-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathcircuit_operation_test.py
1207 lines (1043 loc) · 43.7 KB
/
circuit_operation_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2018 The Cirq Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest.mock as mock
from typing import Optional
import numpy as np
import pytest
import sympy
import cirq
import cirq.circuits.circuit_operation as circuit_operation
from cirq import _compat
from cirq.circuits.circuit_operation import _full_join_string_lists
ALL_SIMULATORS = (cirq.Simulator(), cirq.DensityMatrixSimulator(), cirq.CliffordSimulator())
def test_properties():
a, b, c = cirq.LineQubit.range(3)
circuit = cirq.FrozenCircuit(
cirq.X(a),
cirq.Y(b),
cirq.H(c),
cirq.CX(a, b) ** sympy.Symbol('exp'),
cirq.measure(a, b, c, key='m'),
)
op = cirq.CircuitOperation(circuit)
assert op.circuit is circuit
assert op.qubits == (a, b, c)
assert op.qubit_map == {}
assert op.measurement_key_map == {}
assert op.param_resolver == cirq.ParamResolver()
assert op.repetitions == 1
assert op.repetition_ids is None
# Despite having the same decomposition, these objects are not equal.
assert op != circuit
assert op == circuit.to_op()
def test_circuit_type():
a, b, c = cirq.LineQubit.range(3)
circuit = cirq.Circuit(
cirq.X(a),
cirq.Y(b),
cirq.H(c),
cirq.CX(a, b) ** sympy.Symbol('exp'),
cirq.measure(a, b, c, key='m'),
)
with pytest.raises(TypeError, match='Expected circuit of type FrozenCircuit'):
_ = cirq.CircuitOperation(circuit)
def test_non_invertible_circuit():
a, b, c = cirq.LineQubit.range(3)
circuit = cirq.FrozenCircuit(
cirq.X(a),
cirq.Y(b),
cirq.H(c),
cirq.CX(a, b) ** sympy.Symbol('exp'),
cirq.measure(a, b, c, key='m'),
)
with pytest.raises(ValueError, match='circuit is not invertible'):
_ = cirq.CircuitOperation(circuit, repetitions=-2)
def test_repetitions_and_ids_length_mismatch():
a, b, c = cirq.LineQubit.range(3)
circuit = cirq.FrozenCircuit(
cirq.X(a),
cirq.Y(b),
cirq.H(c),
cirq.CX(a, b) ** sympy.Symbol('exp'),
cirq.measure(a, b, c, key='m'),
)
with pytest.raises(ValueError, match='Expected repetition_ids to be a list of length 2'):
_ = cirq.CircuitOperation(circuit, repetitions=2, repetition_ids=['a', 'b', 'c'])
def test_is_measurement_memoization():
a = cirq.LineQubit(0)
circuit = cirq.FrozenCircuit(cirq.measure(a, key='m'))
c_op = cirq.CircuitOperation(circuit)
cache_name = _compat._method_cache_name(circuit._is_measurement_)
assert not hasattr(circuit, cache_name)
# Memoize `_is_measurement_` in the circuit.
assert cirq.is_measurement(c_op)
assert hasattr(circuit, cache_name)
def test_invalid_measurement_keys():
a = cirq.LineQubit(0)
circuit = cirq.FrozenCircuit(cirq.measure(a, key='m'))
c_op = cirq.CircuitOperation(circuit)
# Invalid key remapping
with pytest.raises(ValueError, match='Mapping to invalid key: m:a'):
_ = c_op.with_measurement_key_mapping({'m': 'm:a'})
# Invalid key remapping nested CircuitOperation
with pytest.raises(ValueError, match='Mapping to invalid key: m:a'):
_ = cirq.CircuitOperation(cirq.FrozenCircuit(c_op), measurement_key_map={'m': 'm:a'})
# Originally invalid key
with pytest.raises(ValueError, match='Invalid key name: m:a'):
_ = cirq.CircuitOperation(cirq.FrozenCircuit(cirq.measure(a, key='m:a')))
# Remapped to valid key
_ = cirq.CircuitOperation(circuit, measurement_key_map={'m:a': 'ma'})
def test_invalid_qubit_mapping():
q = cirq.LineQubit(0)
q3 = cirq.LineQid(1, dimension=3)
# Invalid qid remapping dict in constructor
with pytest.raises(ValueError, match='Qid dimension conflict'):
_ = cirq.CircuitOperation(cirq.FrozenCircuit(), qubit_map={q: q3})
# Invalid qid remapping dict in with_qubit_mapping call
c_op = cirq.CircuitOperation(cirq.FrozenCircuit(cirq.X(q)))
with pytest.raises(ValueError, match='Qid dimension conflict'):
_ = c_op.with_qubit_mapping({q: q3})
# Invalid qid remapping function in with_qubit_mapping call
with pytest.raises(ValueError, match='Qid dimension conflict'):
_ = c_op.with_qubit_mapping(lambda q: q3)
def test_circuit_sharing():
a, b, c = cirq.LineQubit.range(3)
circuit = cirq.FrozenCircuit(
cirq.X(a),
cirq.Y(b),
cirq.H(c),
cirq.CX(a, b) ** sympy.Symbol('exp'),
cirq.measure(a, b, c, key='m'),
)
op1 = cirq.CircuitOperation(circuit)
op2 = cirq.CircuitOperation(op1.circuit)
op3 = circuit.to_op()
assert op1.circuit is circuit
assert op2.circuit is circuit
assert op3.circuit is circuit
assert hash(op1) == hash(op2)
assert hash(op1) == hash(op3)
def test_with_qubits():
a, b, c, d = cirq.LineQubit.range(4)
circuit = cirq.FrozenCircuit(cirq.H(a), cirq.CX(a, b))
op_base = cirq.CircuitOperation(circuit)
op_with_qubits = op_base.with_qubits(d, c)
assert op_with_qubits.base_operation() == op_base
assert op_with_qubits.qubits == (d, c)
assert op_with_qubits.qubit_map == {a: d, b: c}
assert op_base.with_qubit_mapping({a: d, b: c, d: a}) == op_with_qubits
def map_fn(qubit: 'cirq.Qid') -> 'cirq.Qid':
if qubit == a:
return d
if qubit == b:
return c
return qubit
fn_op = op_base.with_qubit_mapping(map_fn)
