forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstring_.py
1084 lines (920 loc) · 36 KB
/
string_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
from functools import partial
import operator
from typing import (
TYPE_CHECKING,
Any,
Literal,
cast,
)
import warnings
import numpy as np
from pandas._config import (
get_option,
using_string_dtype,
)
from pandas._libs import (
lib,
missing as libmissing,
)
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.lib import ensure_string_array
from pandas.compat import (
HAS_PYARROW,
pa_version_under10p1,
)
from pandas.compat.numpy import function as nv
from pandas.util._decorators import (
doc,
set_module,
)
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.base import (
ExtensionDtype,
StorageExtensionDtype,
register_extension_dtype,
)
from pandas.core.dtypes.common import (
is_array_like,
is_bool_dtype,
is_integer_dtype,
is_object_dtype,
is_string_dtype,
pandas_dtype,
)
from pandas.core import (
missing,
nanops,
ops,
)
from pandas.core.algorithms import isin
from pandas.core.array_algos import masked_reductions
from pandas.core.arrays.base import ExtensionArray
from pandas.core.arrays.floating import (
FloatingArray,
FloatingDtype,
)
from pandas.core.arrays.integer import (
IntegerArray,
IntegerDtype,
)
from pandas.core.arrays.numpy_ import NumpyExtensionArray
from pandas.core.construction import extract_array
from pandas.core.indexers import check_array_indexer
from pandas.core.missing import isna
from pandas.io.formats import printing
if TYPE_CHECKING:
import pyarrow
from pandas._typing import (
ArrayLike,
AxisInt,
Dtype,
DtypeObj,
NumpySorter,
NumpyValueArrayLike,
Scalar,
Self,
npt,
type_t,
)
from pandas import Series
@set_module("pandas")
@register_extension_dtype
class StringDtype(StorageExtensionDtype):
"""
Extension dtype for string data.
.. warning::
StringDtype is considered experimental. The implementation and
parts of the API may change without warning.
Parameters
----------
storage : {"python", "pyarrow"}, optional
If not given, the value of ``pd.options.mode.string_storage``.
na_value : {np.nan, pd.NA}, default pd.NA
Whether the dtype follows NaN or NA missing value semantics.
Attributes
----------
None
Methods
-------
None
See Also
--------
BooleanDtype : Extension dtype for boolean data.
Examples
--------
>>> pd.StringDtype()
string[python]
>>> pd.StringDtype(storage="pyarrow")
string[pyarrow]
"""
@property
def name(self) -> str: # type: ignore[override]
if self._na_value is libmissing.NA:
return "string"
else:
return "str"
#: StringDtype().na_value uses pandas.NA except the implementation that
# follows NumPy semantics, which uses nan.
@property
def na_value(self) -> libmissing.NAType | float: # type: ignore[override]
return self._na_value
_metadata = ("storage", "_na_value") # type: ignore[assignment]
def __init__(
self,
storage: str | None = None,
na_value: libmissing.NAType | float = libmissing.NA,
) -> None:
# infer defaults
if storage is None:
if na_value is not libmissing.NA:
storage = get_option("mode.string_storage")
if storage == "auto":
if HAS_PYARROW:
storage = "pyarrow"
else:
storage = "python"
else:
storage = get_option("mode.string_storage")
if storage == "auto":
storage = "python"
if storage == "pyarrow_numpy":
warnings.warn(
"The 'pyarrow_numpy' storage option name is deprecated and will be "
'removed in pandas 3.0. Use \'pd.StringDtype(storage="pyarrow", '
"na_value-np.nan)' to construct the same dtype.\nOr enable the "
"'pd.options.future.infer_string = True' option globally and use "
'the "str" alias as a shorthand notation to specify a dtype '
'(instead of "string[pyarrow_numpy]").',
FutureWarning,
stacklevel=find_stack_level(),
)
storage = "pyarrow"
na_value = np.nan
# validate options
if storage not in {"python", "pyarrow"}:
raise ValueError(
f"Storage must be 'python' or 'pyarrow'. Got {storage} instead."
