|
| 1 | +# Copyright 2020 The Cirq Developers |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +import enum |
| 15 | + |
| 16 | +from typing import Any, Optional, TYPE_CHECKING |
| 17 | + |
| 18 | +import pandas as pd |
| 19 | +import sympy |
| 20 | +from matplotlib import pyplot as plt |
| 21 | + |
| 22 | +from cirq import circuits, devices, ops, study, value, work |
| 23 | +from cirq._compat import proper_repr |
| 24 | + |
| 25 | +if TYPE_CHECKING: |
| 26 | + import cirq |
| 27 | + |
| 28 | + |
| 29 | +class ExperimentType(enum.Enum): |
| 30 | + RAMSEY = 1 # Often denoted as t2* |
| 31 | + HAHN_ECHO = 2 # Spin echo or t2 |
| 32 | + CPMG = 3 # Carr-Purcell-Meiboom-Gill sequence |
| 33 | + |
| 34 | + |
| 35 | +_T2_COLUMNS = ['delay_ns', 0, 1] |
| 36 | + |
| 37 | + |
| 38 | +def t2_decay( |
| 39 | + sampler: work.Sampler, |
| 40 | + *, |
| 41 | + qubit: devices.GridQubit, |
| 42 | + experiment_type: 'ExperimentType' = ExperimentType.RAMSEY, |
| 43 | + num_points: int, |
| 44 | + max_delay: 'cirq.DURATION_LIKE', |
| 45 | + min_delay: 'cirq.DURATION_LIKE' = None, |
| 46 | + repetitions: int = 1000, |
| 47 | + delay_sweep: Optional[study.Sweep] = None, |
| 48 | +) -> 'cirq.experiments.T2DecayResult': |
| 49 | + """Runs a t2 transverse relaxation experiment. |
| 50 | +
|
| 51 | + Initializes a qubit into a superposition state, evolves the system using |
| 52 | + rules determined by the experiment type and by the delay parameters, |
| 53 | + then rotates back for measurement. This will measure the phase decoherence |
| 54 | + decay. This experiment has three types of T2 metrics, each which measure |
| 55 | + a different slice of the noise spectrum. |
| 56 | +
|
| 57 | + For the Ramsey experiment type (often denoted T2*), the state will be |
| 58 | + prepared with a square root Y gate (`cirq.Y ** 0.5`) and then waits for |
| 59 | + a variable amount of time. After this time, it will do basic state |
| 60 | + tomography to measure the expectation of the Pauli-X and Pauli-Y operators |
| 61 | + by performing either a `cirq.Y ** -0.5` or `cirq.X ** -0.5`. The square of |
| 62 | + these two measurements is summed to determine the length of the Bloch |
| 63 | + vector. This experiment measures the phase decoherence of the system under |
| 64 | + free evolution. |
| 65 | +
|
| 66 | + For the Hahn echo experiment (often denoted T2 or spin echo), the state |
| 67 | + will also be prepared with a square root Y gate (`cirq.Y ** 0.5`). |
| 68 | + However, during the mid-point of the delay time being measured, a pi-pulse |
| 69 | + (`cirq.X`) gate will be applied to cancel out inhomogeneous dephasing. |
| 70 | + The same method of measuring the final state as Ramsey experiment is applied |
| 71 | + after the second half of the delay period. |
| 72 | +
|
| 73 | + CPMG, or the Carr-Purcell-Meiboom-Gill sequence, is currently not |
| 74 | + implemented. |
| 75 | +
|
| 76 | + Args: |
| 77 | + sampler: The quantum engine or simulator to run the circuits. |
| 78 | + qubit: The qubit under test. |
| 79 | + experiment_type: The type of T2 test to run. |
| 80 | + num_points: The number of evenly spaced delays to test. |
| 81 | + max_delay: The largest delay to test. |
| 82 | + min_delay: The smallest delay to test. Defaults to no delay. |
| 83 | + repetitions: The number of repetitions of the circuit |
| 84 | + for each delay and for each tomography result. |
| 85 | + delay_sweep: Optional range of time delays to sweep across. This should |
| 86 | + be a SingleSweep using the 'delay_ns' with values in integer number |
| 87 | + of nanoseconds. If specified, this will override the max_delay and |
| 88 | + min_delay parameters. If not specified, the experiment will sweep |
