|
12 | 12 | # See the License for the specific language governing permissions and
|
13 | 13 | # limitations under the License.
|
14 | 14 |
|
15 |
| -from typing import Any, cast, Dict, NamedTuple, Optional, Sequence, Tuple, TYPE_CHECKING, Union |
| 15 | +from typing import ( |
| 16 | + Any, |
| 17 | + cast, |
| 18 | + Dict, |
| 19 | + List, |
| 20 | + NamedTuple, |
| 21 | + Optional, |
| 22 | + Sequence, |
| 23 | + Tuple, |
| 24 | + TYPE_CHECKING, |
| 25 | + Union, |
| 26 | +) |
16 | 27 |
|
17 | 28 | import numpy as np
|
18 | 29 |
|
19 | 30 | from cirq import protocols, value, linalg, qis
|
20 | 31 | from cirq._doc import document
|
21 |
| -from cirq.ops import common_gates, gate_features, named_qubit, pauli_gates, phased_x_z_gate |
| 32 | +from cirq._import import LazyLoader |
| 33 | +from cirq.ops import ( |
| 34 | + common_gates, |
| 35 | + gate_features, |
| 36 | + identity, |
| 37 | + named_qubit, |
| 38 | + raw_types, |
| 39 | + pauli_gates, |
| 40 | + phased_x_z_gate, |
| 41 | +) |
22 | 42 | from cirq.ops.pauli_gates import Pauli
|
23 | 43 | from cirq.type_workarounds import NotImplementedType
|
24 | 44 |
|
25 | 45 | if TYPE_CHECKING:
|
26 | 46 | import cirq
|
27 | 47 |
|
| 48 | +# Lazy imports to break circular dependencies. |
| 49 | +devices = LazyLoader("devices", globals(), "cirq.devices") |
| 50 | +sim = LazyLoader("sim", globals(), "cirq.sim") |
| 51 | +transformers = LazyLoader("transformers", globals(), "cirq.transformers") |
| 52 | + |
28 | 53 | PauliTransform = NamedTuple('PauliTransform', [('to', Pauli), ('flip', bool)])
|
29 | 54 | document(PauliTransform, """+X, -X, +Y, -Y, +Z, or -Z.""")
|
30 | 55 |
|
@@ -571,3 +596,285 @@ def _circuit_diagram_info_(
|
571 | 596 | SingleQubitCliffordGate.Z: SingleQubitCliffordGate.Z_nsqrt,
|
572 | 597 | },
|
573 | 598 | }
|
| 599 | + |
| 600 | + |
| 601 | +class CommonCliffordGateMetaClass(value.ABCMetaImplementAnyOneOf): |
| 602 | + """A metaclass used to lazy initialize several common Clifford Gate as class attributes.""" |
| 603 | + |
| 604 | + @property |
| 605 | + def I(cls): |
| 606 | + if getattr(cls, '_I', None) is None: |
| 607 | + cls._I = cls._generate_clifford_from_known_gate(1, identity.I) |
| 608 | + return cls._I |
| 609 | + |
| 610 | + @property |
| 611 | + def X(cls): |
| 612 | + if getattr(cls, '_X', None) is None: |
| 613 | + cls._Z = cls._generate_clifford_from_known_gate(1, pauli_gates.X) |
| 614 | + return cls._Z |
| 615 | + |
| 616 | + @property |
| 617 | + def Y(cls): |
| 618 | + if getattr(cls, '_X', None) is None: |
| 619 | + cls._Z = cls._generate_clifford_from_known_gate(1, pauli_gates.Y) |
| 620 | + return cls._Z |
| 621 | + |
| 622 | + @property |
| 623 | + def Z(cls): |
| 624 | + if getattr(cls, '_X', None) is None: |
| 625 | + cls._Z = cls._generate_clifford_from_known_gate(1, pauli_gates.Z) |
| 626 | + return cls._Z |
| 627 | + |
| 628 | + @property |
| 629 | + def H(cls): |
| 630 | + if getattr(cls, '_H', None) is None: |
| 631 | + cls._H = cls._generate_clifford_from_known_gate(1, common_gates.H) |
| 632 | + return cls._H |
| 633 | + |
| 634 | + @property |
| 635 | + def S(cls): |
| 636 | + if getattr(cls, '_S', None) is None: |
| 637 | + cls._S = cls._generate_clifford_from_known_gate(1, common_gates.S) |
| 638 | + return cls._S |
| 639 | + |
| 640 | + @property |
| 641 | + def CNOT(cls): |
| 642 | + if getattr(cls, '_CNOT', None) is None: |
| 643 | + cls._CNOT = cls._generate_clifford_from_known_gate(2, common_gates.CNOT) |
| 644 | + return cls._CNOT |
| 645 | + |
| 646 | + @property |
| 647 | + def CZ(cls): |
| 648 | + if getattr(cls, '_CZ', None) is None: |
