|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "1db3b3cd", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import cv2\n", |
| 11 | + "\n", |
| 12 | + "# Load an image\n", |
| 13 | + "image = cv2.imread('C:/Users/hp/R.jpeg')\n", |
| 14 | + "\n", |
| 15 | + "# Display the image\n", |
| 16 | + "cv2.imshow('Image', image)\n", |
| 17 | + "cv2.waitKey(0)\n", |
| 18 | + "cv2.destroyAllWindows()\n" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": 2, |
| 24 | + "id": "2c109797", |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "import cv2\n", |
| 29 | + "image = cv2.imread('C:/Users/hp/R.jpeg')\n", |
| 30 | + "cv2.imshow('Image', image)\n", |
| 31 | + "#cv2.waitKey(0)\n", |
| 32 | + "#cv2.destroyAllWindows()" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": 3, |
| 38 | + "id": "5626577e", |
| 39 | + "metadata": {}, |
| 40 | + "outputs": [ |
| 41 | + { |
| 42 | + "ename": "error", |
| 43 | + "evalue": "OpenCV(4.9.0) D:\\a\\opencv-python\\opencv-python\\opencv\\modules\\imgproc\\src\\resize.cpp:4152: error: (-215:Assertion failed) !ssize.empty() in function 'cv::resize'\n", |
| 44 | + "output_type": "error", |
| 45 | + "traceback": [ |
| 46 | + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", |
| 47 | + "\u001b[1;31merror\u001b[0m Traceback (most recent call last)", |
| 48 | + "Cell \u001b[1;32mIn[3], line 9\u001b[0m\n\u001b[0;32m 7\u001b[0m width \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m300\u001b[39m\n\u001b[0;32m 8\u001b[0m height \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m200\u001b[39m\n\u001b[1;32m----> 9\u001b[0m resized_image \u001b[38;5;241m=\u001b[39m cv2\u001b[38;5;241m.\u001b[39mresize(image, (width, height))\n\u001b[0;32m 11\u001b[0m \u001b[38;5;66;03m# Display the resized image\u001b[39;00m\n\u001b[0;32m 12\u001b[0m cv2\u001b[38;5;241m.\u001b[39mimshow(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mResized Image\u001b[39m\u001b[38;5;124m'\u001b[39m, resized_image)\n", |
| 49 | + "\u001b[1;31merror\u001b[0m: OpenCV(4.9.0) D:\\a\\opencv-python\\opencv-python\\opencv\\modules\\imgproc\\src\\resize.cpp:4152: error: (-215:Assertion failed) !ssize.empty() in function 'cv::resize'\n" |
| 50 | + ] |
| 51 | + } |
| 52 | + ], |
| 53 | + "source": [ |
| 54 | + "import cv2\n", |
| 55 | + "\n", |
| 56 | + "# Load an image\n", |
| 57 | + "image = cv2.imread('R.jpg')\n", |
| 58 | + "\n", |
| 59 | + "# Resize the image to a specific width and height\n", |
| 60 | + "width = 300\n", |
| 61 | + "height = 200\n", |
| 62 | + "resized_image = cv2.resize(image, (width, height))\n", |
| 63 | + "\n", |
| 64 | + "# Display the resized image\n", |
| 65 | + "cv2.imshow('Resized Image', resized_image)\n", |
| 66 | + "cv2.waitKey(0)\n", |
| 67 | + "cv2.destroyAllWindows()\n" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": null, |
| 73 | + "id": "0f3f0beb", |
| 74 | + "metadata": {}, |
| 75 | + "outputs": [], |
| 76 | + "source": [ |
| 77 | + "import cv2\n", |
| 78 | + "\n", |
| 79 | + "# Load the image\n", |
| 80 | + "image = cv2.imread('R.jpg')\n", |
| 81 | + "\n", |
| 82 | + "# Define the coordinates of the region to be cropped (x, y, width, height)\n", |
