We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
1 parent 570f1d3 commit a2e1accCopy full SHA for a2e1acc
docsrc/user_guide/saving_models.rst
@@ -31,7 +31,7 @@ The following code illustrates this approach.
31
model = MyModel().eval().cuda()
32
inputs = [torch.randn((1, 3, 224, 224)).cuda()]
33
trt_gm = torch_tensorrt.compile(model, ir="dynamo", inputs) # Output is a torch.fx.GraphModule
34
- trt_traced_model = torchtrt.dynamo.export(trt_gm, inputs)
+ trt_traced_model = torch.jit.trace(trt_gm, inputs)
35
torch.jit.save(trt_traced_model, "trt_model.ts")
36
37
# Later, you can load it and run inference
0 commit comments