|
6 | 6 | * LICENSE file in the root directory of this source tree.
|
7 | 7 | */
|
8 | 8 |
|
9 |
| - #include <executorch/extension/data_loader/file_data_loader.h> |
10 |
| - #include <executorch/extension/flat_tensor/flat_tensor_data_map.h> |
11 |
| - #include <executorch/runtime/core/error.h> |
12 |
| - #include <executorch/runtime/core/result.h> |
13 |
| - #include <executorch/runtime/executor/method.h> |
14 |
| - #include <executorch/runtime/executor/program.h> |
15 |
| - #include <executorch/runtime/executor/test/managed_memory_manager.h> |
16 |
| - #include <executorch/runtime/platform/runtime.h> |
17 |
| - |
18 |
| - #include <gtest/gtest.h> |
19 |
| - |
20 |
| - using namespace ::testing; |
21 |
| - using executorch::extension::FlatTensorDataMap; |
22 |
| - using executorch::runtime::DataLoader; |
23 |
| - using executorch::runtime::Error; |
24 |
| - using executorch::runtime::FreeableBuffer; |
25 |
| - using executorch::runtime::Method; |
26 |
| - using executorch::runtime::Program; |
27 |
| - using executorch::runtime::Result; |
28 |
| - using executorch::runtime::testing::ManagedMemoryManager; |
29 |
| - using torch::executor::util::FileDataLoader; |
30 |
| - |
31 |
| - constexpr size_t kDefaultNonConstMemBytes = 32 * 1024U; |
32 |
| - constexpr size_t kDefaultRuntimeMemBytes = 32 * 1024U; |
33 |
| - |
34 |
| - class DataSeparationTest : public ::testing::Test { |
35 |
| - protected: |
36 |
| - void SetUp() override { |
37 |
| - // Since these tests cause ET_LOG to be called, the PAL must be initialized |
38 |
| - // first. |
39 |
| - executorch::runtime::runtime_init(); |
40 |
| - |
41 |
| - // Create data loaders. |
42 |
| - Result<FileDataLoader> linear_program_loader = |
43 |
| - FileDataLoader::from(std::getenv("ET_MODULE_LINEAR_XNN_PROGRAM_PATH")); |
44 |
| - ASSERT_EQ(linear_program_loader.error(), Error::Ok); |
45 |
| - linear_program_loader_ = std::make_unique<FileDataLoader>( |
46 |
| - std::move(linear_program_loader.get())); |
47 |
| - |
48 |
| - Result<FileDataLoader> linear_data_loader = |
49 |
| - FileDataLoader::from(std::getenv("ET_MODULE_LINEAR_XNN_DATA_PATH")); |
50 |
| - ASSERT_EQ(linear_data_loader.error(), Error::Ok); |
51 |
| - linear_data_loader_ = |
52 |
| - std::make_unique<FileDataLoader>(std::move(linear_data_loader.get())); |
53 |
| - |
54 |
| - // Create programs. |
55 |
| - Result<Program> linear_program = Program::load( |
56 |
| - linear_program_loader_.get(), |
57 |
| - Program::Verification::InternalConsistency); |
58 |
| - ASSERT_EQ(linear_program.error(), Error::Ok); |
59 |
| - linear_program_ = |
60 |
| - std::make_unique<Program>(std::move(linear_program.get())); |
61 |
| - |
62 |
| - Result<FlatTensorDataMap> linear_data_map = |
63 |
| - FlatTensorDataMap::load(linear_data_loader_.get()); |
64 |
| - EXPECT_EQ(linear_data_map.error(), Error::Ok); |
65 |
| - linear_data_map_ = |
66 |
| - std::make_unique<FlatTensorDataMap>(std::move(linear_data_map.get())); |
67 |
| - } |
68 |
| - |
69 |
| - private: |
70 |
| - std::unique_ptr<FileDataLoader> linear_program_loader_; |
71 |
| - std::unique_ptr<FileDataLoader> linear_data_loader_; |
72 |
| - |
73 |
| - protected: |
74 |
| - std::unique_ptr<Program> linear_program_; |
75 |
| - std::unique_ptr<FlatTensorDataMap> linear_data_map_; |
76 |
| - }; |
77 |
| - |
78 |