| 83 | + "x, y, width, height = 100, 100, 300, 200\n", |
| 84 | + "\n", |
| 85 | + "# Crop the image\n", |
| 86 | + "cropped_image = image[y:y+height, x:x+width]\n", |
| 87 | + "\n", |
| 88 | + "# Display the cropped image\n", |
| 89 | + "cv2.imshow('Cropped Image', cropped_image)\n", |
| 90 | + "cv2.waitKey(0)\n", |
| 91 | + "cv2.destroyAllWindows()\n" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "code", |
| 96 | + "execution_count": null, |
| 97 | + "id": "e0dcfc5c", |
| 98 | + "metadata": {}, |
| 99 | + "outputs": [], |
| 100 | + "source": [ |
| 101 | + "import cv2 \n", |
| 102 | + "import glob \n", |
| 103 | + "import os\n", |
| 104 | + "\n", |
| 105 | + "inputFolder = r'C:\\Users\\hp\\Desktop\\dl practice'\n", |
| 106 | + "outputFolder = r'C:\\Users\\hp\\Desktop\\dl practice\\resized'\n", |
| 107 | + "\n", |
| 108 | + "# Create the output directory if it doesn't exist\n", |
| 109 | + "if not os.path.exists(outputFolder):\n", |
| 110 | + " os.mkdir(outputFolder)\n", |
| 111 | + "\n", |
| 112 | + "for img_path in glob.glob(os.path.join(inputFolder, '*.JPEG')):\n", |
| 113 | + " # Read the image\n", |
| 114 | + " image = cv2.imread(img_path)\n", |
| 115 | + " # Resize the image\n", |
| 116 | + " imResized = cv2.resize(image, (224, 224))\n", |
| 117 | + " # Extract the filename\n", |
| 118 | + " filename = os.path.basename(img_path)\n", |
| 119 | + " # Write the resized image to the output folder\n", |
| 120 | + " cv2.imwrite(os.path.join(outputFolder, filename), imResized)\n", |
| 121 | + "\n", |
| 122 | + "print(\"Resizing complete.\")\n" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": null, |
| 128 | + "id": "b87145af", |
| 129 | + "metadata": {}, |
| 130 | + "outputs": [], |
| 131 | + "source": [ |
| 132 | + "import cv2\n", |
| 133 | + "import glob\n", |
| 134 | + "import os\n", |
| 135 | + "\n", |
| 136 | + "inputFolder = 'C:/Users/hp/Desktop/dl practice' # Corrected the path separator\n", |
| 137 | + "os.makedirs(inputFolder, exist_ok=True) # Corrected function name and made sure the directory exists\n", |
| 138 | + "\n", |
| 139 | + "for img_path in glob.glob(os.path.join(inputFolder, '*.JPEG')): # Corrected the path and file extension\n", |
| 140 | + " image = cv2.imread(img_path) # Corrected function name\n", |
| 141 | + " if image is not None: # Check if image is loaded successfully\n", |
| 142 | + " imResized = cv2.resize(image, (224, 224))\n", |
| 143 | + " new_img_path = os.path.join(inputFolder, f\"resized_{os.path.basename(img_path)}\") # Construct new file path\n", |
| 144 | + " cv2.imwrite(new_img_path, imResized) # Write the resized image\n", |
| 145 | + " print(f\"Resized and saved: {new_img_path}\")\n", |
| 146 | + " else:\n", |
| 147 | + " print(f\"Unable to read image: {img_path}\")\n" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": null, |
| 153 | + "id": "7cf7c0d7", |
| 154 | + "metadata": {}, |
| 155 | + "outputs": [], |
| 156 | + "source": [ |
| 157 | + "import cv2\n", |
| 158 | + "import glob\n", |
| 159 | + "import os\n", |
| 160 | + "\n", |
| 161 | + "inputFolder = 'C:/Users/hp/Desktop/dl practice' # Corrected the path separator\n", |