assert fn_op == op_with_qubits
# map_fn does not affect qubits c and d.
assert fn_op.with_qubit_mapping(map_fn) == op_with_qubits
# with_qubits must receive the same number of qubits as the circuit contains.
with pytest.raises(ValueError, match='Expected 2 qubits, got 3'):
_ = op_base.with_qubits(c, d, b)
# Two qubits cannot be mapped onto the same target qubit.
with pytest.raises(ValueError, match='Collision in qubit map'):
_ = op_base.with_qubit_mapping({a: b})
# Two qubits cannot be transformed into the same target qubit.
with pytest.raises(ValueError, match='Collision in qubit map'):
_ = op_base.with_qubit_mapping(lambda q: b)
# with_qubit_mapping requires exactly one argument.
with pytest.raises(TypeError, match='must be a function or dict'):
_ = op_base.with_qubit_mapping('bad arg')
def test_with_measurement_keys():
a, b = cirq.LineQubit.range(2)
circuit = cirq.FrozenCircuit(cirq.X(a), cirq.measure(b, key='mb'), cirq.measure(a, key='ma'))
op_base = cirq.CircuitOperation(circuit)
op_with_keys = op_base.with_measurement_key_mapping({'ma': 'pa', 'x': 'z'})
assert op_with_keys.base_operation() == op_base
assert op_with_keys.measurement_key_map == {'ma': 'pa'}
assert cirq.measurement_key_names(op_with_keys) == {'pa', 'mb'}
assert cirq.with_measurement_key_mapping(op_base, {'ma': 'pa'}) == op_with_keys
# Two measurement keys cannot be mapped onto the same target string.
with pytest.raises(ValueError):
_ = op_base.with_measurement_key_mapping({'ma': 'mb'})
def test_with_params():
a = cirq.LineQubit(0)
z_exp = sympy.Symbol('z_exp')
x_exp = sympy.Symbol('x_exp')
delta = sympy.Symbol('delta')
theta = sympy.Symbol('theta')
circuit = cirq.FrozenCircuit(cirq.Z(a) ** z_exp, cirq.X(a) ** x_exp, cirq.Z(a) ** delta)
op_base = cirq.CircuitOperation(circuit)
param_dict = {z_exp: 2, x_exp: theta, sympy.Symbol('k'): sympy.Symbol('phi')}
op_with_params = op_base.with_params(param_dict)
assert op_with_params.base_operation() == op_base
assert op_with_params.param_resolver == cirq.ParamResolver(
{
z_exp: 2,
x_exp: theta,
# As 'k' is irrelevant to the circuit, it does not appear here.
}
)
assert cirq.parameter_names(op_with_params) == {'theta', 'delta'}
assert (
cirq.resolve_parameters(op_base, cirq.ParamResolver(param_dict), recursive=False)
== op_with_params
)
def test_recursive_params():
q = cirq.LineQubit(0)
a, a2, b, b2 = sympy.symbols('a a2 b b2')
circuitop = cirq.CircuitOperation(
cirq.FrozenCircuit(cirq.X(q) ** a, cirq.Z(q) ** b),
# Not recursive, a and b are swapped.
param_resolver=cirq.ParamResolver({a: b, b: a}),
)
# Recursive, so a->a2->0 and b->b2->1.
outer_params = {a: a2, a2: 0, b: b2, b2: 1}
resolved = cirq.resolve_parameters(circuitop, outer_params)
# Combined, a->b->b2->1, and b->a->a2->0.
assert resolved.param_resolver.param_dict == {a: 1, b: 0}
# Non-recursive, so a->a2 and b->b2.
resolved = cirq.resolve_parameters(circuitop, outer_params, recursive=False)
# Combined, a->b->b2, and b->a->a2.
assert resolved.param_resolver.param_dict == {a: b2, b: a2}
with pytest.raises(RecursionError):
cirq.resolve_parameters(circuitop, {a: a2, a2: a})
