Skip to content

Commit adad392

Browse files
authored
Merge branch 'main' into captum-fix
2 parents 110f0a9 + 83cbc8d commit adad392

5 files changed

+99
-72
lines changed

Diff for: beginner_source/data_loading_tutorial.py

+5-9
Original file line numberDiff line numberDiff line change
@@ -165,9 +165,7 @@ def __getitem__(self, idx):
165165

166166
fig = plt.figure()
167167

168-
for i in range(len(face_dataset)):
169-
sample = face_dataset[i]
170-
168+
for i, sample in enumerate(face_dataset):
171169
print(i, sample['image'].shape, sample['landmarks'].shape)
172170

173171
ax = plt.subplot(1, 4, i + 1)
@@ -268,8 +266,8 @@ def __call__(self, sample):
268266
h, w = image.shape[:2]
269267
new_h, new_w = self.output_size
270268

271-
top = np.random.randint(0, h - new_h)
272-
left = np.random.randint(0, w - new_w)
269+
top = np.random.randint(0, h - new_h + 1)
270+
left = np.random.randint(0, w - new_w + 1)
273271

274272
image = image[top: top + new_h,
275273
left: left + new_w]
@@ -294,7 +292,7 @@ def __call__(self, sample):
294292

295293
######################################################################
296294
# .. note::
297-
# In the example above, `RandomCrop` uses an external library's random number generator
295+
# In the example above, `RandomCrop` uses an external library's random number generator
298296
# (in this case, Numpy's `np.random.int`). This can result in unexpected behavior with `DataLoader`
299297
# (see `here <https://pytorch.org/docs/stable/notes/faq.html#my-data-loader-workers-return-identical-random-numbers>`_).
300298
# In practice, it is safer to stick to PyTorch's random number generator, e.g. by using `torch.randint` instead.
@@ -356,9 +354,7 @@ def __call__(self, sample):
356354
ToTensor()
357355
]))
358356

359-
for i in range(len(transformed_dataset)):
360-
sample = transformed_dataset[i]
361-
357+
for i, sample in enumerate(transformed_dataset):
362358
print(i, sample['image'].size(), sample['landmarks'].size())
363359

364360
if i == 3:

Diff for: beginner_source/transfer_learning_tutorial.py

+66-62
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@
4646
import matplotlib.pyplot as plt
4747
import time
4848
import os
49-
import copy
49+
from tempfile import TemporaryDirectory
5050

5151
cudnn.benchmark = True
5252
plt.ion() # interactive mode
@@ -146,67 +146,71 @@ def imshow(inp, title=None):
146146
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
147147
since = time.time()
148148

149-
best_model_wts = copy.deepcopy(model.state_dict())
150-
best_acc = 0.0
151-
152-
for epoch in range(num_epochs):
153-
print(f'Epoch {epoch}/{num_epochs - 1}')
154-
print('-' * 10)
155-
156-
# Each epoch has a training and validation phase
157-
for phase in ['train', 'val']:
158-
if phase == 'train':
159-
model.train() # Set model to training mode
160-
else:
161-
model.eval() # Set model to evaluate mode
162-
163-
running_loss = 0.0
164-
running_corrects = 0
165-
166-
# Iterate over data.
167-
for inputs, labels in dataloaders[phase]:
168-
inputs = inputs.to(device)
169-
labels = labels.to(device)
170-
171-
# zero the parameter gradients
172-
optimizer.zero_grad()
173-
174-
# forward
175-
# track history if only in train
176-
with torch.set_grad_enabled(phase == 'train'):
177-
outputs = model(inputs)
178-
_, preds = torch.max(outputs, 1)
179-
loss = criterion(outputs, labels)
180-
181-
# backward + optimize only if in training phase
182-
if phase == 'train':
183-
loss.backward()
184-
optimizer.step()
185-
186-
# statistics
187-
running_loss += loss.item() * inputs.size(0)
188-
running_corrects += torch.sum(preds == labels.data)
189-
if phase == 'train':
190-
scheduler.step()
191-
192-
epoch_loss = running_loss / dataset_sizes[phase]
193-
epoch_acc = running_corrects.double() / dataset_sizes[phase]
194-
195-
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
196-
197-
# deep copy the model
198-
if phase == 'val' and epoch_acc > best_acc:
199-
best_acc = epoch_acc
200-
best_model_wts = copy.deepcopy(model.state_dict())
201-
202-
print()
203-
204-
time_elapsed = time.time() - since
205-
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
206-
print(f'Best val Acc: {best_acc:4f}')
207-
208-
# load best model weights
209-
model.load_state_dict(best_model_wts)
149+
# Create a temporary directory to save training checkpoints
150+
with TemporaryDirectory() as tempdir:
151+
best_model_params_path = os.path.join(tempdir, 'best_model_params.pt')
152+
153+
torch.save(model.state_dict(), best_model_params_path)
154+
best_acc = 0.0
155+
156+
for epoch in range(num_epochs):
157+
print(f'Epoch {epoch}/{num_epochs - 1}')
158+
print('-' * 10)
159+
160+
# Each epoch has a training and validation phase
161+
for phase in ['train', 'val']:
162+
if phase == 'train':
163+
model.train() # Set model to training mode
164+
else:
165+
model.eval() # Set model to evaluate mode
166+
167+
running_loss = 0.0
168+
running_corrects = 0
169+
170+
# Iterate over data.
171+
for inputs, labels in dataloaders[phase]:
172+
inputs = inputs.to(device)
173+
labels = labels.to(device)
174+
175+
# zero the parameter gradients
176+
optimizer.zero_grad()
177+
178+
# forward
179+
# track history if only in train
180+
with torch.set_grad_enabled(phase == 'train'):
181+
outputs = model(inputs)
182+
_, preds = torch.max(outputs, 1)
183+
loss = criterion(outputs, labels)
184+
185+
# backward + optimize only if in training phase
186+
if phase == 'train':
187+
loss.backward()
188+
optimizer.step()
189+
190+
# statistics
191+
running_loss += loss.item() * inputs.size(0)
192+
running_corrects += torch.sum(preds == labels.data)
193+
if phase == 'train':
194+
scheduler.step()
195+
196+
epoch_loss = running_loss / dataset_sizes[phase]
197+
epoch_acc = running_corrects.double() / dataset_sizes[phase]
198+
199+
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
200+
201+
# deep copy the model
202+
if phase == 'val' and epoch_acc > best_acc:
203+
best_acc = epoch_acc
204+
torch.save(model.state_dict(), best_model_params_path)
205+
206+
print()
207+
208+
time_elapsed = time.time() - since
209+
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
210+
print(f'Best val Acc: {best_acc:4f}')
211+
212+
# load best model weights
213+
model.load_state_dict(torch.load(best_model_params_path))
210214
return model
211215