| 162 | + "os.makedirs(inputFolder, exist_ok=True) # Corrected function name and made sure the directory exists\n", |
| 163 | + "\n", |
| 164 | + "# Define the crop dimensions\n", |
| 165 | + "x_start, y_start, width, height = 50, 50, 150, 150 # Example values, adjust as needed\n", |
| 166 | + "\n", |
| 167 | + "for img_path in glob.glob(os.path.join(inputFolder, '*.JPEG')): # Corrected the path and file extension\n", |
| 168 | + " image = cv2.imread(img_path) # Corrected function name\n", |
| 169 | + " if image is not None: # Check if image is loaded successfully\n", |
| 170 | + " cropped_img = image[y_start:y_start+height, x_start:x_start+width]\n", |
| 171 | + " new_img_path = os.path.join(inputFolder, f\"cropped_{os.path.basename(img_path)}\") # Construct new file path\n", |
| 172 | + " cv2.imwrite(new_img_path, cropped_img) # Write the cropped image\n", |
| 173 | + " print(f\"Cropped and saved: {new_img_path}\")\n", |
| 174 | + " else:\n", |
| 175 | + " print(f\"Unable to read image: {img_path}\")\n" |
| 176 | + ] |
| 177 | + }, |
| 178 | + { |
| 179 | + "cell_type": "code", |
| 180 | + "execution_count": null, |
| 181 | + "id": "f299c243", |
| 182 | + "metadata": {}, |
| 183 | + "outputs": [], |
| 184 | + "source": [ |
| 185 | + "import cv2 \n", |
| 186 | + "import glob \n", |
| 187 | + "import os\n", |
| 188 | + "\n", |
| 189 | + "inputFolder = r'C:\\Users\\hp\\Desktop\\dl practice'\n", |
| 190 | + "outputFolder = r'C:\\Users\\hp\\Desktop\\dl practice\\resized'\n", |
| 191 | + "\n", |
| 192 | + "# Create the output directory if it doesn't exist\n", |
| 193 | + "if not os.path.exists(outputFolder):\n", |
| 194 | + " os.mkdir(outputFolder)\n", |
| 195 | + "\n", |
| 196 | + "for img_path in glob.glob(os.path.join(inputFolder, '*.JPEG')):\n", |
| 197 | + " # Read the image\n", |
| 198 | + " image = cv2.imread(img_path)\n", |
| 199 | + " \n", |
| 200 | + " # Apply Gaussian Blur for noise removal\n", |
| 201 | + " blurred_image = cv2.GaussianBlur(image, (5, 5), 0) # You can adjust the kernel size (5, 5) if needed\n", |
| 202 | + " \n", |
| 203 | + " # Resize the image\n", |
| 204 | + " imResized = cv2.resize(blurred_image, (224, 224))\n", |
| 205 | + " \n", |
| 206 | + " # Extract the filename\n", |
| 207 | + " filename = os.path.basename(img_path)\n", |
| 208 | + " \n", |
| 209 | + " # Write the resized and denoised image to the output folder\n", |
| 210 | + " cv2.imwrite(os.path.join(outputFolder, filename), imResized)\n", |
| 211 | + "\n", |
| 212 | + "print(\"Resizing and noise removal complete.\")\n" |
| 213 | + ] |
| 214 | + }, |
| 215 | + { |
| 216 | + "cell_type": "code", |
| 217 | + "execution_count": null, |
| 218 | + "id": "e15aece0", |
| 219 | + "metadata": {}, |
| 220 | + "outputs": [], |
| 221 | + "source": [ |
| 222 | + "import cv2 \n", |
| 223 | + "import glob \n", |
| 224 | + "import os\n", |
| 225 | + "\n", |
| 226 | + "inputFolder = r'C:\\Users\\hp\\Desktop\\dl practice'\n", |
| 227 | + "outputFolder = r'C:\\Users\\hp\\Desktop\\dl practice\\resized'\n", |
| 228 | + "\n", |
| 229 | + "# Create the output directory if it doesn't exist\n", |
| 230 | + "if not os.path.exists(outputFolder):\n", |