| 89 | + from min_delay to max_delay with linear steps. |
| 90 | + Returns: |
| 91 | + A T2DecayResult object that stores and can plot the data. |
| 92 | + """ |
| 93 | + min_delay_dur = value.Duration(min_delay) |
| 94 | + max_delay_dur = value.Duration(max_delay) |
| 95 | + |
| 96 | + # Input validation |
| 97 | + if repetitions <= 0: |
| 98 | + raise ValueError('repetitions <= 0') |
| 99 | + if max_delay_dur < min_delay_dur: |
| 100 | + raise ValueError('max_delay < min_delay') |
| 101 | + if min_delay_dur < 0: |
| 102 | + raise ValueError('min_delay < 0') |
| 103 | + |
| 104 | + # Initialize values used in sweeps |
| 105 | + delay_var = sympy.Symbol('delay_ns') |
| 106 | + inv_x_var = sympy.Symbol('inv_x') |
| 107 | + inv_y_var = sympy.Symbol('inv_y') |
| 108 | + |
| 109 | + if not delay_sweep: |
| 110 | + delay_sweep = study.Linspace(delay_var, |
| 111 | + start=min_delay_dur.total_nanos(), |
| 112 | + stop=max_delay_dur.total_nanos(), |
| 113 | + length=num_points) |
| 114 | + if delay_sweep.keys != ['delay_ns']: |
| 115 | + raise ValueError('delay_sweep must be a SingleSweep ' |
| 116 | + 'with delay_ns parameter') |
| 117 | + |
| 118 | + if experiment_type == ExperimentType.RAMSEY: |
| 119 | + # Ramsey T2* experiment |
| 120 | + # Use sqrt(Y) to flip to the equator. |
| 121 | + # Evolve the state for a given amount of delay time |
| 122 | + # Then measure the state in both X and Y bases. |
| 123 | + |
| 124 | + circuit = circuits.Circuit( |
| 125 | + ops.Y(qubit)**0.5, |
| 126 | + ops.WaitGate(value.Duration(nanos=delay_var))(qubit), |
| 127 | + ops.X(qubit)**inv_x_var, |
| 128 | + ops.Y(qubit)**inv_y_var, |
| 129 | + ops.measure(qubit, key='output'), |
| 130 | + ) |
| 131 | + tomography_sweep = study.Zip( |
| 132 | + study.Points('inv_x', [0.0, -0.5]), |
| 133 | + study.Points('inv_y', [-0.5, 0.0]), |
| 134 | + ) |
| 135 | + sweep = study.Product(delay_sweep, tomography_sweep) |
| 136 | + elif experiment_type == ExperimentType.HAHN_ECHO: |
| 137 | + # Hahn / Spin Echo T2 experiment |
| 138 | + # Use sqrt(Y) to flip to the equator. |
| 139 | + # Evolve the state for half the given amount of delay time |
| 140 | + # Flip the state using an X gate |
| 141 | + # Evolve the state for half the given amount of delay time |
| 142 | + # Then measure the state in both X and Y bases. |
| 143 | + |
| 144 | + circuit = circuits.Circuit( |
| 145 | + ops.Y(qubit)**0.5, |
| 146 | + ops.WaitGate(value.Duration(nanos=0.5 * delay_var))(qubit), |
| 147 | + ops.X(qubit), |
| 148 | + ops.WaitGate(value.Duration(nanos=0.5 * delay_var))(qubit), |
| 149 | + ops.X(qubit)**inv_x_var, |
| 150 | + ops.Y(qubit)**inv_y_var, |
| 151 | + ops.measure(qubit, key='output'), |
| 152 | + ) |
| 153 | + tomography_sweep = study.Zip( |
| 154 | + study.Points('inv_x', [0.0, 0.5]), |
| 155 | + study.Points('inv_y', [-0.5, 0.0]), |
| 156 | + ) |
| 157 | + sweep = study.Product(delay_sweep, tomography_sweep) |
| 158 | + else: |
| 159 | + raise ValueError(f'Experiment type {experiment_type} not supported') |
| 160 | + |
| 161 | + # Tabulate measurements into a histogram |
| 162 | + results = sampler.sample(circuit, params=sweep, repetitions=repetitions) |
| 163 | + |
| 164 | + y_basis_measurements = results[abs(results.inv_y) > 0] |
| 165 | + x_basis_measurements = results[abs(results.inv_x) > 0] |
| 166 | + x_basis_tabulation = pd.crosstab(x_basis_measurements.delay_ns, |
| 167 | + x_basis_measurements.output).reset_index() |
| 168 | + y_basis_tabulation = pd.crosstab(y_basis_measurements.delay_ns, |
| 169 | + y_basis_measurements.output).reset_index() |
| 170 | + |
| 171 | + # If all measurements are 1 or 0, fill in the missing column with all zeros. |
| 172 | + for tab in [x_basis_tabulation, y_basis_tabulation]: |
