|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +from parameterized import parameterized |
| 4 | +from torch.testing._internal.common_utils import run_tests |
| 5 | + |
| 6 | +from .harness import DispatchTestCase |
| 7 | + |
| 8 | + |
| 9 | +class TestArgminConverter(DispatchTestCase): |
| 10 | + @parameterized.expand( |
| 11 | + [ |
| 12 | + # input dimension == 1 |
| 13 | + ("dim_1_keep_dim_true", (3,), 0, True), |
| 14 | + ("dim_1_keep_dim_false", (3,), 0, False), |
| 15 | + # dim == None |
| 16 | + ("dim_1_none_true", (3,), None, True), |
| 17 | + ("dim_2_none_true", (3, 3), None, True), |
| 18 | + ("dim_3_none_false", (3, 3, 3), None, False), |
| 19 | + # # common cases |
| 20 | + ("dim_1_keep_dim_true", (3, 3), 1, True), |
| 21 | + ("dim_1_keep_dim_false", (3, 3), 1, False), |
| 22 | + ("dim_0_keep_dim_true", (4, 4, 4), 0, True), |
| 23 | + ("dim_0_keep_dim_false", (4, 4, 4), 0, False), |
| 24 | + ("dim_negative_keep_dim_true", (1, 2, 3), -1, True), |
| 25 | + ] |
| 26 | + ) |
| 27 | + def test_argmin(self, _, input_shape, dim, keep_dim): |
| 28 | + class ArgMin(nn.Module): |
| 29 | + def __init__(self): |
| 30 | + super().__init__() |
| 31 | + |
| 32 | + def forward(self, input): |
| 33 | + return torch.ops.aten.argmin.default(input, dim, keep_dim) |
| 34 | + |
| 35 | + input = [torch.randn(*input_shape)] |
| 36 | + |
| 37 | + self.run_test(ArgMin(), input) |
| 38 | + |
| 39 | + |
| 40 | +if __name__ == "__main__": |
| 41 | + run_tests() |
0 commit comments