)
if storage == "pyarrow" and pa_version_under10p1:
raise ImportError(
"pyarrow>=10.0.1 is required for PyArrow backed StringArray."
)
if isinstance(na_value, float) and np.isnan(na_value):
# when passed a NaN value, always set to np.nan to ensure we use
# a consistent NaN value (and we can use `dtype.na_value is np.nan`)
na_value = np.nan
elif na_value is not libmissing.NA:
raise ValueError(f"'na_value' must be np.nan or pd.NA, got {na_value}")
self.storage = cast(str, storage)
self._na_value = na_value
def __repr__(self) -> str:
if self._na_value is libmissing.NA:
return f"{self.name}[{self.storage}]"
else:
# TODO add more informative repr
return self.name
def __eq__(self, other: object) -> bool:
# we need to override the base class __eq__ because na_value (NA or NaN)
# cannot be checked with normal `==`
if isinstance(other, str):
# TODO should dtype == "string" work for the NaN variant?
if other == "string" or other == self.name:
return True
try:
other = self.construct_from_string(other)
except (TypeError, ImportError):
# TypeError if `other` is not a valid string for StringDtype
# ImportError if pyarrow is not installed for "string[pyarrow]"
return False
if isinstance(other, type(self)):
return self.storage == other.storage and self.na_value is other.na_value
return False
def __hash__(self) -> int:
# need to override __hash__ as well because of overriding __eq__
return super().__hash__()
def __reduce__(self):
return StringDtype, (self.storage, self.na_value)
@property
def type(self) -> type[str]:
return str
@classmethod
def construct_from_string(cls, string) -> Self:
"""
Construct a StringDtype from a string.
Parameters
----------
string : str
The type of the name. The storage type will be taking from `string`.
Valid options and their storage types are
========================== ==============================================
string result storage
========================== ==============================================
``'string'`` pd.options.mode.string_storage, default python
``'string[python]'`` python
``'string[pyarrow]'`` pyarrow
========================== ==============================================
Returns
-------
StringDtype
Raise
-----
TypeError
If the string is not a valid option.
"""
if not isinstance(string, str):
raise TypeError(
f"'construct_from_string' expects a string, got {type(string)}"
)
if string == "string":
return cls()
elif string == "str" and using_string_dtype():
return cls(na_value=np.nan)
elif string == "string[python]":
return cls(storage="python")
elif string == "string[pyarrow]":
return cls(storage="pyarrow")
elif string == "string[pyarrow_numpy]":
# this is deprecated in the dtype __init__, remove this in pandas 3.0
return cls(storage="pyarrow_numpy")
else:
raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'")
# https://github.com/pandas-dev/pandas/issues/36126
# error: Signature of "construct_array_type" incompatible with supertype
# "ExtensionDtype"
def construct_array_type( # type: ignore[override]
self,
) -> type_t[BaseStringArray]:
"""
Return the array type associated with this dtype.
Returns
-------
type
"""
from pandas.core.arrays.string_arrow import (
ArrowStringArray,
ArrowStringArrayNumpySemantics,
)
if self.storage == "python" and self._na_value is libmissing.NA:
return StringArray
elif self.storage == "pyarrow" and self._na_value is libmissing.NA:
return ArrowStringArray
elif self.storage == "python":
return StringArrayNumpySemantics
else:
return ArrowStringArrayNumpySemantics
def _get_common_dtype(self, dtypes: list[DtypeObj]) -> DtypeObj | None:
storages = set()
na_values = set()
for dtype in dtypes:
if isinstance(dtype, StringDtype):
storages.add(dtype.storage)
na_values.add(dtype.na_value)
elif isinstance(dtype, np.dtype) and dtype.kind in ("U", "T"):
continue
else:
return None
if len(storages) == 2:
# if both python and pyarrow storage -> priority to pyarrow
storage = "pyarrow"
else:
storage = next(iter(storages)) # type: ignore[assignment]
na_value: libmissing.NAType | float
if len(na_values) == 2:
# if both NaN and NA -> priority to NA
na_value = libmissing.NA
else:
na_value = next(iter(na_values))
return StringDtype(storage=storage, na_value=na_value)
def __from_arrow__(
self, array: pyarrow.Array | pyarrow.ChunkedArray
) -> BaseStringArray:
"""
Construct StringArray from pyarrow Array/ChunkedArray.