| 231 | + " os.mkdir(outputFolder)\n", |
| 232 | + "\n", |
| 233 | + "for img_path in glob.glob(os.path.join(inputFolder, '*.JPEG')):\n", |
| 234 | + " # Read the image\n", |
| 235 | + " image = cv2.imread(img_path)\n", |
| 236 | + " \n", |
| 237 | + " # Apply Gaussian Blur for noise removal\n", |
| 238 | + " blurred_image = cv2.GaussianBlur(image, (5, 5), 0)\n", |
| 239 | + " \n", |
| 240 | + " # Convert the image to grayscale\n", |
| 241 | + " gray_image = cv2.cvtColor(blurred_image, cv2.COLOR_BGR2GRAY)\n", |
| 242 | + " \n", |
| 243 | + " # Apply Sobel operator for edge detection\n", |
| 244 | + " sobelx = cv2.Sobel(gray_image, cv2.CV_64F, 1, 0, ksize=5)\n", |
| 245 | + " sobely = cv2.Sobel(gray_image, cv2.CV_64F, 0, 1, ksize=5)\n", |
| 246 | + " edge_image = cv2.sqrt(cv2.addWeighted(cv2.pow(sobelx, 2.0), 1.0, cv2.pow(sobely, 2.0), 1.0, 0))\n", |
| 247 | + " \n", |
| 248 | + " # Resize the image\n", |
| 249 | + " resized_edge_image = cv2.resize(edge_image, (224, 224))\n", |
| 250 | + " \n", |
| 251 | + " # Extract the filename\n", |
| 252 | + " filename = os.path.basename(img_path)\n", |
| 253 | + " \n", |
| 254 | + " # Write the resized and edge-detected image to the output folder\n", |
| 255 | + " cv2.imwrite(os.path.join(outputFolder, filename), resized_edge_image)\n", |
| 256 | + "\n", |
| 257 | + "print(\"Resizing and edge detection complete.\")\n" |
| 258 | + ] |
| 259 | + }, |
| 260 | + { |
| 261 | + "cell_type": "code", |
| 262 | + "execution_count": null, |
| 263 | + "id": "39807909", |
| 264 | + "metadata": {}, |
| 265 | + "outputs": [], |
| 266 | + "source": [ |
| 267 | + "import cv2 \n", |
| 268 | + "import glob \n", |
| 269 | + "import os\n", |
| 270 | + "\n", |
| 271 | + "inputFolder = r'C:\\Users\\hp\\Desktop\\dl practice'\n", |
| 272 | + "outputFolder = r'C:\\Users\\hp\\Desktop\\dl practice\\converted'\n", |
| 273 | + "\n", |
| 274 | + "# Create the output directory if it doesn't exist\n", |
| 275 | + "if not os.path.exists(outputFolder):\n", |
| 276 | + " os.mkdir(outputFolder)\n", |
| 277 | + "\n", |
| 278 | + "for img_path in glob.glob(os.path.join(inputFolder, '*.JPEG')):\n", |
| 279 | + " # Read the image\n", |
| 280 | + " image = cv2.imread(img_path)\n", |
| 281 | + " \n", |
| 282 | + " # Apply Gaussian Blur for noise removal\n", |
| 283 | + " blurred_image = cv2.GaussianBlur(image, (5, 5), 0)\n", |
| 284 | + " \n", |
| 285 | + " # Convert the image to grayscale\n", |
| 286 | + " gray_image = cv2.cvtColor(blurred_image, cv2.COLOR_BGR2GRAY)\n", |
| 287 | + " \n", |
| 288 | + " # Apply Sobel operator for edge detection\n", |
| 289 | + " sobelx = cv2.Sobel(gray_image, cv2.CV_64F, 1, 0, ksize=5)\n", |
| 290 | + " sobely = cv2.Sobel(gray_image, cv2.CV_64F, 0, 1, ksize=5)\n", |
| 291 | + " edge_image = cv2.sqrt(cv2.addWeighted(cv2.pow(sobelx, 2.0), 1.0, cv2.pow(sobely, 2.0), 1.0, 0))\n", |
| 292 | + " \n", |
| 293 | + " # Resize the image\n", |
| 294 | + " resized_edge_image = cv2.resize(edge_image, (224, 224))\n", |
| 295 | + " \n", |
| 296 | + " # Convert the image to PNG format\n", |
| 297 | + " output_img_path = os.path.join(outputFolder, os.path.splitext(os.path.basename(img_path))[0] + '.png')\n", |