# Non-recursive, so a->b and b->a.
resolved = cirq.resolve_parameters(circuitop, {a: b, b: a}, recursive=False)
# Combined, a->b->a, and b->a->b.
assert resolved.param_resolver.param_dict == {}
# First example should behave like an X when simulated
result = cirq.Simulator().simulate(cirq.Circuit(circuitop), param_resolver=outer_params)
assert np.allclose(result.state_vector(copy=False), [0, 1])
@pytest.mark.parametrize('add_measurements', [True, False])
@pytest.mark.parametrize('use_default_ids_for_initial_rep', [True, False])
def test_repeat(add_measurements, use_default_ids_for_initial_rep):
a, b = cirq.LineQubit.range(2)
circuit = cirq.Circuit(cirq.H(a), cirq.CX(a, b))
if add_measurements:
circuit.append([cirq.measure(b, key='mb'), cirq.measure(a, key='ma')])
op_base = cirq.CircuitOperation(circuit.freeze())
assert op_base.repeat(1) is op_base
assert op_base.repeat(1, ['0']) != op_base
assert op_base.repeat(1, ['0']) == op_base.repeat(repetition_ids=['0'])
assert op_base.repeat(1, ['0']) == op_base.with_repetition_ids(['0'])
initial_repetitions = -3
if add_measurements:
with pytest.raises(ValueError, match='circuit is not invertible'):
_ = op_base.repeat(initial_repetitions)
initial_repetitions = abs(initial_repetitions)
op_with_reps: Optional[cirq.CircuitOperation] = None
rep_ids = []
if use_default_ids_for_initial_rep:
op_with_reps = op_base.repeat(initial_repetitions)
rep_ids = ['0', '1', '2']
assert op_base**initial_repetitions == op_with_reps
else:
rep_ids = ['a', 'b', 'c']
op_with_reps = op_base.repeat(initial_repetitions, rep_ids)
assert op_base**initial_repetitions != op_with_reps
assert (op_base**initial_repetitions).replace(repetition_ids=rep_ids) == op_with_reps
assert op_with_reps.repetitions == initial_repetitions
assert op_with_reps.repetition_ids == rep_ids
assert op_with_reps.repeat(1) is op_with_reps
final_repetitions = 2 * initial_repetitions
op_with_consecutive_reps = op_with_reps.repeat(2)
assert op_with_consecutive_reps.repetitions == final_repetitions
assert op_with_consecutive_reps.repetition_ids == _full_join_string_lists(['0', '1'], rep_ids)
assert op_base**final_repetitions != op_with_consecutive_reps
op_with_consecutive_reps = op_with_reps.repeat(2, ['a', 'b'])
assert op_with_reps.repeat(repetition_ids=['a', 'b']) == op_with_consecutive_reps
assert op_with_consecutive_reps.repetitions == final_repetitions
assert op_with_consecutive_reps.repetition_ids == _full_join_string_lists(['a', 'b'], rep_ids)
with pytest.raises(ValueError, match='length to be 2'):
_ = op_with_reps.repeat(2, ['a', 'b', 'c'])
with pytest.raises(
ValueError, match='At least one of repetitions and repetition_ids must be set'
):
_ = op_base.repeat()
with pytest.raises(TypeError, match='Only integer or sympy repetitions are allowed'):
_ = op_base.repeat(1.3)
assert op_base.repeat(3.00000000001).repetitions == 3
assert op_base.repeat(2.99999999999).repetitions == 3
@pytest.mark.parametrize('add_measurements', [True, False])
@pytest.mark.parametrize('use_repetition_ids', [True, False])
@pytest.mark.parametrize('initial_reps', [0, 1, 2, 3])
def test_repeat_zero_times(add_measurements, use_repetition_ids, initial_reps):
q = cirq.LineQubit(0)
subcircuit = cirq.Circuit(cirq.X(q))
if add_measurements:
subcircuit.append(cirq.measure(q))
op = cirq.CircuitOperation(
subcircuit.freeze(), repetitions=initial_reps, use_repetition_ids=use_repetition_ids
)
result = cirq.Simulator().simulate(cirq.Circuit(op))
assert np.allclose(result.state_vector(copy=False), [0, 1] if initial_reps % 2 else [1, 0])
result = cirq.Simulator().simulate(cirq.Circuit(op**0))
assert np.allclose(result.state_vector(copy=False), [1, 0])
def test_no_repetition_ids():
def default_repetition_ids(self):
assert False, "Should not call default_repetition_ids"
with mock.patch.object(circuit_operation, 'default_repetition_ids', new=default_repetition_ids):
q = cirq.LineQubit(0)
op = cirq.CircuitOperation(
cirq.Circuit(cirq.X(q), cirq.measure(q)).freeze(),
repetitions=1_000_000,
use_repetition_ids=False,
)
assert op.repetitions == 1_000_000
assert op.repetition_ids is None
_ = repr(op)
_ = str(op)
op2 = op.repeat(10)
assert op2.repetitions == 10_000_000
assert op2.repetition_ids is None
def test_parameterized_repeat():
q = cirq.LineQubit(0)
op = cirq.CircuitOperation(cirq.FrozenCircuit(cirq.X(q))) ** sympy.Symbol('a')
assert cirq.parameter_names(op) == {'a'}
assert not cirq.has_unitary(op)
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 0})