| 173 | + for col_index, name in [(1, 0), (2, 1)]: |
| 174 | + if name not in tab: |
| 175 | + tab.insert(col_index, name, [0] * tab.shape[0]) |
| 176 | + |
| 177 | + # Return the results in a container object |
| 178 | + return T2DecayResult(x_basis_tabulation, y_basis_tabulation) |
| 179 | + |
| 180 | + |
| 181 | +class T2DecayResult: |
| 182 | + """Results from a T2 decay experiment. |
| 183 | +
|
| 184 | + This object is a container for the measurement results in each basis |
| 185 | + for each amount of delay. These can be used to calculate Pauli |
| 186 | + expectation values, length of the Bloch vector, and various fittings of |
| 187 | + the data to calculate estimated T2 phase decay times. |
| 188 | + """ |
| 189 | + |
| 190 | + def __init__(self, x_basis_data: pd.DataFrame, y_basis_data: pd.DataFrame): |
| 191 | + """ |
| 192 | + Args: |
| 193 | + data: A data frame with three columns: |
| 194 | + delay_ns, false_count, true_count. |
| 195 | + """ |
| 196 | + x_cols = list(x_basis_data.columns) |
| 197 | + y_cols = list(y_basis_data.columns) |
| 198 | + if any(col not in x_cols for col in _T2_COLUMNS): |
| 199 | + raise ValueError(f'x_basis_data must have columns {_T2_COLUMNS} ' |
| 200 | + f'but had {list(x_basis_data.columns)}') |
| 201 | + if any(col not in y_cols for col in _T2_COLUMNS): |
| 202 | + raise ValueError(f'y_basis_data must have columns {_T2_COLUMNS} ' |
| 203 | + f'but had {list(y_basis_data.columns)}') |
| 204 | + self._x_basis_data = x_basis_data |
| 205 | + self._y_basis_data = y_basis_data |
| 206 | + self._expectation_pauli_x = self._expectation(x_basis_data) |
| 207 | + self._expectation_pauli_y = self._expectation(y_basis_data) |
| 208 | + |
| 209 | + def _expectation(self, data) -> pd.DataFrame: |
| 210 | + """Calculates the expected value of the Pauli operator. |
| 211 | +
|
| 212 | + Assuming that the data is measured in the Pauli basis of the operator, |
| 213 | + then the expectation of the Pauli operator would be +1 if the |
| 214 | + measurement is all ones and -1 if the measurement is all zeros. |
| 215 | +
|
| 216 | + Returns: |
| 217 | + Data frame with two columns 'delay_ns' and 'value' |
| 218 | + """ |
| 219 | + xs = data['delay_ns'] |
| 220 | + ones = data[1] |
| 221 | + zeros = data[0] |
| 222 | + pauli_expectation = (2 * (ones / (ones + zeros))) - 1.0 |
| 223 | + return pd.DataFrame({'delay_ns': xs, 'value': pauli_expectation}) |
| 224 | + |
| 225 | + @property |
| 226 | + def expectation_pauli_x(self) -> pd.DataFrame: |
| 227 | + """A data frame with delay_ns, value columns. |
| 228 | +
|
| 229 | + This value contains the expectation of the Pauli X operator as |
| 230 | + estimated by measurement outcomes. |
| 231 | + """ |
| 232 | + return self._expectation_pauli_x |
| 233 | + |
| 234 | + @property |
| 235 | + def expectation_pauli_y(self) -> pd.DataFrame: |
| 236 | + """A data frame with delay_ns, value columns. |
| 237 | +
|
| 238 | + This value contains the expectation of the Pauli X operator as |
| 239 | + estimated by measurement outcomes. |
| 240 | + """ |
| 241 | + return self._expectation_pauli_y |
| 242 | + |
| 243 | + def plot_expectations(self, |
| 244 | + ax: Optional[plt.Axes] = None, |
| 245 | + **plot_kwargs: Any) -> plt.Axes: |
| 246 | + """Plots the expectation values of Pauli operators versus delay time. |
| 247 | +
|
| 248 | + Args: |
| 249 | + ax: the plt.Axes to plot on. If not given, a new figure is created, |
| 250 | + plotted on, and shown. |
| 251 | + **plot_kwargs: Arguments to be passed to 'plt.Axes.plot'. |
| 252 | +
|
| 253 | + Returns: |
| 254 | + The plt.Axes containing the plot. |
| 255 | + """ |
| 256 | + show_plot = not ax |
| 257 | + if show_plot: |
