@@ -53,16 +53,16 @@ http_archive(
53
53
name = "libtorch" ,
54
54
build_file = "@//third_party/libtorch:BUILD" ,
55
55
strip_prefix = "libtorch" ,
56
- urls = ["https://download.pytorch.org/libtorch/cu102/libtorch-cxx11-abi-shared-with-deps-1.5.0 .zip" ],
57
- sha256 = "0efdd4e709ab11088fa75f0501c19b0e294404231442bab1d1fb953924feb6b5 "
56
+ urls = ["https://download.pytorch.org/libtorch/cu102/libtorch-cxx11-abi-shared-with-deps-1.5.1 .zip" ],
57
+ sha256 = "cf0691493d05062fe3239cf76773bae4c5124f4b039050dbdd291c652af3ab2a "
58
58
)
59
59
60
60
http_archive (
61
61
name = "libtorch_pre_cxx11_abi" ,
62
62
build_file = "@//third_party/libtorch:BUILD" ,
63
63
strip_prefix = "libtorch" ,
64
- sha256 = "ea8de17c5f70015583f3a7a43c7a5cdf91a1d4bd19a6a7bc11f074ef6cd69e27 " ,
65
- urls = ["https://download.pytorch.org/libtorch/cu102/libtorch-shared-with-deps-1.5.0 .zip" ],
64
+ sha256 = "818977576572eadaf62c80434a25afe44dbaa32ebda3a0919e389dcbe74f8656 " ,
65
+ urls = ["https://download.pytorch.org/libtorch/cu102/libtorch-shared-with-deps-1.5.1 .zip" ],
66
66
)
67
67
68
68
# Download these tarballs manually from the NVIDIA website
@@ -71,29 +71,29 @@ http_archive(
71
71
72
72
http_archive (
73
73
name = "cudnn" ,
74
- urls = ["https://developer.nvidia.com/compute/machine-learning/cudnn/secure/7.6.5.32/Production/ 10.2_20191118 /cudnn-10.2-linux-x64-v7.6.5.32 .tgz" ],
74
+ urls = ["https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.0.1.13/ 10.2_20200626 /cudnn-10.2-linux-x64-v8.0.1.13 .tgz" ],
75
75
build_file = "@//third_party/cudnn/archive:BUILD" ,
76
- sha256 = "600267f2caaed2fd58eb214ba669d8ea35f396a7d19b94822e6b36f9f7088c20 " ,
76
+ sha256 = "0c106ec84f199a0fbcf1199010166986da732f9b0907768c9ac5ea5b120772db " ,
77
77
strip_prefix = "cuda"
78
78
)
79
79
80
80
http_archive (
81
81
name = "tensorrt" ,
82
- urls = ["https://developer.nvidia.com/compute/machine-learning/tensorrt/secure/7.0/7.0.0.11/ tars/TensorRT-7.0.0.11 .Ubuntu-18.04.x86_64-gnu.cuda-10.2.cudnn7.6 .tar.gz" ],
82
+ urls = ["https://developer.nvidia.com/compute/machine-learning/tensorrt/secure/7.1/ tars/TensorRT-7.1.3.4 .Ubuntu-18.04.x86_64-gnu.cuda-10.2.cudnn8.0 .tar.gz" ],
83
83
build_file = "@//third_party/tensorrt/archive:BUILD" ,
84
- sha256 = "c7d73b2585b18aae68b740249efa8c8ba5ae852abe9a023720595432a8eb4efd " ,
85
- strip_prefix = "TensorRT-7.0.0.11 "
84
+ sha256 = "9205bed204e2ae7aafd2e01cce0f21309e281e18d5bfd7172ef8541771539d41 " ,
85
+ strip_prefix = "TensorRT-7.1.3.4 "
86
86
)
87
87
88
88
####################################################################################
89
89
# Locally installed dependencies (use in cases of custom dependencies or aarch64)
90
90
####################################################################################
91
91
92
- # NOTE: In the case you are using just the pre-cxx11-abi path or just the cxx11 abi path
92
+ # NOTE: In the case you are using just the pre-cxx11-abi path or just the cxx11 abi path
93
93
# with your local libtorch, just point deps at the same path to satisfy bazel.
94
94
95
95
# NOTE: NVIDIA's aarch64 PyTorch (python) wheel file uses the CXX11 ABI unlike PyTorch's standard
96
- # x86_64 python distribution. If using NVIDIA's version just point to the root of the package
96
+ # x86_64 python distribution. If using NVIDIA's version just point to the root of the package
97
97
# for both versions here and do not use --config=pre-cxx11-abi
98
98
99
99
#new_local_repository(
0 commit comments