@@ -7,115 +7,137 @@ python hub.py
7
7
8
8
batch_sizes=(1 2 4 8 16 32 64 128 256)
9
9
large_model_batch_sizes=(1 2 4 8 16 32 64)
10
+ backends=(" torch" " ts_trt" " dynamo" " torch_compile" " inductor" )
11
+ backends_no_torchscript=(" torch" " dynamo" " torch_compile" " inductor" )
10
12
11
13
12
14
# Benchmark VGG16 model
13
15
echo " Benchmarking VGG16 model"
14
16
for bs in ${batch_sizes[@]}
15
17
do
16
- python perf_run.py --model ${MODELS_DIR} /vgg16_scripted.jit.pt \
17
- --model_torch vgg16 \
18
- --precision fp32,fp16 --inputs=" (${bs} , 3, 224, 224)" \
19
- --batch_size ${bs} \
20
- --truncate \
21
- --backends torch,ts_trt,dynamo,torch_compile,inductor \
22
- --report " vgg16_perf_bs${bs} .txt"
18
+ for backend in ${backends[@]}
19
+ do
20
+ python perf_run.py --model ${MODELS_DIR} /vgg16_scripted.jit.pt \
21
+ --model_torch vgg16 \
22
+ --precision fp16 --inputs=" (${bs} , 3, 224, 224)" \
23
+ --batch_size ${bs} \
24
+ --truncate \
25
+ --backends ${backend} \
26
+ --report " vgg16_perf_bs${bs} _backend_${backend} .csv"
27
+ done
23
28
done
24
29
25
30
# Benchmark AlexNet model
26
31
echo " Benchmarking AlexNet model"
27
32
for bs in ${batch_sizes[@]}
28
33
do
29
- python perf_run.py --model ${MODELS_DIR} /alexnet_scripted.jit.pt \
30
- --model_torch alexnet \
31
- --precision fp32,fp16 --inputs=" (${bs} , 3, 227, 227)" \
32
- --batch_size ${bs} \
33
- --truncate \
34
- --backends torch,ts_trt,dynamo,torch_compile,inductor \
35
- --report " alexnet_perf_bs${bs} .txt"
34
+ for backend in ${backends[@]}
35
+ do
36
+ python perf_run.py --model ${MODELS_DIR} /alexnet_scripted.jit.pt \
37
+ --model_torch alexnet \
38
+ --precision fp16 --inputs=" (${bs} , 3, 227, 227)" \
39
+ --batch_size ${bs} \
40
+ --truncate \
41
+ --backends ${backend} \
42
+ --report " alexnet_perf_bs${bs} _backend_${backend} .csv"
43
+ done
36
44
done
37
45
38
46
# Benchmark Resnet50 model
39
47
echo " Benchmarking Resnet50 model"
40
48
for bs in ${batch_sizes[@]}
41
49
do
42
- python perf_run.py --model ${MODELS_DIR} /resnet50_scripted.jit.pt \
43
- --model_torch resnet50 \
44
- --precision fp32,fp16 --inputs=" (${bs} , 3, 224, 224)" \
45
- --batch_size ${bs} \
46
- --truncate \
47
- --backends torch,ts_trt,dynamo,torch_compile,inductor \
48
- --report " resnet50_perf_bs${bs} .txt"
50
+ for backend in ${backends[@]}
51
+ do
52
+ python perf_run.py --model ${MODELS_DIR} /resnet50_scripted.jit.pt \
53
+ --model_torch resnet50 \
54
+ --precision fp16 --inputs=" (${bs} , 3, 224, 224)" \
55
+ --batch_size ${bs} \
56
+ --truncate \
57
+ --backends ${backend} \
58
+ --report " resnet50_perf_bs${bs} _backend_${backend} .csv"
59
+ done
49
60
done
50
61
51
62
# Benchmark VIT model
52
63
echo " Benchmarking VIT model"
53
64
for bs in ${batch_sizes[@]}
54
65
do
55
- python perf_run.py --model ${MODELS_DIR} /vit_scripted.jit.pt \
56
- --model_torch vit \
57
- --precision fp32,fp16 --inputs=" (${bs} , 3, 224, 224)" \
58
- --batch_size ${bs} \
59
- --truncate \
60
- --backends torch,ts_trt,dynamo,torch_compile,inductor \
61
- --report " vit_perf_bs${bs} .txt"
66
+ for backend in ${backends[@]}
67
+ do
68
+ python perf_run.py --model ${MODELS_DIR} /vit_scripted.jit.pt \
69
+ --model_torch vit \
70
+ --precision fp16 --inputs=" (${bs} , 3, 224, 224)" \
71
+ --batch_size ${bs} \
72
+ --truncate \
73
+ --backends ${backend} \
74
+ --report " vit_perf_bs${bs} _backend_${backend} .csv"
75
+ done
62
76
done
63
77
64
78
# Benchmark VIT Large model
65
79
echo " Benchmarking VIT Large model"
66
80
for bs in ${large_model_batch_sizes[@]}
67
81
do
68
