|
| 1 | +""" |
| 2 | +List sort performance test. |
| 3 | +
|
| 4 | +To install `pyperf` you would need to: |
| 5 | +
|
| 6 | + python3 -m pip install pyperf |
| 7 | +
|
| 8 | +To run: |
| 9 | +
|
| 10 | + python3 Tools/scripts/sortperf |
| 11 | +
|
| 12 | +Options: |
| 13 | +
|
| 14 | + * `benchmark` name to run |
| 15 | + * `--rnd-seed` to set random seed |
| 16 | + * `--size` to set the sorted list size |
| 17 | +
|
| 18 | +Based on https://github.com/python/cpython/blob/963904335e579bfe39101adf3fd6a0cf705975ff/Lib/test/sortperf.py |
| 19 | +""" |
| 20 | + |
| 21 | +from __future__ import annotations |
| 22 | + |
| 23 | +import argparse |
| 24 | +import time |
| 25 | +import random |
| 26 | + |
| 27 | + |
| 28 | +# =============== |
| 29 | +# Data generation |
| 30 | +# =============== |
| 31 | + |
| 32 | +def _random_data(size: int, rand: random.Random) -> list[float]: |
| 33 | + result = [rand.random() for _ in range(size)] |
| 34 | + # Shuffle it a bit... |
| 35 | + for i in range(10): |
| 36 | + i = rand.randrange(size) |
| 37 | + temp = result[:i] |
| 38 | + del result[:i] |
| 39 | + temp.reverse() |
| 40 | + result.extend(temp) |
| 41 | + del temp |
| 42 | + assert len(result) == size |
| 43 | + return result |
| 44 | + |
| 45 | + |
| 46 | +def list_sort(size: int, rand: random.Random) -> list[float]: |
| 47 | + return _random_data(size, rand) |
| 48 | + |
| 49 | + |
| 50 | +def list_sort_descending(size: int, rand: random.Random) -> list[float]: |
| 51 | + return list(reversed(list_sort_ascending(size, rand))) |
| 52 | + |
| 53 | + |
| 54 | +def list_sort_ascending(size: int, rand: random.Random) -> list[float]: |
| 55 | + return sorted(_random_data(size, rand)) |
| 56 | + |
| 57 | + |
| 58 | +def list_sort_ascending_exchanged(size: int, rand: random.Random) -> list[float]: |
| 59 | + result = list_sort_ascending(size, rand) |
| 60 | + # Do 3 random exchanges. |
| 61 | + for _ in range(3): |
| 62 | + i1 = rand.randrange(size) |
| 63 | + i2 = rand.randrange(size) |
| 64 | + result[i1], result[i2] = result[i2], result[i1] |
| 65 | + return result |
| 66 | + |
| 67 | + |
| 68 | +def list_sort_ascending_random(size: int, rand: random.Random) -> list[float]: |
| 69 | + assert size >= 10, "This benchmark requires size to be >= 10" |
| 70 | + result = list_sort_ascending(size, rand) |
| 71 | + # Replace the last 10 with random floats. |
| 72 | + result[-10:] = [rand.random() for _ in range(10)] |
| 73 | + return result |
| 74 | + |
| 75 | + |
| 76 | +def list_sort_ascending_one_percent(size: int, rand: random.Random) -> list[float]: |
| 77 | + result = list_sort_ascending(size, rand) |
| 78 | + # Replace 1% of the elements at random. |
| 79 | + for _ in range(size // 100): |
| 80 | + result[rand.randrange(size)] = rand.random() |
| 81 | + return result |
| 82 | + |
| 83 | + |
| 84 | +def list_sort_duplicates(size: int, rand: random.Random) -> list[float]: |
| 85 | + assert size >= 4 |
| 86 | + result = list_sort_ascending(4, rand) |
| 87 | + # Arrange for lots of duplicates. |
| 88 | + result = result * (size // 4) |
| 89 | + # Force the elements to be distinct objects, else timings can be |
| 90 | + # artificially low. |
| 91 | + return list(map(abs, result)) |
| 92 | + |
| 93 | + |
| 94 | +def list_sort_equal(size: int, rand: random.Random) -> list[float]: |
| 95 | + # All equal. Again, force the elements to be distinct objects. |
| 96 | + return list(map(abs, [-0.519012] * size)) |
| 97 | + |
| 98 | + |
| 99 | +def list_sort_worst_case(size: int, rand: random.Random) -> list[float]: |
| 100 | + # This one looks like [3, 2, 1, 0, 0, 1, 2, 3]. It was a bad case |
| 101 | + # for an older implementation of quicksort, which used the median |
