learner.average_priority``, see the doc-string for more information. |
| 77 | + |
| 78 | +See the following plot for a visual explanation. |
| 79 | + |
| 80 | +.. jupyter-execute:: |
| 81 | + :hide-code: |
| 82 | + |
| 83 | + import numpy as np |
| 84 | + import matplotlib.pyplot as plt |
| 85 | + from matplotlib import rcParams |
| 86 | + %matplotlib inline |
| 87 | + rcParams['figure.dpi'] = 300 |
| 88 | + rcParams['text.usetex'] = True |
| 89 | + |
| 90 | + np.random.seed(1) |
| 91 | + xs = np.sort(np.random.uniform(-1, 1, 3)) |
| 92 | + errs = np.abs(np.random.randn(3)) |
| 93 | + ys = xs**3 |
| 94 | + means = lambda x: np.convolve(x, np.ones(2) / 2, mode='valid') |
| 95 | + xs_means = means(xs) |
| 96 | + ys_means = means(ys) |
| 97 | + |
| 98 | + fig, ax = plt.subplots() |
| 99 | + plt.scatter(xs, ys, c='k') |
| 100 | + ax.errorbar(xs, ys, errs, capsize=5, c='k') |
| 101 | + ax.annotate( |
| 102 | + s=r'$L_{1,2} = \sqrt{\Delta x^2 + \Delta \bar{y}^2}$', |
| 103 | + xy=(np.mean([xs[0], xs[1], xs[1]]), |
| 104 | + np.mean([ys[0], ys[1], ys[1]])), |
| 105 | + xytext=(xs_means[0], ys_means[0] + 1), |
| 106 | + arrowprops=dict(arrowstyle='->'), |
| 107 | + ha='center', |
| 108 | + ) |
| 109 | + |
| 110 | + for i, (x, y, err) in enumerate(zip(xs, ys, errs)): |
| 111 | + err_str = fr'${{\sigma}}_{{\bar {{y}}_{i+1}}}$' |
| 112 | + ax.annotate( |
| 113 | + s=err_str, |
| 114 | + xy=(x, y + err/2), |
| 115 | + xytext=(x + 0.1, y + err + 0.5), |
| 116 | + arrowprops=dict(arrowstyle='->'), |
| 117 | + ha='center', |
| 118 | + ) |
| 119 | + |
| 120 | + ax.annotate( |
| 121 | + s=fr'$x_{i+1}, \bar{{y}}_{i+1}$', |
| 122 | + xy=(x, y), |
| 123 | + xytext=(x + 0.1, y - 0.5), |
| 124 | + arrowprops=dict(arrowstyle='->'), |
| 125 | + ha='center', |
| 126 | + ) |
| 127 | + |
| 128 | + |
| 129 | + ax.scatter(xs, ys, c='green', s=5, zorder=5, label='more seeds') |
| 130 | + ax.scatter(xs_means, ys_means, c='red', s=5, zorder=5, label='new point') |
| 131 | + ax.legend() |
| 132 | + |
| 133 | + ax.text( |
| 134 | + x=0.5, |
| 135 | + y=0.0, |
| 136 | + s=(r'$\textrm{if}\; \max{(L_{i,i+1})} > \textrm{average\_priority} \cdot \max{\sigma_{\bar{y}_{i}}} \rightarrow,\;\textrm{add new point}$' |
| 137 | + '\n' |
| 138 | + r'$\textrm{if}\; \max{(L_{i,i+1})} < \textrm{average\_priority} \cdot \max{\sigma_{\bar{y}_{i}}} \rightarrow,\;\textrm{add new seeds}$'), |
| 139 | + horizontalalignment='center', |
| 140 | + verticalalignment='center', |
| 141 | + transform=ax.transAxes |
| 142 | + ) |
| 143 | + ax.set_title('AverageLearner1D') |
| 144 | + ax.axis('off') |
| 145 | + plt.show() |
| 146 | + |
| 147 | + |
| 148 | +In this plot :math:`L_{i,i+1}` is the default ``learner.loss_per_interval`` and :math:`\sigma_{\bar{y}_i}` is the standard error of the mean. |
| 149 | + |
| 150 | +Basically, we put all losses per interval and standard errors (scaled by ``average_priority``) in a list. |
| 151 | +The point of the maximal value will be chosen. |
| 152 | + |
| 153 | +It is important to note that all :math:`x`, :math:`y`, (and :math:`z` in 2D) are scaled to be inside |
| 154 | +the unit square (or cube) in both the ``loss_per_interval`` and the standard error. |
| 155 | + |
| 156 | + |
| 157 | +.. warning:: |
| 158 | + If you choose the ``average_priority`` too low, the standard errors :math:`\sigma_{\bar{y}_i}` will be high. |
| 159 | + This leads to incorrectly estimated averages :math:`\bar{y}_i` and therefore points that are closeby, can appear to be far away. |
