You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
With the model repository setup, we can proceed to launch the Triton server
117
-
with the docker command below.
119
+
with the docker command below. Refer `this page <https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver>`__ for the pull tag for the container.
118
120
119
121
::
120
122
121
123
# Make sure that the TensorRT version in the Triton container
122
124
# and TensorRT version in the environment used to optimize the model
123
125
# are the same.
124
126
125
-
docker run --gpus all --rm -p 8000:8000 -p 8001:8001 -p 8002:8002 -v /full/path/to/docs/examples/model_repository:/models nvcr.io/nvidia/tritonserver:<xx.yy>-py3 tritonserver --model-repository=/models
127
+
docker run --gpus all --rm -p 8000:8000 -p 8001:8001 -p 8002:8002 -v /full/path/to/the_model_repository/model_repository:/models nvcr.io/nvidia/tritonserver:<xx.yy>-py3 tritonserver --model-repository=/models
126
128
127
129
This should spin up a Triton Inference server. Next step, building a simple
0 commit comments