Skip to content

Commit a05ce72

Browse files
Merge pull request #7 from qdrant/dev
mcp-server-qdrant 0.5.2
2 parents 701db26 + 5011332 commit a05ce72

File tree

5 files changed

+106
-11
lines changed

5 files changed

+106
-11
lines changed

.github/workflows/pypi-publish.yaml

+42
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,42 @@
1+
# This workflow will upload a Python Package using Twine when a release is created
2+
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
3+
4+
# This workflow uses actions that are not certified by GitHub.
5+
# They are provided by a third-party and are governed by
6+
# separate terms of service, privacy policy, and support
7+
# documentation.
8+
9+
name: PyPI Publish
10+
11+
on:
12+
workflow_dispatch:
13+
push:
14+
# Pattern matched against refs/tags
15+
tags:
16+
- 'v*' # Push events to every version tag
17+
18+
jobs:
19+
deploy:
20+
21+
runs-on: ubuntu-latest
22+
23+
steps:
24+
- uses: actions/checkout@v2
25+
26+
- name: Set up Python
27+
uses: actions/setup-python@v2
28+
with:
29+
python-version: '3.10.x'
30+
31+
- name: Install dependencies
32+
run: |
33+
python -m pip install uv
34+
uv sync
35+
36+
- name: Build package
37+
run: uv build
38+
39+
- name: Publish package
40+
run: uv publish
41+
with:
42+
UV_PUBLISH_TOKEN: ${{ secrets.PYPI_API_TOKEN }}

README.md

+35-2
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,5 @@
11
# mcp-server-qdrant: A Qdrant MCP server
2+
[![smithery badge](https://smithery.ai/badge/mcp-server-qdrant)](https://smithery.ai/protocol/mcp-server-qdrant)
23