"""
if self.storage == "pyarrow":
if self._na_value is libmissing.NA:
from pandas.core.arrays.string_arrow import ArrowStringArray
return ArrowStringArray(array)
else:
from pandas.core.arrays.string_arrow import (
ArrowStringArrayNumpySemantics,
)
return ArrowStringArrayNumpySemantics(array)
else:
import pyarrow
if isinstance(array, pyarrow.Array):
chunks = [array]
else:
# pyarrow.ChunkedArray
chunks = array.chunks
results = []
for arr in chunks:
# convert chunk by chunk to numpy and concatenate then, to avoid
# overflow for large string data when concatenating the pyarrow arrays
arr = arr.to_numpy(zero_copy_only=False)
arr = ensure_string_array(arr, na_value=self.na_value)
results.append(arr)
if len(chunks) == 0:
arr = np.array([], dtype=object)
else:
arr = np.concatenate(results)
# Bypass validation inside StringArray constructor, see GH#47781
new_string_array = StringArray.__new__(StringArray)
NDArrayBacked.__init__(new_string_array, arr, self)
return new_string_array
class BaseStringArray(ExtensionArray):
"""
Mixin class for StringArray, ArrowStringArray.
"""
dtype: StringDtype
@doc(ExtensionArray.tolist)
def tolist(self) -> list:
if self.ndim > 1:
return [x.tolist() for x in self]
return list(self.to_numpy())
@classmethod
def _from_scalars(cls, scalars, dtype: DtypeObj) -> Self:
if lib.infer_dtype(scalars, skipna=True) not in ["string", "empty"]:
# TODO: require any NAs be valid-for-string
raise ValueError
return cls._from_sequence(scalars, dtype=dtype)
def _formatter(self, boxed: bool = False):
formatter = partial(
printing.pprint_thing,
escape_chars=("\t", "\r", "\n"),
quote_strings=not boxed,
)
return formatter
def _str_map(
self,
f,
na_value=lib.no_default,
dtype: Dtype | None = None,
convert: bool = True,
):
if self.dtype.na_value is np.nan:
return self._str_map_nan_semantics(f, na_value=na_value, dtype=dtype)
from pandas.arrays import BooleanArray
if dtype is None:
dtype = self.dtype
if na_value is lib.no_default:
na_value = self.dtype.na_value
mask = isna(self)
arr = np.asarray(self)
if is_integer_dtype(dtype) or is_bool_dtype(dtype):
constructor: type[IntegerArray | BooleanArray]
if is_integer_dtype(dtype):
constructor = IntegerArray
else:
constructor = BooleanArray
na_value_is_na = isna(na_value)
if na_value_is_na:
na_value = 1
elif dtype == np.dtype("bool"):
# GH#55736
na_value = bool(na_value)
result = lib.map_infer_mask(
arr,
f,
mask.view("uint8"),
convert=False,
na_value=na_value,
# error: Argument 1 to "dtype" has incompatible type
# "Union[ExtensionDtype, str, dtype[Any], Type[object]]"; expected
# "Type[object]"
dtype=np.dtype(cast(type, dtype)),
)
if not na_value_is_na:
mask[:] = False
return constructor(result, mask)
else:
return self._str_map_str_or_object(dtype, na_value, arr, f, mask)
def _str_map_str_or_object(
self,
dtype,
na_value,
arr: np.ndarray,
f,
mask: npt.NDArray[np.bool_],
):
# _str_map helper for case where dtype is either string dtype or object
if is_string_dtype(dtype) and not is_object_dtype(dtype):
# i.e. StringDtype
result = lib.map_infer_mask(
arr, f, mask.view("uint8"), convert=False, na_value=na_value
)
if self.dtype.storage == "pyarrow":
import pyarrow as pa
result = pa.array(
result, mask=mask, type=pa.large_string(), from_pandas=True
)
# error: Too many arguments for "BaseStringArray"
return type(self)(result) # type: ignore[call-arg]
else:
