@@ -298,7 +298,6 @@ def test_act_on_state_vector():
298
298
available_buffer = np .empty (shape = (2 , 2 , 2 , 2 , 2 )),
299
299
qubits = cirq .LineQubit .range (5 ),
300
300
prng = np .random .RandomState (),
301
- log_of_measurement_results = {},
302
301
initial_state = cirq .one_hot (shape = (2 , 2 , 2 , 2 , 2 ), dtype = np .complex64 ),
303
302
dtype = np .complex64 ,
304
303
)
@@ -309,7 +308,6 @@ def test_act_on_state_vector():
309
308
available_buffer = np .empty (shape = (2 , 2 , 2 , 2 , 2 )),
310
309
qubits = cirq .LineQubit .range (5 ),
311
310
prng = np .random .RandomState (),
312
- log_of_measurement_results = {},
313
311
initial_state = cirq .one_hot (
314
312
index = (0 , 1 , 0 , 0 , 0 ), shape = (2 , 2 , 2 , 2 , 2 ), dtype = np .complex64
315
313
),
@@ -322,7 +320,6 @@ def test_act_on_state_vector():
322
320
available_buffer = np .empty (shape = (2 , 2 , 2 , 2 , 2 )),
323
321
qubits = cirq .LineQubit .range (5 ),
324
322
prng = np .random .RandomState (),
325
- log_of_measurement_results = {},
326
323
initial_state = cirq .one_hot (
327
324
index = (0 , 1 , 0 , 1 , 0 ), shape = (2 , 2 , 2 , 2 , 2 ), dtype = np .complex64
328
325
),
@@ -348,7 +345,6 @@ def test_act_on_clifford_tableau():
348
345
tableau = cirq .CliffordTableau (num_qubits = 5 , initial_state = 0 ),
349
346
qubits = cirq .LineQubit .range (5 ),
350
347
prng = np .random .RandomState (),
351
- log_of_measurement_results = {},
352
348
)
353
349
cirq .act_on (m , args )
354
350
assert args .log_of_measurement_results == {'out' : [1 , 0 ]}
@@ -357,7 +353,6 @@ def test_act_on_clifford_tableau():
357
353
tableau = cirq .CliffordTableau (num_qubits = 5 , initial_state = 8 ),
358
354
qubits = cirq .LineQubit .range (5 ),
359
355
prng = np .random .RandomState (),
360
- log_of_measurement_results = {},
361
356
)
362
357
363
358
cirq .act_on (m , args )
@@ -367,7 +362,6 @@ def test_act_on_clifford_tableau():
367
362
tableau = cirq .CliffordTableau (num_qubits = 5 , initial_state = 10 ),
368
363
qubits = cirq .LineQubit .range (5 ),
369
364
prng = np .random .RandomState (),
370
- log_of_measurement_results = {},
371
365
)
372
366
cirq .act_on (m , args )
373
367
datastore = cast (cirq .ClassicalDataDictionaryStore , args .classical_data )
@@ -388,7 +382,6 @@ def test_act_on_stabilizer_ch_form():
388
382
args = cirq .ActOnStabilizerCHFormArgs (
389
383
qubits = cirq .LineQubit .range (5 ),
390
384
prng = np .random .RandomState (),
391
- log_of_measurement_results = {},
392
385
initial_state = 0 ,
393
386
)
394
387
cirq .act_on (m , args )
@@ -397,7 +390,6 @@ def test_act_on_stabilizer_ch_form():
397
390
args = cirq .ActOnStabilizerCHFormArgs (
398
391
qubits = cirq .LineQubit .range (5 ),
399
392
prng = np .random .RandomState (),
400
- log_of_measurement_results = {},
401
393
initial_state = 8 ,
402
394
)
403
395
@@ -407,7 +399,6 @@ def test_act_on_stabilizer_ch_form():
407
399
args = cirq .ActOnStabilizerCHFormArgs (
408
400
qubits = cirq .LineQubit .range (5 ),
409
401
prng = np .random .RandomState (),
410
- log_of_measurement_results = {},
411
402
initial_state = 10 ,
412
403
)
413
404
cirq .act_on (m , args )
@@ -428,7 +419,6 @@ def test_act_on_qutrit():
428
419
available_buffer = np .empty (shape = (3 , 3 , 3 , 3 , 3 )),
429
420
qubits = cirq .LineQid .range (5 , dimension = 3 ),
430
421
prng = np .random .RandomState (),
431
- log_of_measurement_results = {},
432
422
initial_state = cirq .one_hot (
433
423
index = (0 , 2 , 0 , 2 , 0 ), shape = (3 , 3 , 3 , 3 , 3 ), dtype = np .complex64
434
424
),
@@ -441,7 +431,6 @@ def test_act_on_qutrit():
441
431
available_buffer = np .empty (shape = (3 , 3 , 3 , 3 , 3 )),
442
432
qubits = cirq .LineQid .range (5 , dimension = 3 ),
443
433
prng = np .random .RandomState (),
444
- log_of_measurement_results = {},
445
434
initial_state = cirq .one_hot (
446
435
index = (0 , 1 , 0 , 2 , 0 ), shape = (3 , 3 , 3 , 3 , 3 ), dtype = np .complex64
447
436
),
@@ -454,7 +443,6 @@ def test_act_on_qutrit():
454
443
available_buffer = np .empty (shape = (3 , 3 , 3 , 3 , 3 )),
455
444
qubits = cirq .LineQid .range (5 , dimension = 3 ),
456
445
prng = np .random .RandomState (),
457
- log_of_measurement_results = {},
458
446
initial_state = cirq .one_hot (
459
447
index = (0 , 2 , 0 , 1 , 0 ), shape = (3 , 3 , 3 , 3 , 3 ), dtype = np .complex64
460
448
),
0 commit comments