@@ -161,8 +161,8 @@ def __call__(self, nfev, parameters, value, stepsize, accepted) -> bool:
161
161
162
162
"""
163
163
164
- # pylint: disable=too-many-arguments
165
- def __init__ (
164
+
165
+ def __init__ ( # pylint: disable=too-many-arguments
166
166
self ,
167
167
maxiter : int = 100 ,
168
168
blocking : bool = False ,
@@ -282,7 +282,7 @@ def __init__(
282
282
self ._smoothed_hessian : np .ndarray | None = None # smoothed average of the Hessians
283
283
284
284
@staticmethod
285
- def calibrate (
285
+ def calibrate ( # pylint: disable=too-many-arguments
286
286
loss : Callable [[np .ndarray ], float ],
287
287
initial_point : np .ndarray ,
288
288
c : float = 0.2 ,
@@ -414,7 +414,7 @@ def settings(self) -> dict[str, Any]:
414
414
"termination_checker" : self .termination_checker ,
415
415
}
416
416
417
- def _point_sample (self , loss , x , eps , delta1 , delta2 ):
417
+ def _point_sample (self , loss , x , eps , delta1 , delta2 ): # pylint: disable=too-many-arguments
418
418
"""A single sample of the gradient at position ``x`` in direction ``delta``."""
419
419
# points to evaluate
420
420
points = [x + eps * delta1 , x - eps * delta1 ]
@@ -479,7 +479,7 @@ def _point_estimate(self, loss, x, eps, num_samples):
479
479
hessian_estimate / num_samples ,
480
480
)
481
481
482
- def _compute_update (self , loss , x , k , eps , lse_solver ):
482
+ def _compute_update (self , loss , x , k , eps , lse_solver ): # pylint: disable=too-many-arguments
483
483
# compute the perturbations
484
484
if isinstance (self .resamplings , dict ):
485
485
num_samples = self .resamplings .get (k , 1 )
0 commit comments