# This is when the result type is object. We reach this when
# -> We know the result type is truly object (e.g. .encode returns bytes
# or .findall returns a list).
# -> We don't know the result type. E.g. `.get` can return anything.
return lib.map_infer_mask(arr, f, mask.view("uint8"))
def _str_map_nan_semantics(
self, f, na_value=lib.no_default, dtype: Dtype | None = None
):
if dtype is None:
dtype = self.dtype
if na_value is lib.no_default:
if is_bool_dtype(dtype):
# NaN propagates as False
na_value = False
else:
na_value = self.dtype.na_value
mask = isna(self)
arr = np.asarray(self)
if is_integer_dtype(dtype) or is_bool_dtype(dtype):
na_value_is_na = isna(na_value)
if na_value_is_na:
if is_integer_dtype(dtype):
na_value = 0
else:
# NaN propagates as False
na_value = False
result = lib.map_infer_mask(
arr,
f,
mask.view("uint8"),
convert=False,
na_value=na_value,
dtype=np.dtype(cast(type, dtype)),
)
if na_value_is_na and is_integer_dtype(dtype) and mask.any():
# TODO: we could alternatively do this check before map_infer_mask
# and adjust the dtype/na_value we pass there. Which is more
# performant?
result = result.astype("float64")
result[mask] = np.nan
return result
else:
return self._str_map_str_or_object(dtype, na_value, arr, f, mask)
def view(self, dtype: Dtype | None = None) -> ArrayLike:
if dtype is not None:
raise TypeError("Cannot change data-type for string array.")
return super().view(dtype=dtype)
# error: Definition of "_concat_same_type" in base class "NDArrayBacked" is
# incompatible with definition in base class "ExtensionArray"
class StringArray(BaseStringArray, NumpyExtensionArray): # type: ignore[misc]
"""
Extension array for string data.
.. warning::
StringArray is considered experimental. The implementation and
parts of the API may change without warning.
Parameters
----------
values : array-like
The array of data.
.. warning::
Currently, this expects an object-dtype ndarray
where the elements are Python strings
or nan-likes (``None``, ``np.nan``, ``NA``).
This may change without warning in the future. Use
:meth:`pandas.array` with ``dtype="string"`` for a stable way of
creating a `StringArray` from any sequence.
.. versionchanged:: 1.5.0
StringArray now accepts array-likes containing
nan-likes(``None``, ``np.nan``) for the ``values`` parameter
in addition to strings and :attr:`pandas.NA`
copy : bool, default False
Whether to copy the array of data.
Attributes
----------
None
Methods
-------
None
See Also
--------
:func:`array`
The recommended function for creating a StringArray.
Series.str
The string methods are available on Series backed by
a StringArray.
Notes
-----
StringArray returns a BooleanArray for comparison methods.
Examples
--------
>>> pd.array(["This is", "some text", None, "data."], dtype="string")
<StringArray>
['This is', 'some text', <NA>, 'data.']
Length: 4, dtype: string
Unlike arrays instantiated with ``dtype="object"``, ``StringArray``
will convert the values to strings.
>>> pd.array(["1", 1], dtype="object")
<NumpyExtensionArray>
['1', 1]
Length: 2, dtype: object
>>> pd.array(["1", 1], dtype="string")
<StringArray>
['1', '1']
Length: 2, dtype: string
However, instantiating StringArrays directly with non-strings will raise an error.