| 649 | + cls._CZ = cls._generate_clifford_from_known_gate(2, common_gates.CZ) |
| 650 | + return cls._CZ |
| 651 | + |
| 652 | + @property |
| 653 | + def SWAP(cls): |
| 654 | + if getattr(cls, '_SWAP', None) is None: |
| 655 | + cls._SWAP = cls._generate_clifford_from_known_gate(2, common_gates.SWAP) |
| 656 | + return cls._SWAP |
| 657 | + |
| 658 | + |
| 659 | +class CommonCliffordGates(metaclass=CommonCliffordGateMetaClass): |
| 660 | + |
| 661 | + # We need to use the lazy initialization of these common gates since they need to use |
| 662 | + # cirq.sim, which can not be imported when |
| 663 | + @classmethod |
| 664 | + def _generate_clifford_from_known_gate( |
| 665 | + cls, num_qubits: int, gate: raw_types.Gate |
| 666 | + ) -> 'CliffordGate': |
| 667 | + qubits = devices.LineQubit.range(num_qubits) |
| 668 | + t = qis.CliffordTableau(num_qubits=num_qubits) |
| 669 | + args = sim.ActOnCliffordTableauArgs( |
| 670 | + tableau=t, qubits=qubits, prng=np.random.RandomState(), log_of_measurement_results={} |
| 671 | + ) |
| 672 | + |
| 673 | + protocols.act_on(gate, args, qubits, allow_decompose=False) |
| 674 | + return CliffordGate.from_clifford_tableau(args.tableau) |
| 675 | + |
| 676 | + @classmethod |
| 677 | + def from_clifford_tableau(cls, tableau: qis.CliffordTableau) -> 'CliffordGate': |
| 678 | + """Create the CliffordGate instance from Clifford Tableau. |
| 679 | +
|
| 680 | + Args: |
| 681 | + tableau: A CliffordTableau to define the effect of Clifford Gate applying on |
| 682 | + the stabilizer state or Pauli group. The meaning of tableau here is |
| 683 | + To X Z sign |
| 684 | + from X [ X_x Z_x | r_x ] |
| 685 | + from Z [ X_z Z_z | r_z ] |
| 686 | + Each row in the Clifford tableau indicates how the transformation of original |
| 687 | + Pauli gates to the new gates after applying this Clifford Gate. |
| 688 | +
|
| 689 | + Returns: |
| 690 | + A CliffordGate instance, which has the transformation defined by |
| 691 | + the input tableau. |
| 692 | +
|
| 693 | + Raises: |
| 694 | + ValueError: When input tableau is wrong type or the tableau does not |
| 695 | + satisfy the symplectic property. |
| 696 | + """ |
| 697 | + if not isinstance(tableau, qis.CliffordTableau): |
| 698 | + raise ValueError('Input argument has to be a CliffordTableau instance.') |
| 699 | + if not tableau._validate(): |
| 700 | + raise ValueError('It is not a valid Clifford tableau.') |
| 701 | + return CliffordGate(_clifford_tableau=tableau) |
| 702 | + |
| 703 | + @classmethod |
| 704 | + def from_op_list( |
| 705 | + cls, operations: Sequence[raw_types.Operation], qubit_order: Sequence[raw_types.Qid] |
| 706 | + ) -> 'CliffordGate': |
| 707 | + """Construct a new Clifford gates from several known operations. |
| 708 | +
|
| 709 | + Args: |
| 710 | + operations: A list of cirq operations to construct the Clifford gate. |
| 711 | + The combination order is the first element in the list applies the transformation |
| 712 | + on the stabilizer state first. |
| 713 | + qubit_order: Determines how qubits are ordered when decomposite the operations. |
| 714 | +
|
| 715 | + Returns: |
| 716 | + A CliffordGate instance, which has the transformation on the stabilizer |
| 717 | + state equivalent to the composition of operations. |
| 718 | +
|
| 719 | + Raises: |
| 720 | + ValueError: When one or more operations do not have stabilizer effect. |
| 721 | + """ |
| 722 | + for op in operations: |
| 723 | + if op.gate and op.gate._has_stabilizer_effect_(): |
| 724 | + continue |
| 725 | + raise ValueError( |
| 726 | + "Clifford Gate can only be constructed from the " |
| 727 | + "operations that has stabilizer effect." |