| 298 | + " cv2.imwrite(output_img_path, resized_edge_image)\n", |
| 299 | + "\n", |
| 300 | + "print(\"Conversion complete.\")\n" |
| 301 | + ] |
| 302 | + }, |
| 303 | + { |
| 304 | + "cell_type": "code", |
| 305 | + "execution_count": null, |
| 306 | + "id": "9413a9a1", |
| 307 | + "metadata": {}, |
| 308 | + "outputs": [], |
| 309 | + "source": [ |
| 310 | + "import cv2 \n", |
| 311 | + "import glob \n", |
| 312 | + "import os\n", |
| 313 | + "\n", |
| 314 | + "inputFolder = r'C:\\Users\\hp\\Desktop\\dl practice'\n", |
| 315 | + "outputFolder = r'C:\\Users\\hp\\Desktop\\dl practice\\equalized'\n", |
| 316 | + "\n", |
| 317 | + "# Create the output directory if it doesn't exist\n", |
| 318 | + "if not os.path.exists(outputFolder):\n", |
| 319 | + " os.mkdir(outputFolder)\n", |
| 320 | + "\n", |
| 321 | + "for img_path in glob.glob(os.path.join(inputFolder, '*.JPEG')):\n", |
| 322 | + " # Read the image\n", |
| 323 | + " image = cv2.imread(img_path)\n", |
| 324 | + " \n", |
| 325 | + " # Convert the image to grayscale\n", |
| 326 | + " gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n", |
| 327 | + " \n", |
| 328 | + " # Apply histogram equalization\n", |
| 329 | + " equalized_image = cv2.equalizeHist(gray_image)\n", |
| 330 | + " \n", |
| 331 | + " # Apply Gaussian Blur for noise removal\n", |
| 332 | + " blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)\n", |
| 333 | + " \n", |
| 334 | + " # Apply Sobel operator for edge detection\n", |
| 335 | + " sobelx = cv2.Sobel(blurred_image, cv2.CV_64F, 1, 0, ksize=5)\n", |
| 336 | + " sobely = cv2.Sobel(blurred_image, cv2.CV_64F, 0, 1, ksize=5)\n", |
| 337 | + " edge_image = cv2.sqrt(cv2.addWeighted(cv2.pow(sobelx, 2.0), 1.0, cv2.pow(sobely, 2.0), 1.0, 0))\n", |
| 338 | + " \n", |
| 339 | + " # Resize the image\n", |
| 340 | + " resized_edge_image = cv2.resize(edge_image, (224, 224))\n", |
| 341 | + " \n", |
| 342 | + " # Convert the image to PNG format\n", |
| 343 | + " output_img_path = os.path.join(outputFolder, os.path.splitext(os.path.basename(img_path))[0] + '.png')\n", |
| 344 | + " cv2.imwrite(output_img_path, resized_edge_image)\n", |
| 345 | + "\n", |
| 346 | + "print(\"Histogram equalization complete.\")\n" |
| 347 | + ] |
| 348 | + }, |
| 349 | + { |
| 350 | + "cell_type": "code", |
| 351 | + "execution_count": null, |
| 352 | + "id": "25bf561e", |
| 353 | + "metadata": {}, |
| 354 | + "outputs": [], |
| 355 | + "source": [] |
| 356 | + } |
| 357 | + ], |
| 358 | + "metadata": { |
| 359 | + "kernelspec": { |
| 360 | + "display_name": "Python 3 (ipykernel)", |
| 361 | + "language": "python", |
| 362 | + "name": "python3" |
| 363 | + }, |
| 364 | + "language_info": { |
| 365 | + "codemirror_mode": { |
| 366 | + "name": "ipython", |
| 367 | + "version": 3 |
| 368 | + }, |
| 369 | + "file_extension": ".py", |
| 370 | + "mimetype": "text/x-python", |
| 371 | + "name": "python", |
| 372 | + "nbconvert_exporter": "python", |
| 373 | + "pygments_lexer": "ipython3", |
| 374 | + "version": "3.11.3" |
| 375 | + } |
| 376 | + }, |
| 377 | + "nbformat": 4, |
| 378 | + "nbformat_minor": 5 |
| 379 | +} |
0 commit comments