| 102 | + # of the first, last and middle elements as the pivot. |
| 103 | + half = size // 2 |
| 104 | + result = list(range(half - 1, -1, -1)) |
| 105 | + result.extend(range(half)) |
| 106 | + # Force to float, so that the timings are comparable. This is |
| 107 | + # significantly faster if we leave them as ints. |
| 108 | + return list(map(float, result)) |
| 109 | + |
| 110 | + |
| 111 | +# ========= |
| 112 | +# Benchmark |
| 113 | +# ========= |
| 114 | + |
| 115 | +class Benchmark: |
| 116 | + def __init__(self, name: str, size: int, seed: int) -> None: |
| 117 | + self._name = name |
| 118 | + self._size = size |
| 119 | + self._seed = seed |
| 120 | + self._random = random.Random(self._seed) |
| 121 | + |
| 122 | + def run(self, loops: int) -> float: |
| 123 | + all_data = self._prepare_data(loops) |
| 124 | + start = time.perf_counter() |
| 125 | + |
| 126 | + for data in all_data: |
| 127 | + data.sort() # Benching this method! |
| 128 | + |
| 129 | + return time.perf_counter() - start |
| 130 | + |
| 131 | + def _prepare_data(self, loops: int) -> list[float]: |
| 132 | + bench = BENCHMARKS[self._name] |
| 133 | + return [bench(self._size, self._random)] * loops |
| 134 | + |
| 135 | + |
| 136 | +def add_cmdline_args(cmd: list[str], args) -> None: |
| 137 | + if args.benchmark: |
| 138 | + cmd.append(args.benchmark) |
| 139 | + cmd.append(f"--size={args.size}") |
| 140 | + cmd.append(f"--rng-seed={args.rng_seed}") |
| 141 | + |
| 142 | + |
| 143 | +def add_parser_args(parser: argparse.ArgumentParser) -> None: |
| 144 | + parser.add_argument( |
| 145 | + "benchmark", |
| 146 | + choices=BENCHMARKS, |
| 147 | + nargs="?", |
| 148 | + help="Can be any of: {0}".format(", ".join(BENCHMARKS)), |
| 149 | + ) |
| 150 | + parser.add_argument( |
| 151 | + "--size", |
| 152 | + type=int, |
| 153 | + default=DEFAULT_SIZE, |
| 154 | + help=f"Size of the lists to sort (default: {DEFAULT_SIZE})", |
| 155 | + ) |
| 156 | + parser.add_argument( |
| 157 | + "--rng-seed", |
| 158 | + type=int, |
| 159 | + default=DEFAULT_RANDOM_SEED, |
| 160 | + help=f"Random number generator seed (default: {DEFAULT_RANDOM_SEED})", |
| 161 | + ) |
| 162 | + |
| 163 | + |
| 164 | +DEFAULT_SIZE = 1 << 14 |
| 165 | +DEFAULT_RANDOM_SEED = 0 |
| 166 | +BENCHMARKS = { |
| 167 | + "list_sort": list_sort, |
| 168 | + "list_sort_descending": list_sort_descending, |
| 169 | + "list_sort_ascending": list_sort_ascending, |
| 170 | + "list_sort_ascending_exchanged": list_sort_ascending_exchanged, |
| 171 | + "list_sort_ascending_random": list_sort_ascending_random, |
| 172 | + "list_sort_ascending_one_percent": list_sort_ascending_one_percent, |
| 173 | + "list_sort_duplicates": list_sort_duplicates, |
| 174 | + "list_sort_equal": list_sort_equal, |
| 175 | + "list_sort_worst_case": list_sort_worst_case, |
| 176 | +} |
| 177 | + |
| 178 | +if __name__ == "__main__": |
| 179 | + # This needs `pyperf` 3rd party library: |
| 180 | + import pyperf |
| 181 | + |
| 182 | + runner = pyperf.Runner(add_cmdline_args=add_cmdline_args) |
| 183 | + add_parser_args(runner.argparser) |
| 184 | + args = runner.parse_args() |
| 185 | + |
| 186 | + runner.metadata["description"] = "Test `list.sort()` with different data" |
| 187 | + runner.metadata["list_sort_size"] = args.size |
| 188 | + runner.metadata["list_sort_random_seed"] = args.rng_seed |
| 189 | + |
| 190 | + if args.benchmark: |
| 191 | + benchmarks = (args.benchmark,) |
| 192 | + else: |
| 193 | + benchmarks = sorted(BENCHMARKS) |
| 194 | + for bench in benchmarks: |
| 195 | + benchmark = Benchmark(bench, args.size, args.rng_seed) |
| 196 | + runner.bench_time_func(bench, benchmark.run) |
0 commit comments