For comparison methods, `StringArray` returns a :class:`pandas.BooleanArray`:
>>> pd.array(["a", None, "c"], dtype="string") == "a"
<BooleanArray>
[True, <NA>, False]
Length: 3, dtype: boolean
"""
# undo the NumpyExtensionArray hack
_typ = "extension"
_storage = "python"
_na_value: libmissing.NAType | float = libmissing.NA
def __init__(self, values, copy: bool = False) -> None:
values = extract_array(values)
super().__init__(values, copy=copy)
if not isinstance(values, type(self)):
self._validate()
NDArrayBacked.__init__(
self,
self._ndarray,
StringDtype(storage=self._storage, na_value=self._na_value),
)
def _validate(self) -> None:
"""Validate that we only store NA or strings."""
if len(self._ndarray) and not lib.is_string_array(self._ndarray, skipna=True):
raise ValueError("StringArray requires a sequence of strings or pandas.NA")
if self._ndarray.dtype != "object":
raise ValueError(
"StringArray requires a sequence of strings or pandas.NA. Got "
f"'{self._ndarray.dtype}' dtype instead."
)
# Check to see if need to convert Na values to pd.NA
if self._ndarray.ndim > 2:
# Ravel if ndims > 2 b/c no cythonized version available
lib.convert_nans_to_NA(self._ndarray.ravel("K"))
else:
lib.convert_nans_to_NA(self._ndarray)
def _validate_scalar(self, value):
# used by NDArrayBackedExtensionIndex.insert
if isna(value):
return self.dtype.na_value
elif not isinstance(value, str):
raise TypeError(
f"Invalid value '{value}' for dtype '{self.dtype}'. Value should be a "
f"string or missing value, got '{type(value).__name__}' instead."
)
return value
@classmethod
def _from_sequence(
cls, scalars, *, dtype: Dtype | None = None, copy: bool = False
) -> Self:
if dtype and not (isinstance(dtype, str) and dtype == "string"):
dtype = pandas_dtype(dtype)
assert isinstance(dtype, StringDtype) and dtype.storage == "python"
else:
if using_string_dtype():
dtype = StringDtype(storage="python", na_value=np.nan)
else:
dtype = StringDtype(storage="python")
from pandas.core.arrays.masked import BaseMaskedArray
na_value = dtype.na_value
if isinstance(scalars, BaseMaskedArray):
# avoid costly conversion to object dtype
na_values = scalars._mask
result = scalars._data
result = lib.ensure_string_array(result, copy=copy, convert_na_value=False)
result[na_values] = na_value
else:
if lib.is_pyarrow_array(scalars):
# pyarrow array; we cannot rely on the "to_numpy" check in
# ensure_string_array because calling scalars.to_numpy would set
# zero_copy_only to True which caused problems see GH#52076
scalars = np.array(scalars)
# convert non-na-likes to str, and nan-likes to StringDtype().na_value
result = lib.ensure_string_array(scalars, na_value=na_value, copy=copy)
# Manually creating new array avoids the validation step in the __init__, so is
# faster. Refactor need for validation?
new_string_array = cls.__new__(cls)
NDArrayBacked.__init__(new_string_array, result, dtype)
return new_string_array
@classmethod
def _from_sequence_of_strings(
cls, strings, *, dtype: ExtensionDtype, copy: bool = False
) -> Self:
return cls._from_sequence(strings, dtype=dtype, copy=copy)
@classmethod
def _empty(cls, shape, dtype) -> StringArray:
values = np.empty(shape, dtype=object)
values[:] = libmissing.NA
return cls(values).astype(dtype, copy=False)
def __arrow_array__(self, type=None):
"""
Convert myself into a pyarrow Array.
"""
import pyarrow as pa
if type is None:
type = pa.string()
values = self._ndarray.copy()
values[self.isna()] = None
return pa.array(values, type=type, from_pandas=True)
def _values_for_factorize(self) -> tuple[np.ndarray, libmissing.NAType | float]: # type: ignore[override]
arr = self._ndarray
return arr, self.dtype.na_value
def _maybe_convert_setitem_value(self, value):
"""Maybe convert value to be pyarrow compatible."""
if lib.is_scalar(value):
if isna(value):
value = self.dtype.na_value
elif not isinstance(value, str):
raise TypeError(
f"Invalid value '{value}' for dtype '{self.dtype}'. Value should "
f"be a string or missing value, got '{type(value).__name__}' "
"instead."