| 160 | + This in turn results in new points unnecessarily being added and an unstable sampling algorithm! |
| 161 | + |
| 162 | + |
| 163 | +Let's again try to learn some functions but now with uniform (and `heteroscedastic <https://en.wikipedia.org/wiki/Heteroscedasticity>`_ in 2D) noise. We start with 1D and then go to 2D. |
| 164 | + |
| 165 | +`~adaptive.AverageLearner1D` |
| 166 | +............................ |
| 167 | + |
| 168 | +.. jupyter-execute:: |
| 169 | + |
| 170 | + def noisy_peak(x_seed): |
| 171 | + import random |
| 172 | + x, seed = x_seed |
| 173 | + random.seed(x_seed) # to make the random function deterministic |
| 174 | + a = 0.01 |
| 175 | + peak = x + a**2 / (a**2 + x**2) |
| 176 | + noise = random.uniform(-0.5, 0.5) |
| 177 | + return peak + noise |
| 178 | + |
| 179 | + learner = adaptive.AverageLearner1D(noisy_peak, bounds=(-1, 1), average_priority=40) |
| 180 | + runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 0.05) |
| 181 | + runner.live_info() |
| 182 | + |
| 183 | +.. jupyter-execute:: |
| 184 | + :hide-code: |
| 185 | + |
| 186 | + await runner.task # This is not needed in a notebook environment! |
| 187 | + |
| 188 | +.. jupyter-execute:: |
| 189 | + |
| 190 | + %%opts Image {+axiswise} [colorbar=True] |
| 191 | + # We plot the average |
| 192 | + |
| 193 | + def plotter(learner): |
| 194 | + plot = learner.plot() |
| 195 | + number_of_points = learner.mean_values_per_point() |
| 196 | + title = f'loss={learner.loss():.3f}, mean_npoints={number_of_points}' |
| 197 | + return plot.opts(plot=dict(title_format=title)) |
| 198 | + |
| 199 | + runner.live_plot(update_interval=0.1, plotter=plotter) |
| 200 | + |
| 201 | +`~adaptive.AverageLearner2D` |
| 202 | +............................ |
| 203 | + |
| 204 | +.. jupyter-execute:: |
| 205 | + |
| 206 | + def noisy_ring(xy_seed): |
| 207 | + import numpy as np |
| 208 | + import random |
| 209 | + (x, y), seed = xy_seed |
| 210 | + random.seed(xy_seed) # to make the random function deterministic |
| 211 | + a = 0.2 |
| 212 | + z = (x**2 + y**2 - 0.75**2) / a**2 |
| 213 | + plateau = np.arctan(z) |
| 214 | + noise = random.uniform(-2, 2) * np.exp(-z**2) |
| 215 | + return plateau + noise |
| 216 | + |
| 217 | + learner = adaptive.AverageLearner2D(noisy_ring, bounds=[(-1, 1), (-1, 1)]) |
| 218 | + runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 0.01) |
| 219 | + runner.live_info() |
| 220 | + |
| 221 | +.. jupyter-execute:: |
| 222 | + :hide-code: |
| 223 | + |
| 224 | + await runner.task # This is not needed in a notebook environment! |
| 225 | + |
| 226 | +See the average number of values per point with: |
| 227 | + |
| 228 | +.. jupyter-execute:: |
| 229 | + |
| 230 | + learner.mean_values_per_point() |
| 231 | + |
| 232 | +Let's plot the average and the number of values per point. |
| 233 | +Because the noise lies on a circle we expect the number of values per |
| 234 | +to be higher on the circle. |
| 235 | + |
| 236 | +.. jupyter-execute:: |
| 237 | + |
| 238 | + %%opts Image {+axiswise} [colorbar=True] |
| 239 | + # We plot the average and the standard deviation |
| 240 | + def plotter(learner): |
| 241 | + return (learner.plot_std_or_n('mean') |
| 242 | + + learner.plot_std_or_n('std') |
| 243 | + + learner.plot_std_or_n('n')).cols(2) |
| 244 | + |
| 245 | + runner.live_plot(update_interval=0.1, plotter=plotter) |
0 commit comments