assert np.allclose(result.state_vector(copy=False), [1, 0])
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 1})
assert np.allclose(result.state_vector(copy=False), [0, 1])
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 2})
assert np.allclose(result.state_vector(copy=False), [1, 0])
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': -1})
assert np.allclose(result.state_vector(copy=False), [0, 1])
with pytest.raises(TypeError, match='Only integer or sympy repetitions are allowed'):
cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 1.5})
with pytest.raises(ValueError, match='Circuit contains ops whose symbols were not specified'):
cirq.Simulator().simulate(cirq.Circuit(op))
op = op**-1
assert cirq.parameter_names(op) == {'a'}
assert not cirq.has_unitary(op)
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 0})
assert np.allclose(result.state_vector(copy=False), [1, 0])
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 1})
assert np.allclose(result.state_vector(copy=False), [0, 1])
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 2})
assert np.allclose(result.state_vector(copy=False), [1, 0])
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': -1})
assert np.allclose(result.state_vector(copy=False), [0, 1])
with pytest.raises(TypeError, match='Only integer or sympy repetitions are allowed'):
cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 1.5})
with pytest.raises(ValueError, match='Circuit contains ops whose symbols were not specified'):
cirq.Simulator().simulate(cirq.Circuit(op))
op = op ** sympy.Symbol('b')
assert cirq.parameter_names(op) == {'a', 'b'}
assert not cirq.has_unitary(op)
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 1, 'b': 1})
assert np.allclose(result.state_vector(copy=False), [0, 1])
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 2, 'b': 1})
assert np.allclose(result.state_vector(copy=False), [1, 0])
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 1, 'b': 2})
assert np.allclose(result.state_vector(copy=False), [1, 0])
with pytest.raises(TypeError, match='Only integer or sympy repetitions are allowed'):
cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 1.5, 'b': 1})
with pytest.raises(ValueError, match='Circuit contains ops whose symbols were not specified'):
cirq.Simulator().simulate(cirq.Circuit(op))
op = op**2.0
assert cirq.parameter_names(op) == {'a', 'b'}
assert not cirq.has_unitary(op)
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 1, 'b': 1})
assert np.allclose(result.state_vector(copy=False), [1, 0])
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 1.5, 'b': 1})
assert np.allclose(result.state_vector(copy=False), [0, 1])
result = cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 1, 'b': 1.5})
assert np.allclose(result.state_vector(copy=False), [0, 1])
with pytest.raises(TypeError, match='Only integer or sympy repetitions are allowed'):
cirq.Simulator().simulate(cirq.Circuit(op), param_resolver={'a': 1.5, 'b': 1.5})
with pytest.raises(ValueError, match='Circuit contains ops whose symbols were not specified'):
cirq.Simulator().simulate(cirq.Circuit(op))
def test_parameterized_repeat_side_effects():
q = cirq.LineQubit(0)
op = cirq.CircuitOperation(
cirq.FrozenCircuit(cirq.X(q).with_classical_controls('c'), cirq.measure(q, key='m')),
repetitions=sympy.Symbol('a'),
)
# Control keys can be calculated because they only "lift" if there's a matching
# measurement, in which case they're not returned here.
assert cirq.control_keys(op) == {cirq.MeasurementKey('c')}
# "local" params do not bind to the repetition param.
assert cirq.parameter_names(op.with_params({'a': 1})) == {'a'}
# Check errors that require unrolling the circuit.
with pytest.raises(
ValueError, match='Cannot unroll circuit due to nondeterministic repetitions'
):
cirq.measurement_key_objs(op)
with pytest.raises(
ValueError, match='Cannot unroll circuit due to nondeterministic repetitions'
):
cirq.measurement_key_names(op)
with pytest.raises(
ValueError, match='Cannot unroll circuit due to nondeterministic repetitions'
):
op.mapped_circuit()
with pytest.raises(
ValueError, match='Cannot unroll circuit due to nondeterministic repetitions'
):
cirq.decompose(op)
# Not compatible with repetition ids
with pytest.raises(ValueError, match='repetition ids with parameterized repetitions'):
op.with_repetition_ids(['x', 'y'])
with pytest.raises(ValueError, match='repetition ids with parameterized repetitions'):
op.repeat(repetition_ids=['x', 'y'])
