|
| 1 | +""" |
| 2 | +Dynamo Compile Transformers Example |
| 3 | +========================= |
| 4 | +
|
| 5 | +This interactive script is intended as a sample of the `torch_tensorrt.dynamo.compile` workflow on a transformer-based model.""" |
| 6 | + |
| 7 | +# %% |
| 8 | +# Imports and Model Definition |
| 9 | +# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 10 | + |
| 11 | +import torch |
| 12 | +import torch_tensorrt.dynamo.compile |
| 13 | +from transformers import BertModel |
| 14 | + |
| 15 | +# %% |
| 16 | + |
| 17 | +# Initialize model with float precision and sample inputs |
| 18 | +model = BertModel.from_pretrained("bert-base-uncased").eval().to("cuda") |
| 19 | +inputs = [ |
| 20 | + torch.randint(0, 2, (1, 14), dtype=torch.int32).to("cuda"), |
| 21 | + torch.randint(0, 2, (1, 14), dtype=torch.int32).to("cuda"), |
| 22 | +] |
| 23 | + |
| 24 | + |
| 25 | +# %% |
| 26 | +# Optional Input Arguments to `torch_tensorrt.dynamo.compile` |
| 27 | +# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 28 | + |
| 29 | +# Enabled precision for TensorRT optimization |
| 30 | +enabled_precisions = {torch.float} |
| 31 | + |
| 32 | +# Whether to print verbose logs |
| 33 | +debug = True |
| 34 | + |
| 35 | +# Workspace size for TensorRT |
| 36 | +workspace_size = 20 << 30 |
| 37 | + |
| 38 | +# Maximum number of TRT Engines |
| 39 | +# (Lower value allows more graph segmentation) |
| 40 | +min_block_size = 3 |
| 41 | + |
| 42 | +# Operations to Run in Torch, regardless of converter support |
| 43 | +torch_executed_ops = {} |
| 44 | + |
| 45 | +# %% |
| 46 | +# Compilation with `torch_tensorrt.dynamo.compile` |
| 47 | +# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 48 | + |
| 49 | +# Build and compile the model with torch.compile, using tensorrt backend |
| 50 | +optimized_model = torch_tensorrt.dynamo.compile( |
| 51 | + model, |
| 52 | + inputs, |
| 53 | + enabled_precisions=enabled_precisions, |
| 54 | + debug=debug, |
| 55 | + workspace_size=workspace_size, |
| 56 | + min_block_size=min_block_size, |
| 57 | + torch_executed_ops=torch_executed_ops, |
| 58 | +) |
| 59 | + |
| 60 | +# %% |
| 61 | +# Equivalently, we could have run the above via the convenience frontend, as so: |
| 62 | +# `torch_tensorrt.compile(model, ir="dynamo_compile", inputs=inputs, ...)` |
| 63 | + |
| 64 | +# %% |
| 65 | +# Inference |
| 66 | +# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 67 | + |
| 68 | +# Does not cause recompilation (same batch size as input) |
| 69 | +new_inputs = [ |
| 70 | + torch.randint(0, 2, (1, 14), dtype=torch.int32).to("cuda"), |
| 71 | + torch.randint(0, 2, (1, 14), dtype=torch.int32).to("cuda"), |
| 72 | +] |
| 73 | +new_outputs = optimized_model(*new_inputs) |
| 74 | + |
| 75 | +# %% |
| 76 | + |
| 77 | +# Does cause recompilation (new batch size) |
| 78 | +new_inputs = [ |
| 79 | + torch.randint(0, 2, (4, 14), dtype=torch.int32).to("cuda"), |
| 80 | + torch.randint(0, 2, (4, 14), dtype=torch.int32).to("cuda"), |
| 81 | +] |
| 82 | +new_outputs = optimized_model(*new_inputs) |
| 83 | + |
| 84 | +# %% |
| 85 | +# Cleanup |
| 86 | +# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 87 | + |
| 88 | +# Finally, we use Torch utilities to clean up the workspace |
| 89 | +torch._dynamo.reset() |
| 90 | + |
| 91 | +with torch.no_grad(): |
| 92 | + torch.cuda.empty_cache() |
0 commit comments