-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathppo_gae_discrete.py
132 lines (110 loc) · 4.45 KB
/
ppo_gae_discrete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""
Proximal Policy Optimization for discrete (action space) environments, via the Generalized Advantage Estimation (GAE).
"""
import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
import numpy as np
#Hyperparameters
learning_rate = 0.0005
gamma = 0.98
lmbda = 0.95
eps_clip = 0.1
K_epoch = 3
T_horizon = 20
class PPO(nn.Module):
def __init__(self, state_dim, action_dim):
super(PPO, self).__init__()
self.data = []
self.fc1 = nn.Linear(state_dim,256)
self.fc_pi = nn.Linear(256,action_dim)
self.fc_v = nn.Linear(256,1)
self.optimizer = optim.Adam(self.parameters(), lr=learning_rate)
def pi(self, x, softmax_dim = 0):
x = F.relu(self.fc1(x))
x = self.fc_pi(x)
prob = F.softmax(x, dim=softmax_dim)
return prob
def v(self, x):
x = F.relu(self.fc1(x))
v = self.fc_v(x)
return v
def put_data(self, transition):
self.data.append(transition)
def make_batch(self):
s_lst, a_lst, r_lst, s_prime_lst, prob_a_lst, done_lst = [], [], [], [], [], []
for transition in self.data:
s, a, r, s_prime, prob_a, done = transition
s_lst.append(s)
a_lst.append([a])
r_lst.append([r])
s_prime_lst.append(s_prime)
prob_a_lst.append([prob_a])
done_mask = 0 if done else 1
done_lst.append([done_mask])
s,a,r,s_prime,done_mask, prob_a = torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \
torch.tensor(r_lst), torch.tensor(s_prime_lst, dtype=torch.float), \
torch.tensor(done_lst, dtype=torch.float), torch.tensor(prob_a_lst)
self.data = []
return s, a, r, s_prime, done_mask, prob_a
def train_net(self):
s, a, r, s_prime, done_mask, prob_a = self.make_batch()
for i in range(K_epoch):
td_target = r + gamma * self.v(s_prime) * done_mask
delta = td_target - self.v(s)
delta = delta.detach().numpy()
advantage_lst = []
advantage = 0.0
for delta_t in delta[::-1]:
advantage = gamma * lmbda * advantage + delta_t[0]
advantage_lst.append([advantage])
advantage_lst.reverse()
advantage = torch.tensor(advantage_lst, dtype=torch.float)
# this can have significant improvement (efficiency, stability) on performance
if not np.isnan(advantage.std()):
advantage = (advantage - advantage.mean()) / (advantage.std() + 1e-5)
pi = self.pi(s, softmax_dim=-1)
dist_entropy = Categorical(pi).entropy()
pi_a = pi.gather(1,a)
ratio = torch.exp(torch.log(pi_a) - torch.log(prob_a)) # a/b == exp(log(a)-log(b))
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1-eps_clip, 1+eps_clip) * advantage
loss = -torch.min(surr1, surr2) + F.smooth_l1_loss(self.v(s) , td_target.detach()) - 0.01*dist_entropy
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
def main():
env = gym.make('CartPole-v1')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n # discrete
model = PPO(state_dim, action_dim)
score = 0.0
epi_len = []
print_interval = 20
for n_epi in range(10000):
s = env.reset()
done = False
while not done:
for t in range(T_horizon):
prob = model.pi(torch.from_numpy(s).float())
m = Categorical(prob)
a = m.sample().item()
s_prime, r, done, info = env.step(a)
# env.render()
model.put_data((s, a, r/100.0, s_prime, prob[a].item(), done))
s = s_prime
score += r
if done:
break
model.train_net()
epi_len.append(t)
if n_epi%print_interval==0 and n_epi!=0:
print("# of episode :{}, avg score : {:.1f}, avg epi length :{}".format(n_epi, score/print_interval, int(np.mean(epi_len))))
score = 0.0
epi_len = []
env.close()
if __name__ == '__main__':
main()