| 728 | + ) |
| 729 | + |
| 730 | + base_tableau = qis.CliffordTableau(len(qubit_order)) |
| 731 | + args = sim.clifford.ActOnCliffordTableauArgs( |
| 732 | + tableau=base_tableau, |
| 733 | + qubits=qubit_order, |
| 734 | + prng=np.random.RandomState(0), # unused |
| 735 | + log_of_measurement_results={}, # unused |
| 736 | + ) |
| 737 | + for op in operations: |
| 738 | + protocols.act_on(op, args, allow_decompose=True) |
| 739 | + |
| 740 | + return CliffordGate.from_clifford_tableau(args.tableau) |
| 741 | + |
| 742 | + @classmethod |
| 743 | + def _from_json_dict_(cls, n, rs, xs, zs, **kwargs): |
| 744 | + _clifford_tableau = qis.CliffordTableau._from_json_dict_( |
| 745 | + n, |
| 746 | + rs, |
| 747 | + xs, |
| 748 | + zs, |
| 749 | + ) |
| 750 | + return cls(_clifford_tableau=_clifford_tableau) |
| 751 | + |
| 752 | + |
| 753 | +def _pad_tableau( |
| 754 | + clifford_tableau: qis.CliffordTableau, num_qubits_after_padding: int, axes: List[int] |
| 755 | +) -> qis.CliffordTableau: |
| 756 | + """Roughly, this function copies self.tabluea into the "identity" matrix.""" |
| 757 | + # Sanity check |
| 758 | + if len(set(axes)) != clifford_tableau.n: |
| 759 | + raise ValueError( |
| 760 | + "Input axes of padding should match with the number of qubits in the input tableau." |
| 761 | + ) |
| 762 | + if clifford_tableau.n > num_qubits_after_padding: |
| 763 | + raise ValueError( |
| 764 | + "The number of qubits in the input tableau should not be larger than " |
| 765 | + "num_qubits_after_padding." |
| 766 | + ) |
| 767 | + |
| 768 | + padded_tableau = qis.CliffordTableau(num_qubits_after_padding) |
| 769 | + v_index = np.concatenate((np.asarray(axes), num_qubits_after_padding + np.asarray(axes))) |
| 770 | + |
| 771 | + padded_tableau.xs[np.ix_(v_index, axes)] = clifford_tableau.xs |
| 772 | + padded_tableau.zs[np.ix_(v_index, axes)] = clifford_tableau.zs |
| 773 | + padded_tableau.rs[v_index] = clifford_tableau.rs |
| 774 | + return padded_tableau |
| 775 | + |
| 776 | + |
| 777 | +@value.value_equality |
| 778 | +class CliffordGate(raw_types.Gate, CommonCliffordGates): |
| 779 | + """Clifford rotation for N-qubit.""" |
| 780 | + |
| 781 | + def __init__( |
| 782 | + self, |
| 783 | + *, |
| 784 | + _clifford_tableau: qis.CliffordTableau, |
| 785 | + ) -> None: |
| 786 | + # We use the Clifford tableau to represent a Clifford gate. |
| 787 | + # It is crucial to note that the meaning of tableau here is different |
| 788 | + # from the one used to represent a Clifford state (Of course, they are related). |
| 789 | + # A) We have to use the full 2n * (2n + 1) matrix |
| 790 | + # B) The meaning of tableau here is |
| 791 | + # X Z sign |
| 792 | + # from X [ X_x Z_x | r_x ] |
| 793 | + # from Z [ X_z Z_z | r_z ] |
| 794 | + # Each row in the Clifford tableau means the transformation of original Pauli gates. |
| 795 | + # For example, take a 2 * (2+1) tableau as example: |
| 796 | + # X Z r |
| 797 | + # XI [ 1 0 | 1 0 | 0 ] |
| 798 | + # IX [ 0 0 | 1 1 | 0 ] |
| 799 | + # ZI [ 0 0 | 1 0 | 1 ] |
| 800 | + # IZ [ 1 0 | 1 1 | 0 ] |
| 801 | + # Take the third row as example: this means the ZI gate after the this gate, |
| 802 | + # more precisely the conjugate transformation of ZI by this gate, becomes -ZI. |
| 803 | + # (Note the real clifford tableau has to satify the Symplectic property. |
| 804 | + # here is just for illustration) |
| 805 | + self._clifford_tableau = _clifford_tableau.copy() |
| 806 | + |
| 807 | + @property |
| 808 | + def clifford_tableau(self): |
| 809 | + return self._clifford_tableau |
| 810 | + |
| 811 | + def _json_dict_(self) -> Dict[str, Any]: |