| 258 | + fig, ax = plt.subplots(1, 1, figsize=(8, 8)) |
| 259 | + assert ax is not None |
| 260 | + ax.set_ylim(ymin=-2, ymax=2) |
| 261 | + |
| 262 | + # Plot different expectation values in different colors. |
| 263 | + ax.plot(self._expectation_pauli_x['delay_ns'], |
| 264 | + self._expectation_pauli_x['value'], |
| 265 | + 'bo-', |
| 266 | + label='<X>', |
| 267 | + **plot_kwargs) |
| 268 | + ax.plot(self._expectation_pauli_y['delay_ns'], |
| 269 | + self._expectation_pauli_y['value'], |
| 270 | + 'go-', |
| 271 | + label='<Y>', |
| 272 | + **plot_kwargs) |
| 273 | + |
| 274 | + ax.set_xlabel( |
| 275 | + r"Delay between initialization and measurement (nanoseconds)") |
| 276 | + ax.set_ylabel('Pauli Operator Expectation') |
| 277 | + ax.set_title('T2 Decay Pauli Expectations') |
| 278 | + ax.legend() |
| 279 | + if show_plot: |
| 280 | + fig.show() |
| 281 | + return ax |
| 282 | + |
| 283 | + def plot_bloch_vector(self, |
| 284 | + ax: Optional[plt.Axes] = None, |
| 285 | + **plot_kwargs: Any) -> plt.Axes: |
| 286 | + """Plots the estimated length of the Bloch vector versus time. |
| 287 | +
|
| 288 | + This plot estimates the Bloch Vector by squaring the Pauli expectation |
| 289 | + value of X and adding it to the square of the Pauli expectation value of |
| 290 | + Y. This essentially projects the state into the XY plane. |
| 291 | +
|
| 292 | + Note that Z expectation is not considered, since T1 related amplitude |
| 293 | + damping will generally push this value towards |0> |
| 294 | + (expectation <Z> = -1) which will significantly distort the T2 numbers. |
| 295 | +
|
| 296 | + Args: |
| 297 | + ax: the plt.Axes to plot on. If not given, a new figure is created, |
| 298 | + plotted on, and shown. |
| 299 | + **plot_kwargs: Arguments to be passed to 'plt.Axes.plot'. |
| 300 | +
|
| 301 | + Returns: |
| 302 | + The plt.Axes containing the plot. |
| 303 | + """ |
| 304 | + show_plot = not ax |
| 305 | + if show_plot: |
| 306 | + fig, ax = plt.subplots(1, 1, figsize=(8, 8)) |
| 307 | + assert ax is not None |
| 308 | + ax.set_ylim(ymin=0, ymax=1) |
| 309 | + |
| 310 | + # Estimate length of Bloch vector (projected to xy plane) |
| 311 | + # by squaring <X> and <Y> expectation values |
| 312 | + bloch_vector = (self._expectation_pauli_x**2 + |
| 313 | + self._expectation_pauli_y**2) |
| 314 | + |
| 315 | + ax.plot(self._expectation_pauli_x['delay_ns'], bloch_vector, 'r+-', |
| 316 | + **plot_kwargs) |
| 317 | + ax.set_xlabel( |
| 318 | + r"Delay between initialization and measurement (nanoseconds)") |
| 319 | + ax.set_ylabel('Bloch Vector X-Y Projection Squared') |
| 320 | + ax.set_title('T2 Decay Experiment Data') |
| 321 | + if show_plot: |
| 322 | + fig.show() |
| 323 | + return ax |
| 324 | + |
| 325 | + def __str__(self): |
| 326 | + return (f'T2DecayResult with data:\n' |
| 327 | + f'<X>\n{self._x_basis_data}\n<Y>\n{self._y_basis_data}') |
| 328 | + |
| 329 | + def __eq__(self, other): |
| 330 | + if not isinstance(other, type(self)): |
| 331 | + return NotImplemented |
| 332 | + return (self._expectation_pauli_x.equals(other._expectation_pauli_x) and |
| 333 | + self._expectation_pauli_y.equals(other._expectation_pauli_y)) |
| 334 | + |
| 335 | + def __repr__(self): |
| 336 | + return (f'cirq.experiments.T2DecayResult(' |
| 337 | + f'x_basis_data={proper_repr(self._x_basis_data)}, ' |
| 338 | + f'y_basis_data={proper_repr(self._y_basis_data)})') |
| 339 | + |
| 340 | + def _repr_pretty_(self, p: Any, cycle: bool) -> None: |
| 341 | + """Text output in Jupyter.""" |
| 342 | + if cycle: |
| 343 | + # There should never be a cycle. This is just in case. |
| 344 | + p.text('T2DecayResult(...)') |
| 345 | + else: |
| 346 | + p.text(str(self)) |
0 commit comments