@@ -575,7 +575,7 @@ class RegNet_Y_16GF_Weights(WeightsEnum):
575
575
"acc@5" : 96.328 ,
576
576
},
577
577
)
578
- IMAGENET1K_SWAG_V1 = Weights (
578
+ IMAGENET1K_SWAG_E2E_V1 = Weights (
579
579
url = "https://download.pytorch.org/models/regnet_y_16gf_swag-43afe44d.pth" ,
580
580
transforms = partial (
581
581
ImageClassification , crop_size = 384 , resize_size = 384 , interpolation = InterpolationMode .BICUBIC
@@ -587,6 +587,19 @@ class RegNet_Y_16GF_Weights(WeightsEnum):
587
587
"acc@5" : 98.054 ,
588
588
},
589
589
)
590
+ IMAGENET1K_SWAG_LINEAR_V1 = Weights (
591
+ url = "https://download.pytorch.org/models/regnet_y_16gf_lc_swag-f3ec0043.pth" ,
592
+ transforms = partial (
593
+ ImageClassification , crop_size = 224 , resize_size = 224 , interpolation = InterpolationMode .BICUBIC
594
+ ),
595
+ meta = {
596
+ ** _COMMON_SWAG_META ,
597
+ "recipe" : "https://github.com/pytorch/vision/pull/5793" ,
598
+ "num_params" : 83590140 ,
599
+ "acc@1" : 83.976 ,
600
+ "acc@5" : 97.244 ,
601
+ },
602
+ )
590
603
DEFAULT = IMAGENET1K_V2
591
604
592
605
@@ -613,7 +626,7 @@ class RegNet_Y_32GF_Weights(WeightsEnum):
613
626
"acc@5" : 96.498 ,
614
627
},
615
628
)
616
- IMAGENET1K_SWAG_V1 = Weights (
629
+ IMAGENET1K_SWAG_E2E_V1 = Weights (
617
630
url = "https://download.pytorch.org/models/regnet_y_32gf_swag-04fdfa75.pth" ,
618
631
transforms = partial (
619
632
ImageClassification , crop_size = 384 , resize_size = 384 , interpolation = InterpolationMode .BICUBIC
@@ -625,11 +638,24 @@ class RegNet_Y_32GF_Weights(WeightsEnum):
625
638
"acc@5" : 98.362 ,
626
639
},
627
640
)
641
+ IMAGENET1K_SWAG_LINEAR_V1 = Weights (
642
+ url = "https://download.pytorch.org/models/regnet_y_32gf_lc_swag-e1583746.pth" ,
643
+ transforms = partial (
644
+ ImageClassification , crop_size = 224 , resize_size = 224 , interpolation = InterpolationMode .BICUBIC
645
+ ),
646
+ meta = {
647
+ ** _COMMON_SWAG_META ,
648
+ "recipe" : "https://github.com/pytorch/vision/pull/5793" ,
649
+ "num_params" : 145046770 ,
650
+ "acc@1" : 84.622 ,
651
+ "acc@5" : 97.480 ,
652
+ },
653
+ )
628
654
DEFAULT = IMAGENET1K_V2
629
655
630
656
631
657
class RegNet_Y_128GF_Weights (WeightsEnum ):
632
- IMAGENET1K_SWAG_V1 = Weights (
658
+ IMAGENET1K_SWAG_E2E_V1 = Weights (
633
659
url = "https://download.pytorch.org/models/regnet_y_128gf_swag-c8ce3e52.pth" ,
634
660
transforms = partial (
635
661
ImageClassification , crop_size = 384 , resize_size = 384 , interpolation = InterpolationMode .BICUBIC
@@ -641,7 +667,20 @@ class RegNet_Y_128GF_Weights(WeightsEnum):
641
667
"acc@5" : 98.682 ,
642
668
},
643
669
)
644
- DEFAULT = IMAGENET1K_SWAG_V1
670
+ IMAGENET1K_SWAG_LINEAR_V1 = Weights (
671
+ url = "https://download.pytorch.org/models/regnet_y_128gf_lc_swag-cbe8ce12.pth" ,
672
+ transforms = partial (
673
+ ImageClassification , crop_size = 224 , resize_size = 224 , interpolation = InterpolationMode .BICUBIC
674
+ ),
675
+ meta = {
676
+ ** _COMMON_SWAG_META ,
677
+ "recipe" : "https://github.com/pytorch/vision/pull/5793" ,
678
+ "num_params" : 644812894 ,
679
+ "acc@1" : 86.068 ,
680
+ "acc@5" : 97.844 ,
681
+ },
682
+ )
683
+ DEFAULT = IMAGENET1K_SWAG_E2E_V1
645
684
646
685
647
686
class RegNet_X_400MF_Weights (WeightsEnum ):
0 commit comments