| 812 | + json_dict = self._clifford_tableau._json_dict_() |
| 813 | + return json_dict |
| 814 | + |
| 815 | + def _value_equality_values_(self): |
| 816 | + return self.clifford_tableau |
| 817 | + |
| 818 | + def _num_qubits_(self): |
| 819 | + return self.clifford_tableau.n |
| 820 | + |
| 821 | + def _has_stabilizer_effect_(self) -> Optional[bool]: |
| 822 | + # By definition, Clifford Gate should always return True. |
| 823 | + return True |
| 824 | + |
| 825 | + def __pow__(self, exponent) -> 'CliffordGate': |
| 826 | + if exponent == -1: |
| 827 | + return CliffordGate.from_clifford_tableau(self.clifford_tableau.inverse()) |
| 828 | + if exponent > 0 and int(exponent) == exponent: |
| 829 | + base_tableau = self.clifford_tableau.copy() |
| 830 | + for _ in range(int(exponent) - 1): |
| 831 | + base_tableau = base_tableau.then(self.clifford_tableau) |
| 832 | + return CliffordGate.from_clifford_tableau(base_tableau) |
| 833 | + if exponent < 0 and int(exponent) == exponent: |
| 834 | + base_tableau = self.clifford_tableau.copy() |
| 835 | + for _ in range(int(-exponent) - 1): |
| 836 | + base_tableau = base_tableau.then(self.clifford_tableau) |
| 837 | + return CliffordGate.from_clifford_tableau(base_tableau.inverse()) |
| 838 | + |
| 839 | + return NotImplemented |
| 840 | + |
| 841 | + def __repr__(self) -> str: |
| 842 | + return f"Clifford Gate with Tableau:\n {self.clifford_tableau._str_full_()}" |
| 843 | + |
| 844 | + def _commutes_(self, other: Any, atol: float) -> Union[bool, NotImplementedType, None]: |
| 845 | + # Note even if we assume two gates define the tabluea based on the same qubit order, |
| 846 | + # the following approach cannot judge it: |
| 847 | + # self.clifford_tableau.then(other.clifford_tableau) == other.clifford_tableau.then( |
| 848 | + # self.clifford_tableau |
| 849 | + # ) |
| 850 | + # For example: X.then(Z) and Z.then(X) both return same tableau |
| 851 | + # it is because Clifford tableau ignores the global phase information. |
| 852 | + return NotImplemented |
| 853 | + |
| 854 | + def _decompose_(self, qubits: Sequence['cirq.Qid']) -> List[raw_types.Operation]: |
| 855 | + return transformers.analytical_decompositions.decompose_clifford_tableau_to_operations( |
| 856 | + list(qubits), self.clifford_tableau |
| 857 | + ) |
| 858 | + |
| 859 | + def _act_on_(self, args: 'cirq.ActOnArgs', qubits: Sequence['cirq.Qid']) -> bool: |
| 860 | + |
| 861 | + # Note the computation complexity difference between _decompose_ and _act_on_. |
| 862 | + # Suppose this Gate has `m` qubits, args has `n` qubits, and the decomposition of |
| 863 | + # this operation into `k` operations: |
| 864 | + # 1. Direct act_on is O(n^3) -- two matrices multiplication |
| 865 | + # 2. Decomposition is O(m^3)+O(k*n^2) -- Decomposition complexity + k * One/two-qubits Ops |
| 866 | + # So when m << n, the decomposition is more efficient. |
| 867 | + if isinstance(args, sim.clifford.ActOnCliffordTableauArgs): |
| 868 | + axes = args.get_axes(qubits) |
| 869 | + # This padding is important and cannot be omitted. |
| 870 | + padded_tableau = _pad_tableau(self._clifford_tableau, len(args.qubits), axes) |
| 871 | + args._state = args.tableau.then(padded_tableau) |
| 872 | + return True |
| 873 | + |
| 874 | + if isinstance(args, sim.clifford.ActOnStabilizerCHFormArgs): |
| 875 | + # Do we know how to apply CliffordTableau on ActOnStabilizerCHFormArgs? |
| 876 | + # It should be unlike because CliffordTableau ignores the global phase but CHForm |
| 877 | + # is aimed to fix that. |
| 878 | + return NotImplemented |
| 879 | + |
| 880 | + return NotImplemented |
0 commit comments