212216

Diff for: beginner_source/transformer_tutorial.py

+9
Original file line numberDiff line numberDiff line change
@@ -103,6 +103,15 @@ def generate_square_subsequent_mask(sz: int) -> Tensor:
103103
# positional encodings have the same dimension as the embeddings so that
104104
# the two can be summed. Here, we use ``sine`` and ``cosine`` functions of
105105
# different frequencies.
106+
# The ``div_term`` in the code is calculated as
107+
# ``torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))``.
108+
# This calculation is based on the original Transformer paper’s formulation
109+
# for positional encoding. The purpose of this calculation is to create
110+
# a range of values that decrease exponentially.
111+
# This allows the model to learn to attend to positions based on their relative distances.
112+
# The ``math.log(10000.0)`` term in the exponent represents the maximum effective
113+
# input length (in this case, ``10000``). Dividing this term by ``d_model`` scales
114+
# the values to be within a reasonable range for the exponential function.
106115
#
107116

108117
class PositionalEncoding(nn.Module):

Diff for: intermediate_source/char_rnn_generation_tutorial.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -278,7 +278,7 @@ def train(category_tensor, input_line_tensor, target_line_tensor):
278278

279279
rnn.zero_grad()
280280

281-
loss = 0
281+
loss = torch.Tensor([0]) # you can also just simply use ``loss = 0``
282282

283283
for i in range(input_line_tensor.size(0)):
284284
output, hidden = rnn(category_tensor, input_line_tensor[i], hidden)

Diff for: intermediate_source/dynamic_quantization_bert_tutorial.rst

+18
Original file line numberDiff line numberDiff line change
@@ -255,6 +255,9 @@ model before and after the dynamic quantization.
255255
torch.manual_seed(seed)
256256
set_seed(42)
257257
258+
# Initialize a global random number generator
259+
global_rng = random.Random()
260+
258261
259262
2.2 Load the fine-tuned BERT model
260263
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -525,6 +528,21 @@ We can serialize and save the quantized model for the future use using
525528

526529
.. code:: python
527530
531+
def ids_tensor(shape, vocab_size, rng=None, name=None):
532+
# Creates a random int32 tensor of the shape within the vocab size
533+
if rng is None:
534+
rng = global_rng
535+
536+
total_dims = 1
537+
for dim in shape:
538+
total_dims *= dim
539+
540+
values = []
541+
for _ in range(total_dims):
542+
values.append(rng.randint(0, vocab_size - 1))
543+
544+
return torch.tensor(data=values, dtype=torch.long, device='cpu').view(shape).contiguous()
545+
528546
input_ids = ids_tensor([8, 128], 2)
529547
token_type_ids = ids_tensor([8, 128], 2)
530548
attention_mask = ids_tensor([8, 128], vocab_size=2)

0 commit comments

Comments
 (0)