| - TEST_F(DataSeparationTest, TestExternalData) { |
79 |
| - FlatTensorDataMap* data_map = linear_data_map_.get(); |
80 |
| - EXPECT_EQ(data_map->get_num_keys().get(), 2); |
81 |
| - |
82 |
| - Result<const char*> key0 = data_map->get_key(0); |
83 |
| - EXPECT_EQ(key0.error(), Error::Ok); |
84 |
| - Result<const char*> key1 = data_map->get_key(1); |
85 |
| - EXPECT_EQ(key1.error(), Error::Ok); |
86 |
| - |
87 |
| - // Check that accessing keys out of bounds fails. |
88 |
| - EXPECT_EQ(data_map->get_key(2).error(), Error::InvalidArgument); |
89 |
| - |
90 |
| - // Linear.weight |
91 |
| - Result<FreeableBuffer> data0 = data_map->get_data(key0.get()); |
92 |
| - EXPECT_EQ(data0.error(), Error::Ok); |
93 |
| - EXPECT_EQ(data0.get().size(), 36); // 3*3*4 (3*3 matrix, 4 bytes per float) |
94 |
| - |
95 |
| - // Linear.bias |
96 |
| - Result<FreeableBuffer> data1 = data_map->get_data(key1.get()); |
97 |
| - EXPECT_EQ(data1.error(), Error::Ok); |
98 |
| - EXPECT_EQ(data1.get().size(), 12); // 3*4 (3 vector, 4 bytes per float) |
99 |
| - |
100 |
| - // Check that accessing non-existent data fails. |
101 |
| - Result<FreeableBuffer> data2 = data_map->get_data("nonexistent"); |
102 |
| - EXPECT_EQ(data2.error(), Error::NotFound); |
| 9 | +#include <executorch/extension/data_loader/file_data_loader.h> |
| 10 | +#include <executorch/extension/flat_tensor/flat_tensor_data_map.h> |
| 11 | +#include <executorch/runtime/core/error.h> |
| 12 | +#include <executorch/runtime/core/result.h> |
| 13 | +#include <executorch/runtime/executor/method.h> |
| 14 | +#include <executorch/runtime/executor/program.h> |
| 15 | +#include <executorch/runtime/executor/test/managed_memory_manager.h> |
| 16 | +#include <executorch/runtime/platform/runtime.h> |
| 17 | + |
| 18 | +#include <gtest/gtest.h> |
| 19 | + |
| 20 | +using namespace ::testing; |
| 21 | +using executorch::extension::FlatTensorDataMap; |
| 22 | +using executorch::runtime::DataLoader; |
| 23 | +using executorch::runtime::Error; |
| 24 | +using executorch::runtime::FreeableBuffer; |
| 25 | +using executorch::runtime::Method; |
| 26 | +using executorch::runtime::Program; |
| 27 | +using executorch::runtime::Result; |
| 28 | +using executorch::runtime::testing::ManagedMemoryManager; |
| 29 | +using torch::executor::util::FileDataLoader; |
| 30 | + |
| 31 | +constexpr size_t kDefaultNonConstMemBytes = 32 * 1024U; |
| 32 | +constexpr size_t kDefaultRuntimeMemBytes = 32 * 1024U; |
| 33 | + |
| 34 | +class DataSeparationTest : public ::testing::Test { |
| 35 | + protected: |
| 36 | + void SetUp() override { |
| 37 | + // Since these tests cause ET_LOG to be called, the PAL must be initialized |
| 38 | + // first. |
| 39 | + executorch::runtime::runtime_init(); |
| 40 | + |
| 41 | + // Create data loaders. |
| 42 | + Result<FileDataLoader> linear_program_loader = |
| 43 | + FileDataLoader::from(std::getenv("ET_MODULE_LINEAR_XNN_PROGRAM_PATH")); |
| 44 | + ASSERT_EQ(linear_program_loader.error(), Error::Ok); |
| 45 | + linear_program_loader_ = std::make_unique<FileDataLoader>( |
| 46 | + std::move(linear_program_loader.get())); |
| 47 | + |
| 48 | + Result<FileDataLoader> linear_data_loader = |
| 49 | + FileDataLoader::from(std::getenv("ET_MODULE_LINEAR_XNN_DATA_PATH")); |
| 50 | + ASSERT_EQ(linear_data_loader.error(), Error::Ok); |