- python perf_run.py --model ${MODELS_DIR} /vit_large_scripted.jit.pt \
69
- --model_torch vit_large \
70
- --precision fp32,fp16 --inputs=" (${bs} , 3, 224, 224)" \
71
- --truncate \
72
- --batch_size ${bs} \
73
- --backends torch,ts_trt,dynamo,torch_compile,inductor \
74
- --report " vit_large_perf_bs${bs} .txt"
82
+ for backend in ${backends[@]}
83
+ do
84
+ python perf_run.py --model ${MODELS_DIR} /vit_large_scripted.jit.pt \
85
+ --model_torch vit_large \
86
+ --precision fp16 --inputs=" (${bs} , 3, 224, 224)" \
87
+ --batch_size ${bs} \
88
+ --truncate \
89
+ --backends ${backend} \
90
+ --report " vit_large_perf_bs${bs} _backend_${backend} .csv"
91
+ done
75
92
done
76
93
77
94
# Benchmark EfficientNet-B0 model
78
95
echo " Benchmarking EfficientNet-B0 model"
79
96
for bs in ${batch_sizes[@]}
80
97
do
81
- python perf_run.py --model ${MODELS_DIR} /efficientnet_b0_scripted.jit.pt \
82
- --model_torch efficientnet_b0 \
83
- --precision fp32,fp16 --inputs=" (${bs} , 3, 224, 224)" \
84
- --batch_size ${bs} \
85
- --truncate \
86
- --backends torch,ts_trt,dynamo,torch_compile,inductor \
87
- --report " efficientnet_b0_perf_bs${bs} .txt"
98
+ for backend in ${backends[@]}
99
+ do
100
+ python perf_run.py --model ${MODELS_DIR} /efficientnet_b0_scripted.jit.pt \
101
+ --model_torch efficientnet_b0 \
102
+ --precision fp16 --inputs=" (${bs} , 3, 224, 224)" \
103
+ --batch_size ${bs} \
104
+ --truncate \
105
+ --backends ${backend} \
106
+ --report " efficientnet_b0_perf_bs${bs} _backend_${backend} .csv"
107
+ done
88
108
done
89
109
90
110
# Benchmark Stable Diffusion UNet model
91
111
echo " Benchmarking SD UNet model"
92
112
for bs in ${large_model_batch_sizes[@]}
93
113
do
94
- python perf_run.py --model_torch sd_unet \
95
- --precision fp32,fp16 --inputs=" (${bs} , 4, 64, 64)@fp16;(${bs} )@fp16;(${bs} , 1, 768)@fp16" \
96
- --batch_size ${bs} \
97
- --backends torch,dynamo,torch_compile,inductor \
98
- --truncate \
99
- --report " sd_unet_perf_bs${bs} .txt"
114
+ for backend in ${backends_no_torchscript[@]}
115
+ do
116
+ python perf_run.py --model_torch sd_unet \
117
+ --precision fp16 --inputs=" (${bs} , 4, 64, 64);(${bs} );(${bs} , 1, 768)" \
118
+ --batch_size ${bs} \
119
+ --truncate \
120
+ --backends ${backend} \
121
+ --report " sd_unet_perf_bs${bs} _backend_${backend} .csv"
122
+ done
100
123
done
101
124
102
125
# Benchmark BERT model
103
126
echo " Benchmarking Huggingface BERT base model"
104
127
for bs in ${batch_sizes[@]}
105
128
do
106
- python perf_run.py --model ${MODELS_DIR} /bert_base_uncased_traced.jit.pt \
107
- --model_torch " bert_base_uncased" \
108
- --precision fp32 --inputs=" (${bs} , 128)@int32;(${bs} , 128)@int32" \
109
- --batch_size ${bs} \
110
- --backends torch,ts_trt,dynamo,torch_compile,inductor \
111
- --truncate \
112
- --report " bert_base_perf_bs${bs} .txt"
129
+ for backend in ${backends[@]}
130
+ do
131
+ python perf_run.py --model ${MODELS_DIR} /bert_base_uncased_traced.jit.pt \
132
+ --model_torch " bert_base_uncased" \
133
+ --precision fp16 --inputs=" (${bs} , 128)@int32;(${bs} , 128)@int32" \
134
+ --batch_size ${bs} \
135
+ --truncate \
136
+ --backends ${backend} \
137
+ --report " bert_base_perf_bs${bs} _backend_${backend} .csv.csv"
138
+ done
113
139
done
114
140
115
141
# Collect and concatenate all results
116
142
echo " Concatenating all results"
117
- (echo " Output of All Model Runs" ; echo) >> all_outputs.txt;
118
-
119
- for i in $( ls * _bs* .txt) ;
120
- do (echo $i ; cat $i ; echo ; echo) >> all_outputs.txt;
121
- done
143
+ python accumulate_results.py
0 commit comments