# TODO(daxfohl): This should work, but likely requires a new protocol that returns *just* the
# name of the measurement keys. (measurement_key_names returns the full serialized string).
with pytest.raises(
ValueError, match='Cannot unroll circuit due to nondeterministic repetitions'
):
cirq.with_measurement_key_mapping(op, {'m': 'm2'})
# Everything should work once resolved
op = cirq.resolve_parameters(op, {'a': 2})
assert set(map(str, cirq.measurement_key_objs(op))) == {'0:m', '1:m'}
assert op.mapped_circuit() == cirq.Circuit(
cirq.X(q).with_classical_controls('c'),
cirq.measure(q, key=cirq.MeasurementKey.parse_serialized('0:m')),
cirq.X(q).with_classical_controls('c'),
cirq.measure(q, key=cirq.MeasurementKey.parse_serialized('1:m')),
)
assert cirq.decompose(op) == cirq.decompose(
cirq.Circuit(
cirq.X(q).with_classical_controls('c'),
cirq.measure(q, key=cirq.MeasurementKey.parse_serialized('0:m')),
cirq.X(q).with_classical_controls('c'),
cirq.measure(q, key=cirq.MeasurementKey.parse_serialized('1:m')),
)
)
def test_parameterized_repeat_side_effects_when_not_using_rep_ids():
q = cirq.LineQubit(0)
op = cirq.CircuitOperation(
cirq.FrozenCircuit(cirq.X(q).with_classical_controls('c'), cirq.measure(q, key='m')),
repetitions=sympy.Symbol('a'),
use_repetition_ids=False,
)
assert cirq.control_keys(op) == {cirq.MeasurementKey('c')}
assert cirq.parameter_names(op.with_params({'a': 1})) == {'a'}
assert set(map(str, cirq.measurement_key_objs(op))) == {'m'}
assert cirq.measurement_key_names(op) == {'m'}
assert cirq.measurement_key_names(cirq.with_measurement_key_mapping(op, {'m': 'm2'})) == {'m2'}
with pytest.raises(
ValueError, match='Cannot unroll circuit due to nondeterministic repetitions'
):
op.mapped_circuit()
with pytest.raises(
ValueError, match='Cannot unroll circuit due to nondeterministic repetitions'
):
cirq.decompose(op)
with pytest.raises(ValueError, match='repetition ids with parameterized repetitions'):
op.with_repetition_ids(['x', 'y'])
with pytest.raises(ValueError, match='repetition ids with parameterized repetitions'):
op.repeat(repetition_ids=['x', 'y'])
def test_qid_shape():
circuit = cirq.FrozenCircuit(
cirq.IdentityGate(qid_shape=(q.dimension,)).on(q)
for q in cirq.LineQid.for_qid_shape((1, 2, 3, 4))
)
op = cirq.CircuitOperation(circuit)
assert cirq.qid_shape(op) == (1, 2, 3, 4)
assert cirq.num_qubits(op) == 4
id_circuit = cirq.FrozenCircuit(cirq.I(q) for q in cirq.LineQubit.range(3))
id_op = cirq.CircuitOperation(id_circuit)
assert cirq.qid_shape(id_op) == (2, 2, 2)
assert cirq.num_qubits(id_op) == 3
def test_string_format():
x, y, z = cirq.LineQubit.range(3)
fc0 = cirq.FrozenCircuit()
op0 = cirq.CircuitOperation(fc0)
assert str(op0) == f"[ ]"
fc0_global_phase_inner = cirq.FrozenCircuit(
cirq.global_phase_operation(1j), cirq.global_phase_operation(1j)
)
op0_global_phase_inner = cirq.CircuitOperation(fc0_global_phase_inner)
fc0_global_phase_outer = cirq.FrozenCircuit(
op0_global_phase_inner, cirq.global_phase_operation(1j)
)
op0_global_phase_outer = cirq.CircuitOperation(fc0_global_phase_outer)
assert (
str(op0_global_phase_outer)
== f"""\
[ ]
[ ]
[ global phase: -0.5π ]"""
)
fc1 = cirq.FrozenCircuit(cirq.X(x), cirq.H(y), cirq.CX(y, z), cirq.measure(x, y, z, key='m'))
op1 = cirq.CircuitOperation(fc1)
assert (
str(op1)
== f"""\
[ 0: ───X───────M('m')─── ]
[ │ ]
[ 1: ───H───@───M──────── ]
[ │ │ ]
[ 2: ───────X───M──────── ]"""
)
assert (
repr(op1)
== """\
cirq.CircuitOperation(
circuit=cirq.FrozenCircuit([
cirq.Moment(
cirq.X(cirq.LineQubit(0)),
cirq.H(cirq.LineQubit(1)),
),
cirq.Moment(
cirq.CNOT(cirq.LineQubit(1), cirq.LineQubit(2)),
),
cirq.Moment(
cirq.measure(cirq.LineQubit(0), cirq.LineQubit(1), cirq.LineQubit(2), key=cirq.MeasurementKey(name='m')),