| 51 | + linear_data_loader_ = |
| 52 | + std::make_unique<FileDataLoader>(std::move(linear_data_loader.get())); |
| 53 | + |
| 54 | + // Create programs. |
| 55 | + Result<Program> linear_program = Program::load( |
| 56 | + linear_program_loader_.get(), |
| 57 | + Program::Verification::InternalConsistency); |
| 58 | + ASSERT_EQ(linear_program.error(), Error::Ok); |
| 59 | + linear_program_ = |
| 60 | + std::make_unique<Program>(std::move(linear_program.get())); |
| 61 | + |
| 62 | + Result<FlatTensorDataMap> linear_data_map = |
| 63 | + FlatTensorDataMap::load(linear_data_loader_.get()); |
| 64 | + EXPECT_EQ(linear_data_map.error(), Error::Ok); |
| 65 | + linear_data_map_ = |
| 66 | + std::make_unique<FlatTensorDataMap>(std::move(linear_data_map.get())); |
| 67 | + } |
| 68 | + |
| 69 | + private: |
| 70 | + std::unique_ptr<FileDataLoader> linear_program_loader_; |
| 71 | + std::unique_ptr<FileDataLoader> linear_data_loader_; |
| 72 | + |
| 73 | + protected: |
| 74 | + std::unique_ptr<Program> linear_program_; |
| 75 | + std::unique_ptr<FlatTensorDataMap> linear_data_map_; |
| 76 | +}; |
| 77 | + |
| 78 | +TEST_F(DataSeparationTest, TestExternalData) { |
| 79 | + FlatTensorDataMap* data_map = linear_data_map_.get(); |
| 80 | + EXPECT_EQ(data_map->get_num_keys().get(), 2); |
| 81 | + |
| 82 | + Result<const char*> key0 = data_map->get_key(0); |
| 83 | + EXPECT_EQ(key0.error(), Error::Ok); |
| 84 | + Result<const char*> key1 = data_map->get_key(1); |
| 85 | + EXPECT_EQ(key1.error(), Error::Ok); |
| 86 | + |
| 87 | + // Check that accessing keys out of bounds fails. |
| 88 | + EXPECT_EQ(data_map->get_key(2).error(), Error::InvalidArgument); |
| 89 | + |
| 90 | + // Linear.weight |
| 91 | + Result<FreeableBuffer> data0 = data_map->get_data(key0.get()); |
| 92 | + EXPECT_EQ(data0.error(), Error::Ok); |
| 93 | + EXPECT_EQ(data0.get().size(), 36); // 3*3*4 (3*3 matrix, 4 bytes per float) |
| 94 | + |
| 95 | + // Linear.bias |
| 96 | + Result<FreeableBuffer> data1 = data_map->get_data(key1.get()); |
| 97 | + EXPECT_EQ(data1.error(), Error::Ok); |
| 98 | + EXPECT_EQ(data1.get().size(), 12); // 3*4 (3 vector, 4 bytes per float) |
| 99 | + |
| 100 | + // Check that accessing non-existent data fails. |
| 101 | + Result<FreeableBuffer> data2 = data_map->get_data("nonexistent"); |
| 102 | + EXPECT_EQ(data2.error(), Error::NotFound); |
103 | 103 | }
|
104 | 104 |
|
105 |
| - TEST_F(DataSeparationTest, TestE2E) { |
106 |
| - ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes); |
107 |
| - Result<Method> method = linear_program_->load_method( |
108 |
| - "forward", &mmm.get(), nullptr, linear_data_map_.get()); |
109 |
| - ASSERT_EQ(method.error(), Error::Ok); |
110 |
| - |
111 |
| - // Can execute the method. |
112 |
| - Error err = method->execute(); |
113 |
| - ASSERT_EQ(err, Error::Ok); |
114 |
| - } |
| 105 | +TEST_F(DataSeparationTest, TestE2E) { |
| 106 | + ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes); |
| 107 | + Result<Method> method = linear_program_->load_method( |
| 108 | + "forward", &mmm.get(), nullptr, linear_data_map_.get()); |
| 109 | + ASSERT_EQ(method.error(), Error::Ok); |
| 110 | + |
| 111 | + // Can execute the method. |
| 112 | + Error err = method->execute(); |
| 113 | + ASSERT_EQ(err, Error::Ok); |
| 114 | +} |
0 commit comments