34
> The [Model Context Protocol (MCP)](https://modelcontextprotocol.io/introduction) is an open protocol that enables seamless integration between LLM applications and external data sources and tools. Whether you’re building an AI-powered IDE, enhancing a chat interface, or creating custom AI workflows, MCP provides a standardized way to connect LLMs with the context they need.
45
@@ -38,6 +39,14 @@ uv run mcp-server-qdrant \
3839
--fastembed-model-name "sentence-transformers/all-MiniLM-L6-v2"
3940
```
4041

42+
### Installing via Smithery
43+
44+
To install Qdrant MCP Server for Claude Desktop automatically via [Smithery](https://smithery.ai/protocol/mcp-server-qdrant):
45+
46+
```bash
47+
npx @smithery/cli install mcp-server-qdrant --client claude
48+
```
49+
4150
## Usage with Claude Desktop
4251

4352
To use this server with the Claude Desktop app, add the following configuration to the "mcpServers" section of your `claude_desktop_config.json`:
@@ -69,14 +78,38 @@ By default, the server will use the `sentence-transformers/all-MiniLM-L6-v2` emb
6978
For the time being, only [FastEmbed](https://qdrant.github.io/fastembed/) models are supported, and you can change it
7079
by passing the `--fastembed-model-name` argument to the server.
7180

72-
### Environment Variables
81+
### Using the local mode of Qdrant
82+
83+
To use a local mode of Qdrant, you can specify the path to the database using the `--qdrant-local-path` argument:
84+
85+
```json
86+
{
87+
"qdrant": {
88+
"command": "uvx",
89+
"args": [
90+
"mcp-server-qdrant",
91+
"--qdrant-local-path",
92+
"/path/to/qdrant/database",
93+
"--collection-name",
94+
"your_collection_name"
95+
]
96+
}
97+
}
98+
```
99+
100+
It will run Qdrant local mode inside the same process as the MCP server. Although it is not recommended for production.
101+
102+
## Environment Variables
73103

74104
The configuration of the server can be also done using environment variables:
75105

76-
- `QDRANT_URL`: URL of the Qdrant server
106+
- `QDRANT_URL`: URL of the Qdrant server, e.g. `http://localhost:6333`
77107
- `QDRANT_API_KEY`: API key for the Qdrant server
78108
- `COLLECTION_NAME`: Name of the collection to use
79109
- `FASTEMBED_MODEL_NAME`: Name of the FastEmbed model to use
110+
- `QDRANT_LOCAL_PATH`: Path to the local Qdrant database
111+
112+
You cannot provide `QDRANT_URL` and `QDRANT_LOCAL_PATH` at the same time.
80113

81114
## License
82115

pyproject.toml

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
[project]
22
name = "mcp-server-qdrant"
3-
version = "0.5.1"
3+
version = "0.5.2"
44
description = "MCP server for retrieving context from a Qdrant vector database"
55
readme = "README.md"
66
requires-python = ">=3.10"

src/mcp_server_qdrant/qdrant.py

+10-4
Original file line numberDiff line numberDiff line change
@@ -9,23 +9,25 @@ class QdrantConnector:
99
:param qdrant_api_key: The API key to use for the Qdrant server.
1010
:param collection_name: The name of the collection to use.
1111
:param fastembed_model_name: The name of the FastEmbed model to use.
12+
:param qdrant_local_path: The path to the storage directory for the Qdrant client, if local mode is used.
1213
"""
1314

1415
def __init__(
1516
self,
16-
qdrant_url: str,
17+
qdrant_url: Optional[str],
1718
qdrant_api_key: Optional[str],
1819
collection_name: str,
1920
fastembed_model_name: str,
21+
qdrant_local_path: Optional[str] = None,
2022
):
21-
self._qdrant_url = qdrant_url.rstrip("/")
23+
self._qdrant_url = qdrant_url.rstrip("/") if qdrant_url else None
2224
self._qdrant_api_key = qdrant_api_key
2325
self._collection_name = collection_name
2426
self._fastembed_model_name = fastembed_model_name
2527
# For the time being, FastEmbed models are the only supported ones.
2628
# A list of all available models can be found here:
2729
# https://qdrant.github.io/fastembed/examples/Supported_Models/
28-
self._client = AsyncQdrantClient(qdrant_url, api_key=qdrant_api_key)
30+
self._client = AsyncQdrantClient(location=qdrant_url, api_key=qdrant_api_key, path=qdrant_local_path)
2931
self._client.set_model(fastembed_model_name)
3032

3133
async def store_memory(self, information: str):
@@ -40,10 +42,14 @@ async def store_memory(self, information: str):
4042

4143
async def find_memories(self, query: str) -> list[str]:
4244
"""
43-
Find memories in the Qdrant collection.
45+
Find memories in the Qdrant collection. If there are no memories found, an empty list is returned.
4446
:param query: The query to use for the search.
4547
:return: A list of memories found.
4648
"""
49+
collection_exists = await self._client.collection_exists(self._collection_name)
50+
if not collection_exists:
51+
return []
52+
4753
search_results = await self._client.query(
4854
self._collection_name,
4955
query_text=query,

src/mcp_server_qdrant/server.py

+18-4
Original file line numberDiff line numberDiff line change
@@ -12,22 +12,24 @@
1212

1313

1414
def serve(
15-
qdrant_url: str,
15+
qdrant_url: Optional[str],
1616
qdrant_api_key: Optional[str],
1717
collection_name: str,
1818
fastembed_model_name: str,
19+
qdrant_local_path: Optional[str] = None,
1920
) -> Server:
2021
"""
2122
Instantiate the server and configure tools to store and find memories in Qdrant.
2223
:param qdrant_url: The URL of the Qdrant server.
2324
:param qdrant_api_key: The API key to use for the Qdrant server.
2425
:param collection_name: The name of the collection to use.
2526
:param fastembed_model_name: The name of the FastEmbed model to use.
27+
:param qdrant_local_path: The path to the storage directory for the Qdrant client, if local mode is used.
2628
"""
2729
server = Server("qdrant")
2830

2931
qdrant = QdrantConnector(
30-
qdrant_url, qdrant_api_key, collection_name, fastembed_model_name
32+
qdrant_url, qdrant_api_key, collection_name, fastembed_model_name, qdrant_local_path
3133
)
3234

3335
@server.list_tools()
@@ -112,7 +114,7 @@ async def handle_tool_call(
112114
@click.option(
113115
"--qdrant-url",
114116
envvar="QDRANT_URL",
115-
required=True,
117+
required=False,
116118
help="Qdrant URL",
117119
)
118120
@click.option(
@@ -134,19 +136,31 @@ async def handle_tool_call(
134136
help="FastEmbed model name",
135137
default="sentence-transformers/all-MiniLM-L6-v2",
136138
)
139+
@click.option(
140+
"--qdrant-local-path",
141+
envvar="QDRANT_LOCAL_PATH",
142+
required=False,
143+
help="Qdrant local path",
144+
)
137145
def main(
138-
qdrant_url: str,
146+
qdrant_url: Optional[str],
139147
qdrant_api_key: str,
140148
collection_name: Optional[str],
141149
fastembed_model_name: str,
150+
qdrant_local_path: Optional[str],
142151
):
152+
# XOR of url and local path, since we accept only one of them
153+
if not (bool(qdrant_url) ^ bool(qdrant_local_path)):
154+
raise ValueError("Exactly one of qdrant-url or qdrant-local-path must be provided")
155+
143156
async def _run():
144157
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
145158
server = serve(
146159
qdrant_url,
147160
qdrant_api_key,
148161
collection_name,
149162
fastembed_model_name,
163+
qdrant_local_path,
150164
)
151165
await server.run(
152166
read_stream,

0 commit comments

Comments
 (0)