),
]),
)"""
)
fc2 = cirq.FrozenCircuit(cirq.X(x), cirq.H(y), cirq.CX(y, x))
op2 = cirq.CircuitOperation(
circuit=fc2,
qubit_map=({y: z}),
repetitions=3,
parent_path=('outer', 'inner'),
repetition_ids=['a', 'b', 'c'],
)
assert (
str(op2)
== f"""\
[ 0: ───X───X─── ]
[ │ ]
[ 1: ───H───@─── ](qubit_map={{q(1): q(2)}}, parent_path=('outer', 'inner'),\
repetition_ids=['a', 'b', 'c'])"""
)
assert (
repr(op2)
== """\
cirq.CircuitOperation(
circuit=cirq.FrozenCircuit([
cirq.Moment(
cirq.X(cirq.LineQubit(0)),
cirq.H(cirq.LineQubit(1)),
),
cirq.Moment(
cirq.CNOT(cirq.LineQubit(1), cirq.LineQubit(0)),
),
]),
repetitions=3,
qubit_map={cirq.LineQubit(1): cirq.LineQubit(2)},
parent_path=('outer', 'inner'),
repetition_ids=['a', 'b', 'c'],
)"""
)
fc3 = cirq.FrozenCircuit(cirq.X(x) ** sympy.Symbol('b'), cirq.measure(x, key='m'))
op3 = cirq.CircuitOperation(
circuit=fc3,
qubit_map={x: y},
measurement_key_map={'m': 'p'},
param_resolver={sympy.Symbol('b'): 2},
)
indented_fc3_repr = repr(fc3).replace('\n', '\n ')
assert (
str(op3)
== f"""\
[ 0: ───X^b───M('m')─── ](qubit_map={{q(0): q(1)}}, \
key_map={{m: p}}, params={{b: 2}})"""
)
assert (
repr(op3)
== f"""\
cirq.CircuitOperation(
circuit={indented_fc3_repr},
qubit_map={{cirq.LineQubit(0): cirq.LineQubit(1)}},
measurement_key_map={{'m': 'p'}},
param_resolver=cirq.ParamResolver({{sympy.Symbol('b'): 2}}),
)"""
)
fc4 = cirq.FrozenCircuit(cirq.X(y))
op4 = cirq.CircuitOperation(fc4)
fc5 = cirq.FrozenCircuit(cirq.X(x), op4)
op5 = cirq.CircuitOperation(fc5)
assert (
repr(op5)
== """\
cirq.CircuitOperation(
circuit=cirq.FrozenCircuit([
cirq.Moment(
cirq.X(cirq.LineQubit(0)),
cirq.CircuitOperation(
circuit=cirq.FrozenCircuit([
cirq.Moment(
cirq.X(cirq.LineQubit(1)),
),
]),
),
),
]),
)"""
)
op6 = cirq.CircuitOperation(fc5, use_repetition_ids=False)
assert (
repr(op6)
== """\
cirq.CircuitOperation(
circuit=cirq.FrozenCircuit([
cirq.Moment(
cirq.X(cirq.LineQubit(0)),
cirq.CircuitOperation(
circuit=cirq.FrozenCircuit([
cirq.Moment(
cirq.X(cirq.LineQubit(1)),
),
]),
),
),
]),
use_repetition_ids=False,
)"""
)
op7 = cirq.CircuitOperation(
cirq.FrozenCircuit(cirq.measure(x, key='a')),
use_repetition_ids=False,
repeat_until=cirq.KeyCondition(cirq.MeasurementKey('a')),
)
assert (
repr(op7)
== """\
cirq.CircuitOperation(
circuit=cirq.FrozenCircuit([
cirq.Moment(
cirq.measure(cirq.LineQubit(0), key=cirq.MeasurementKey(name='a')),
),
]),
use_repetition_ids=False,
repeat_until=cirq.KeyCondition(cirq.MeasurementKey(name='a')),
)"""
)
def test_json_dict():
a, b, c = cirq.LineQubit.range(3)
circuit = cirq.FrozenCircuit(
cirq.X(a),
cirq.Y(b),
cirq.H(c),
cirq.CX(a, b) ** sympy.Symbol('exp'),
cirq.measure(a, b, c, key='m'),
)
op = cirq.CircuitOperation(
circuit=circuit,
qubit_map={c: b, b: c},
measurement_key_map={'m': 'p'},
param_resolver={'exp': 'theta'},
parent_path=('nested', 'path'),
)
assert op._json_dict_() == {
'circuit': circuit,
'repetitions': 1,
'qubit_map': sorted([(k, v) for k, v in op.qubit_map.items()]),
'measurement_key_map': op.measurement_key_map,
'param_resolver': op.param_resolver,
'parent_path': op.parent_path,
'repetition_ids': None,
}
def test_terminal_matches():
a, b = cirq.LineQubit.range(2)
fc = cirq.FrozenCircuit(cirq.H(a), cirq.measure(b, key='m1'))
op = cirq.CircuitOperation(fc)
c = cirq.Circuit(cirq.X(a), op)
assert c.are_all_measurements_terminal()
assert c.are_any_measurements_terminal()
c = cirq.Circuit(cirq.X(b), op)
assert c.are_all_measurements_terminal()
assert c.are_any_measurements_terminal()
c = cirq.Circuit(cirq.measure(a), op)
assert not c.are_all_measurements_terminal()
assert c.are_any_measurements_terminal()
c = cirq.Circuit(cirq.measure(b), op)