)
else:
value = extract_array(value, extract_numpy=True)
if not is_array_like(value):
value = np.asarray(value, dtype=object)
elif isinstance(value.dtype, type(self.dtype)):
return value
else:
# cast categories and friends to arrays to see if values are
# compatible, compatibility with arrow backed strings
value = np.asarray(value)
if len(value) and not lib.is_string_array(value, skipna=True):
raise TypeError(
"Invalid value for dtype 'str'. Value should be a "
"string or missing value (or array of those)."
)
return value
def __setitem__(self, key, value) -> None:
value = self._maybe_convert_setitem_value(value)
key = check_array_indexer(self, key)
scalar_key = lib.is_scalar(key)
scalar_value = lib.is_scalar(value)
if scalar_key and not scalar_value:
raise ValueError("setting an array element with a sequence.")
if not scalar_value:
if value.dtype == self.dtype:
value = value._ndarray
else:
value = np.asarray(value)
mask = isna(value)
if mask.any():
value = value.copy()
value[isna(value)] = self.dtype.na_value
super().__setitem__(key, value)
def _putmask(self, mask: npt.NDArray[np.bool_], value) -> None:
# the super() method NDArrayBackedExtensionArray._putmask uses
# np.putmask which doesn't properly handle None/pd.NA, so using the
# base class implementation that uses __setitem__
ExtensionArray._putmask(self, mask, value)
def _where(self, mask: npt.NDArray[np.bool_], value) -> Self:
# the super() method NDArrayBackedExtensionArray._where uses
# np.putmask which doesn't properly handle None/pd.NA, so using the
# base class implementation that uses __setitem__
return ExtensionArray._where(self, mask, value)
def isin(self, values: ArrayLike) -> npt.NDArray[np.bool_]:
if isinstance(values, BaseStringArray) or (
isinstance(values, ExtensionArray) and is_string_dtype(values.dtype)
):
values = values.astype(self.dtype, copy=False)
else:
if not lib.is_string_array(np.asarray(values), skipna=True):
values = np.array(
[val for val in values if isinstance(val, str) or isna(val)],
dtype=object,
)
if not len(values):
return np.zeros(self.shape, dtype=bool)
values = self._from_sequence(values, dtype=self.dtype)
return isin(np.asarray(self), np.asarray(values))
def astype(self, dtype, copy: bool = True):
dtype = pandas_dtype(dtype)
if dtype == self.dtype:
if copy:
return self.copy()
return self
elif isinstance(dtype, IntegerDtype):
arr = self._ndarray.copy()
mask = self.isna()
arr[mask] = 0
values = arr.astype(dtype.numpy_dtype)
return IntegerArray(values, mask, copy=False)
elif isinstance(dtype, FloatingDtype):
arr_ea = self.copy()
mask = self.isna()
arr_ea[mask] = "0"
values = arr_ea.astype(dtype.numpy_dtype)
return FloatingArray(values, mask, copy=False)
elif isinstance(dtype, ExtensionDtype):
# Skip the NumpyExtensionArray.astype method
return ExtensionArray.astype(self, dtype, copy)
elif np.issubdtype(dtype, np.floating):
arr = self._ndarray.copy()
mask = self.isna()
arr[mask] = 0
values = arr.astype(dtype)
values[mask] = np.nan
return values
return super().astype(dtype, copy)
def _reduce(
self,
name: str,
*,
skipna: bool = True,
keepdims: bool = False,
axis: AxisInt | None = 0,
**kwargs,
):
if self.dtype.na_value is np.nan and name in ["any", "all"]:
if name == "any":
return nanops.nanany(self._ndarray, skipna=skipna)
else:
return nanops.nanall(self._ndarray, skipna=skipna)
if name in ["min", "max", "argmin", "argmax", "sum"]:
result = getattr(self, name)(skipna=skipna, axis=axis, **kwargs)
if keepdims:
return self._from_sequence([result], dtype=self.dtype)
return result
raise TypeError(f"Cannot perform reduction '{name}' with string dtype")
def _accumulate(self, name: str, *, skipna: bool = True, **kwargs) -> StringArray:
"""
Return an ExtensionArray performing an accumulation operation.