assert not c.are_all_measurements_terminal()
assert c.are_any_measurements_terminal()
c = cirq.Circuit(op, cirq.X(a))
assert c.are_all_measurements_terminal()
assert c.are_any_measurements_terminal()
c = cirq.Circuit(op, cirq.X(b))
assert not c.are_all_measurements_terminal()
assert not c.are_any_measurements_terminal()
c = cirq.Circuit(op, cirq.measure(a))
assert c.are_all_measurements_terminal()
assert c.are_any_measurements_terminal()
c = cirq.Circuit(op, cirq.measure(b))
assert not c.are_all_measurements_terminal()
assert c.are_any_measurements_terminal()
def test_nonterminal_in_subcircuit():
a, b = cirq.LineQubit.range(2)
fc = cirq.FrozenCircuit(cirq.H(a), cirq.measure(b, key='m1'), cirq.X(b))
op = cirq.CircuitOperation(fc)
c = cirq.Circuit(cirq.X(a), op)
assert isinstance(op, cirq.CircuitOperation)
assert not c.are_all_measurements_terminal()
assert not c.are_any_measurements_terminal()
op = op.with_tags('test')
c = cirq.Circuit(cirq.X(a), op)
assert not isinstance(op, cirq.CircuitOperation)
assert not c.are_all_measurements_terminal()
assert not c.are_any_measurements_terminal()
def test_decompose_applies_maps():
a, b, c = cirq.LineQubit.range(3)
exp = sympy.Symbol('exp')
theta = sympy.Symbol('theta')
circuit = cirq.FrozenCircuit(
cirq.X(a) ** theta,
cirq.Y(b),
cirq.H(c),
cirq.CX(a, b) ** exp,
cirq.measure(a, b, c, key='m'),
)
op = cirq.CircuitOperation(
circuit=circuit,
qubit_map={c: b, b: c},
measurement_key_map={'m': 'p'},
param_resolver={exp: theta, theta: exp},
)
expected_circuit = cirq.Circuit(
cirq.X(a) ** exp,
cirq.Y(c),
cirq.H(b),
cirq.CX(a, c) ** theta,
cirq.measure(a, c, b, key='p'),
)
assert cirq.Circuit(cirq.decompose_once(op)) == expected_circuit
def test_decompose_loops():
a, b = cirq.LineQubit.range(2)
circuit = cirq.FrozenCircuit(cirq.H(a), cirq.CX(a, b))
base_op = cirq.CircuitOperation(circuit)
op = base_op.with_qubits(b, a).repeat(3)
expected_circuit = cirq.Circuit(
cirq.H(b), cirq.CX(b, a), cirq.H(b), cirq.CX(b, a), cirq.H(b), cirq.CX(b, a)
)
assert cirq.Circuit(cirq.decompose_once(op)) == expected_circuit
op = base_op.repeat(-2)
expected_circuit = cirq.Circuit(cirq.CX(a, b), cirq.H(a), cirq.CX(a, b), cirq.H(a))
assert cirq.Circuit(cirq.decompose_once(op)) == expected_circuit
def test_decompose_loops_with_measurements():
a, b = cirq.LineQubit.range(2)
circuit = cirq.FrozenCircuit(cirq.H(a), cirq.CX(a, b), cirq.measure(a, b, key='m'))
base_op = cirq.CircuitOperation(circuit)
op = base_op.with_qubits(b, a).repeat(3)
expected_circuit = cirq.Circuit(
cirq.H(b),
cirq.CX(b, a),
cirq.measure(b, a, key=cirq.MeasurementKey.parse_serialized('0:m')),
cirq.H(b),
cirq.CX(b, a),
cirq.measure(b, a, key=cirq.MeasurementKey.parse_serialized('1:m')),
cirq.H(b),
cirq.CX(b, a),
cirq.measure(b, a, key=cirq.MeasurementKey.parse_serialized('2:m')),
)
assert cirq.Circuit(cirq.decompose_once(op)) == expected_circuit
def test_decompose_nested():
a, b, c, d = cirq.LineQubit.range(4)
exp1 = sympy.Symbol('exp1')
exp_half = sympy.Symbol('exp_half')
exp_one = sympy.Symbol('exp_one')
exp_two = sympy.Symbol('exp_two')
circuit1 = cirq.FrozenCircuit(cirq.X(a) ** exp1, cirq.measure(a, key='m1'))
op1 = cirq.CircuitOperation(circuit1)
circuit2 = cirq.FrozenCircuit(
op1.with_qubits(a).with_measurement_key_mapping({'m1': 'ma'}),
op1.with_qubits(b).with_measurement_key_mapping({'m1': 'mb'}),
op1.with_qubits(c).with_measurement_key_mapping({'m1': 'mc'}),
op1.with_qubits(d).with_measurement_key_mapping({'m1': 'md'}),
)
op2 = cirq.CircuitOperation(circuit2)
circuit3 = cirq.FrozenCircuit(
op2.with_params({exp1: exp_half}),
op2.with_params({exp1: exp_one})
.with_measurement_key_mapping({'ma': 'ma1'})
.with_measurement_key_mapping({'mb': 'mb1'})
.with_measurement_key_mapping({'mc': 'mc1'})
.with_measurement_key_mapping({'md': 'md1'}),
op2.with_params({exp1: exp_two})
.with_measurement_key_mapping({'ma': 'ma2'})
.with_measurement_key_mapping({'mb': 'mb2'})
.with_measurement_key_mapping({'mc': 'mc2'})
.with_measurement_key_mapping({'md': 'md2'}),
)
op3 = cirq.CircuitOperation(circuit3)
final_op = op3.with_params({exp_half: 0.5, exp_one: 1.0, exp_two: 2.0})
expected_circuit1 = cirq.Circuit(
op2.with_params({exp1: 0.5, exp_half: 0.5, exp_one: 1.0, exp_two: 2.0}),
op2.with_params({exp1: 1.0, exp_half: 0.5, exp_one: 1.0, exp_two: 2.0})
.with_measurement_key_mapping({'ma': 'ma1'})
.with_measurement_key_mapping({'mb': 'mb1'})
.with_measurement_key_mapping({'mc': 'mc1'})
.with_measurement_key_mapping({'md': 'md1'}),
op2.with_params({exp1: 2.0, exp_half: 0.5, exp_one: 1.0, exp_two: 2.0})
.with_measurement_key_mapping({'ma': 'ma2'})
.with_measurement_key_mapping({'mb': 'mb2'})
.with_measurement_key_mapping({'mc': 'mc2'})
.with_measurement_key_mapping({'md': 'md2'}),
)
result_ops1 = cirq.decompose_once(final_op)
assert cirq.Circuit(result_ops1) == expected_circuit1
expected_circuit = cirq.Circuit(
cirq.X(a) ** 0.5,
cirq.measure(a, key='ma'),
cirq.X(b) ** 0.5,
cirq.measure(b, key='mb'),
cirq.X(c) ** 0.5,
cirq.measure(c, key='mc'),
cirq.X(d) ** 0.5,
cirq.measure(d, key='md'),
cirq.X(a) ** 1.0,
cirq.measure(a, key='ma1'),
cirq.X(b) ** 1.0,
cirq.measure(b, key='mb1'),
cirq.X(c) ** 1.0,
cirq.measure(c, key='mc1'),
cirq.X(d) ** 1.0,
cirq.measure(d, key='md1'),
cirq.X(a) ** 2.0,
cirq.measure(a, key='ma2'),
cirq.X(b) ** 2.0,
cirq.measure(b, key='mb2'),
cirq.X(c) ** 2.0,
cirq.measure(c, key='mc2'),
cirq.X(d) ** 2.0,
cirq.measure(d, key='md2'),
)
assert cirq.Circuit(cirq.decompose(final_op)) == expected_circuit
# Verify that mapped_circuit gives the same operations.
assert final_op.mapped_circuit(deep=True) == expected_circuit
def test_decompose_repeated_nested_measurements():
# Details of this test described at
# https://tinyurl.com/measurement-repeated-circuitop#heading=h.sbgxcsyin9wt.
a = cirq.LineQubit(0)
op1 = (
cirq.CircuitOperation(cirq.FrozenCircuit(cirq.measure(a, key='A')))
.with_measurement_key_mapping({'A': 'B'})
.repeat(2, ['zero', 'one'])
)
op2 = (
cirq.CircuitOperation(cirq.FrozenCircuit(cirq.measure(a, key='P'), op1))
.with_measurement_key_mapping({'B': 'C', 'P': 'Q'})
.repeat(2, ['zero', 'one'])
)
op3 = (
cirq.CircuitOperation(cirq.FrozenCircuit(cirq.measure(a, key='X'), op2))
.with_measurement_key_mapping({'C': 'D', 'X': 'Y'})
.repeat(2, ['zero', 'one'])
)
expected_measurement_keys_in_order = [
'zero:Y',
'zero:zero:Q',
'zero:zero:zero:D',
'zero:zero:one:D',
'zero:one:Q',
'zero:one:zero:D',
'zero:one:one:D',
'one:Y',
'one:zero:Q',
'one:zero:zero:D',
'one:zero:one:D',
'one:one:Q',
'one:one:zero:D',
'one:one:one:D',
]
assert cirq.measurement_key_names(op3) == set(expected_measurement_keys_in_order)
expected_circuit = cirq.Circuit()
for key in expected_measurement_keys_in_order:
expected_circuit.append(cirq.measure(a, key=cirq.MeasurementKey.parse_serialized(key)))
assert cirq.Circuit(cirq.decompose(op3)) == expected_circuit
assert cirq.measurement_key_names(expected_circuit) == set(expected_measurement_keys_in_order)
# Verify that mapped_circuit gives the same operations.
assert op3.mapped_circuit(deep=True) == expected_circuit
def test_keys_under_parent_path():
a = cirq.LineQubit(0)
op1 = cirq.CircuitOperation(cirq.FrozenCircuit(cirq.measure(a, key='A')))
assert cirq.measurement_key_names(op1) == {'A'}
op2 = op1.with_key_path(('B',))
assert cirq.measurement_key_names(op2) == {'B:A'}
op3 = cirq.with_key_path_prefix(op2, ('C',))
assert cirq.measurement_key_names(op3) == {'C:B:A'}