The underlying data type might change.
Parameters
----------
name : str
Name of the function, supported values are:
- cummin
- cummax
- cumsum
- cumprod
skipna : bool, default True
If True, skip NA values.
**kwargs
Additional keyword arguments passed to the accumulation function.
Currently, there is no supported kwarg.
Returns
-------
array
Raises
------
NotImplementedError : subclass does not define accumulations
"""
if name == "cumprod":
msg = f"operation '{name}' not supported for dtype '{self.dtype}'"
raise TypeError(msg)
# We may need to strip out trailing NA values
tail: np.ndarray | None = None
na_mask: np.ndarray | None = None
ndarray = self._ndarray
np_func = {
"cumsum": np.cumsum,
"cummin": np.minimum.accumulate,
"cummax": np.maximum.accumulate,
}[name]
if self._hasna:
na_mask = cast("npt.NDArray[np.bool_]", isna(ndarray))
if np.all(na_mask):
return type(self)(ndarray)
if skipna:
if name == "cumsum":
ndarray = np.where(na_mask, "", ndarray)
else:
# We can retain the running min/max by forward/backward filling.
ndarray = ndarray.copy()
missing.pad_or_backfill_inplace(
ndarray,
method="pad",
axis=0,
)
missing.pad_or_backfill_inplace(
ndarray,
method="backfill",
axis=0,
)
else:
# When not skipping NA values, the result should be null from
# the first NA value onward.
idx = np.argmax(na_mask)
tail = np.empty(len(ndarray) - idx, dtype="object")
tail[:] = self.dtype.na_value
ndarray = ndarray[:idx]
# mypy: Cannot call function of unknown type
np_result = np_func(ndarray) # type: ignore[operator]
if tail is not None:
np_result = np.hstack((np_result, tail))
elif na_mask is not None:
# Argument 2 to "where" has incompatible type "NAType | float"
np_result = np.where(na_mask, self.dtype.na_value, np_result) # type: ignore[arg-type]
result = type(self)(np_result)
return result
def _wrap_reduction_result(self, axis: AxisInt | None, result) -> Any:
if self.dtype.na_value is np.nan and result is libmissing.NA:
# the masked_reductions use pd.NA -> convert to np.nan
return np.nan
return super()._wrap_reduction_result(axis, result)
def min(self, axis=None, skipna: bool = True, **kwargs) -> Scalar:
nv.validate_min((), kwargs)
result = masked_reductions.min(
values=self.to_numpy(), mask=self.isna(), skipna=skipna
)
return self._wrap_reduction_result(axis, result)
def max(self, axis=None, skipna: bool = True, **kwargs) -> Scalar:
nv.validate_max((), kwargs)
result = masked_reductions.max(
values=self.to_numpy(), mask=self.isna(), skipna=skipna
)
return self._wrap_reduction_result(axis, result)
def sum(
self,
*,
axis: AxisInt | None = None,
skipna: bool = True,
min_count: int = 0,
**kwargs,
) -> Scalar:
nv.validate_sum((), kwargs)
result = masked_reductions.sum(
values=self._ndarray, mask=self.isna(), skipna=skipna
)
return self._wrap_reduction_result(axis, result)
def value_counts(self, dropna: bool = True) -> Series:
from pandas.core.algorithms import value_counts_internal as value_counts
result = value_counts(self._ndarray, sort=False, dropna=dropna)
result.index = result.index.astype(self.dtype)
if self.dtype.na_value is libmissing.NA:
result = result.astype("Int64")
return result
def memory_usage(self, deep: bool = False) -> int: