|
| 1 | +# Copyright 2021 The Cirq Developers |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import abc |
| 16 | +import dataclasses |
| 17 | +import warnings |
| 18 | +from dataclasses import dataclass |
| 19 | +from typing import Dict, List, Tuple, Any, Sequence, Union, Iterable, TYPE_CHECKING |
| 20 | + |
| 21 | +import networkx as nx |
| 22 | +from cirq.devices import GridQubit |
| 23 | +from cirq.protocols.json_serialization import obj_to_dict_helper |
| 24 | +from matplotlib import pyplot as plt |
| 25 | + |
| 26 | +if TYPE_CHECKING: |
| 27 | + import cirq |
| 28 | + |
| 29 | + |
| 30 | +def dataclass_json_dict(obj: Any, namespace: str = None) -> Dict[str, Any]: |
| 31 | + return obj_to_dict_helper(obj, [f.name for f in dataclasses.fields(obj)], namespace=namespace) |
| 32 | + |
| 33 | + |
| 34 | +class NamedTopology(metaclass=abc.ABCMeta): |
| 35 | + """A topology (graph) with a name. |
| 36 | +
|
| 37 | + "Named topologies" provide a mapping from a simple dataclass to a unique graph for categories |
| 38 | + of relevant topologies. Relevant topologies may be hardware dependant, but common topologies |
| 39 | + are linear (1D) and rectangular grid topologies. |
| 40 | + """ |
| 41 | + |
| 42 | + name: str = NotImplemented |
| 43 | + """A name that uniquely identifies this topology.""" |
| 44 | + |
| 45 | + n_nodes: int = NotImplemented |
| 46 | + """The number of nodes in the topology.""" |
| 47 | + |
| 48 | + graph: nx.Graph = NotImplemented |
| 49 | + """A networkx graph representation of the topology.""" |
| 50 | + |
| 51 | + |
| 52 | +_GRIDLIKE_NODE = Union['cirq.GridQubit', Tuple[int, int]] |
| 53 | + |
| 54 | + |
| 55 | +def _node_and_coordinates( |
| 56 | + nodes: Iterable[_GRIDLIKE_NODE], |
| 57 | +) -> Iterable[Tuple[_GRIDLIKE_NODE, Tuple[int, int]]]: |
| 58 | + """Yield tuples whose first element is the input node and the second is guaranteed to be a tuple |
| 59 | + of two integers. The input node can be a tuple of ints or a GridQubit.""" |
| 60 | + for node in nodes: |
| 61 | + if isinstance(node, GridQubit): |
| 62 | + yield node, (node.row, node.col) |
| 63 | + else: |
| 64 | + x, y = node |
| 65 | + yield node, (x, y) |
| 66 | + |
| 67 | + |
| 68 | +def draw_gridlike( |
| 69 | + graph: nx.Graph, ax: plt.Axes = None, tilted: bool = True, **kwargs |
| 70 | +) -> Dict[Any, Tuple[int, int]]: |
| 71 | + """Draw a grid-like graph using Matplotlib. |
| 72 | +
|
| 73 | + This wraps nx.draw_networkx to produce a matplotlib drawing of the graph. Nodes |
| 74 | + should be two-dimensional gridlike objects. |
| 75 | +
|
| 76 | + Args: |
| 77 | + graph: A NetworkX graph whose nodes are (row, column) coordinates or cirq.GridQubits. |
| 78 | + ax: Optional matplotlib axis to use for drawing. |
| 79 | + tilted: If True, directly position as (row, column); otherwise, |
| 80 | + rotate 45 degrees to accommodate google-style diagonal grids. |
| 81 | + kwargs: Additional arguments to pass to `nx.draw_networkx`. |
| 82 | +
|
| 83 | + Returns: |
| 84 | + A positions dictionary mapping nodes to (x, y) coordinates suitable for future calls |
| 85 | + to NetworkX plotting functionality. |
| 86 | + """ |
| 87 | + if ax is None: |
| 88 | + ax = plt.gca() # coverage: ignore |
| 89 | + |
| 90 | + if tilted: |
| 91 | + pos = {node: (y, -x) for node, (x, y) in _node_and_coordinates(graph.nodes)} |
| 92 | + else: |
| 93 | + pos = {node: (x + y, y - x) for node, (x, y) in _node_and_coordinates(graph.nodes)} |
| 94 | + |
| 95 | + nx.draw_networkx(graph, pos=pos, ax=ax, **kwargs) |
| 96 | + ax.axis('equal') |
| 97 | + return pos |
| 98 | + |
| 99 | + |
| 100 | +@dataclass(frozen=True) |
| 101 | +class LineTopology(NamedTopology): |
| 102 | + """A 1D linear topology. |
| 103 | +
|
| 104 | + Node indices are contiguous integers starting from 0 with edges between |
| 105 | + adjacent integers. |
| 106 | +
|
| 107 | + Args: |
| 108 | + n_nodes: The number of nodes in a line. |
| 109 | + """ |
| 110 | + |
| 111 | + n_nodes: int |
| 112 | + |
| 113 | + def __post_init__(self): |
| 114 | + if self.n_nodes <= 1: |
| 115 | + raise ValueError("`n_nodes` must be greater than 1.") |
| 116 | + object.__setattr__(self, 'name', f'line-{self.n_nodes}') |
| 117 | + graph = nx.from_edgelist( |
| 118 | + [(i1, i2) for i1, i2 in zip(range(self.n_nodes), range(1, self.n_nodes))] |
| 119 | + ) |
| 120 | + object.__setattr__(self, 'graph', graph) |
| 121 | + |
| 122 | + def draw(self, ax=None, tilted: bool = True, **kwargs) -> Dict[Any, Tuple[int, int]]: |
| 123 | + """Draw this graph using Matplotlib. |
| 124 | +
|
| 125 | + Args: |
| 126 | + ax: Optional matplotlib axis to use for drawing. |
| 127 | + tilted: If True, draw as a horizontal line. Otherwise, draw on a diagonal. |
| 128 | + kwargs: Additional arguments to pass to `nx.draw_networkx`. |
| 129 | + """ |
| 130 | + g2 = nx.relabel_nodes(self.graph, {n: (n, 1) for n in self.graph.nodes}) |
| 131 | + return draw_gridlike(g2, ax=ax, tilted=tilted, **kwargs) |
| 132 | + |
| 133 | + def _json_dict_(self) -> Dict[str, Any]: |
| 134 | + return dataclass_json_dict(self) |
| 135 | + |
| 136 | + |
| 137 | +@dataclass(frozen=True) |
| 138 | +class TiltedSquareLattice(NamedTopology): |
| 139 | + """A grid lattice rotated 45-degrees. |
| 140 | +
|
| 141 | + This topology is based on Google devices where plaquettes consist of four qubits in a square |
| 142 | + connected to a central qubit: |
| 143 | +
|
| 144 | + x x |
| 145 | + x |
| 146 | + x x |
| 147 | +
|
| 148 | + The corner nodes are not connected to each other. `width` and `height` refer to the rectangle |
| 149 | + formed by rotating the lattice 45 degrees. `width` and `height` are measured in half-unit |
| 150 | + cells, or equivalently half the number of central nodes. |
| 151 | + An example diagram of this topology is shown below. It is a |
| 152 | + "tilted-square-lattice-6-4" with width 6 and height 4. |
| 153 | +
|
| 154 | + x |
| 155 | + │ |
| 156 | + x────X────x |
| 157 | + │ │ │ |
| 158 | + x────X────x────X────x |
| 159 | + │ │ │ │ |
| 160 | + x────X────x────X───x |
| 161 | + │ │ │ |
| 162 | + x────X────x |
| 163 | + │ |
| 164 | + x |
| 165 | +
|
| 166 | + Nodes are 2-tuples of integers which may be negative. Please see `get_placements` for |
| 167 | + mapping this topology to a GridQubit Device. |
| 168 | + """ |
| 169 | + |
| 170 | + width: int |
| 171 | + height: int |
| 172 | + |
| 173 | + def __post_init__(self): |
| 174 | + if self.width <= 0: |
| 175 | + raise ValueError("Width must be a positive integer") |
| 176 | + if self.height <= 0: |
| 177 | + raise ValueError("Height must be a positive integer") |
| 178 | + |
| 179 | + object.__setattr__(self, 'name', f'tilted-square-lattice-{self.width}-{self.height}') |
| 180 | + |
| 181 | + rect1 = set( |
| 182 | + (i + j, i - j) for i in range(self.width // 2 + 1) for j in range(self.height // 2 + 1) |
| 183 | + ) |
| 184 | + rect2 = set( |
| 185 | + ((i + j) // 2, (i - j) // 2) |
| 186 | + for i in range(1, self.width + 1, 2) |
| 187 | + for j in range(1, self.height + 1, 2) |
| 188 | + ) |
| 189 | + nodes = rect1 | rect2 |
| 190 | + g = nx.Graph() |
| 191 | + for node in nodes: |
| 192 | + for dx, dy in [(1, 0), (-1, 0), (0, 1), (0, -1)]: |
| 193 | + neighbor = (node[0] + dx, node[1] + dy) |
| 194 | + if neighbor in nodes: |
| 195 | + g.add_edge(node, neighbor) |
| 196 | + |
| 197 | + object.__setattr__(self, 'graph', g) |
| 198 | + |
| 199 | + # The number of edges = width * height (see unit tests). This can be seen if you remove |
| 200 | + # all vertices and replace edges with dots. |
| 201 | + # The formula for the number of vertices is not that nice, but you can derive it by |
| 202 | + # summing big and small Xes in the asciiart in the docstring. |
| 203 | + # There are (width//2 + 1) * (height//2 + 1) small xes and |
| 204 | + # ((width + 1)//2) * ((height + 1)//2) big ones. |
| 205 | + n_nodes = (self.width // 2 + 1) * (self.height // 2 + 1) |
| 206 | + n_nodes += ((self.width + 1) // 2) * ((self.height + 1) // 2) |
| 207 | + object.__setattr__(self, 'n_nodes', n_nodes) |
| 208 | + |
| 209 | + def draw(self, ax=None, tilted=True, **kwargs): |
| 210 | + """Draw this graph using Matplotlib. |
| 211 | +
|
| 212 | + Args: |
| 213 | + ax: Optional matplotlib axis to use for drawing. |
| 214 | + tilted: If True, directly position as (row, column); otherwise, |
| 215 | + rotate 45 degrees to accommodate the diagonal nature of this topology. |
| 216 | + kwargs: Additional arguments to pass to `nx.draw_networkx`. |
| 217 | + """ |
| 218 | + return draw_gridlike(self.graph, ax=ax, tilted=tilted, **kwargs) |
| 219 | + |
| 220 | + def nodes_as_gridqubits(self) -> List['cirq.GridQubit']: |
| 221 | + """Get the graph nodes as cirq.GridQubit""" |
| 222 | + return [GridQubit(r, c) for r, c in sorted(self.graph.nodes)] |
| 223 | + |
| 224 | + def _json_dict_(self) -> Dict[str, Any]: |
| 225 | + return dataclass_json_dict(self) |
| 226 | + |
| 227 | + |
| 228 | +def get_placements( |
| 229 | + big_graph: nx.Graph, small_graph: nx.Graph, max_placements=100_000 |
| 230 | +) -> List[Dict]: |
| 231 | + """Get 'placements' mapping small_graph nodes onto those of `big_graph`. |
| 232 | +
|
| 233 | + This function considers monomorphisms with a restriction: we restrict only to unique set |
| 234 | + of `big_graph` qubits. Some monomorphisms may be basically |
| 235 | + the same mapping just rotated/flipped which we purposefully exclude. This could |
| 236 | + exclude meaningful differences like using the same qubits but having the edges assigned |
| 237 | + differently, but it prevents the number of placements from blowing up. |
| 238 | +
|
| 239 | + Args: |
| 240 | + big_graph: The parent, super-graph. We often consider the case where this is a |
| 241 | + nx.Graph representation of a Device whose nodes are `cirq.Qid`s like `GridQubit`s. |
| 242 | + small_graph: The subgraph. We often consider the case where this is a NamedTopology |
| 243 | + graph. |
| 244 | + max_placements: Raise a value error if there are more than this many placement |
| 245 | + possibilities. It is possible to use `big_graph`, `small_graph` combinations |
| 246 | + that result in an intractable number of placements. |
| 247 | +
|
| 248 | + Raises: |
| 249 | + ValueError: if the number of placements exceeds `max_placements`. |
| 250 | +
|
| 251 | + Returns: |
| 252 | + A list of placement dictionaries. Each dictionary maps the nodes in `small_graph` to |
| 253 | + nodes in `big_graph` with a monomorphic relationship. That's to say: if an edge exists |
| 254 | + in `small_graph` between two nodes, it will exist in `big_graph` between the mapped nodes. |
| 255 | + """ |
| 256 | + matcher = nx.algorithms.isomorphism.GraphMatcher(big_graph, small_graph) |
| 257 | + |
| 258 | + # de-duplicate rotations, see docstring. |
| 259 | + dedupe = {} |
| 260 | + for big_to_small_map in matcher.subgraph_monomorphisms_iter(): |
| 261 | + dedupe[frozenset(big_to_small_map.keys())] = big_to_small_map |
| 262 | + if len(dedupe) > max_placements: |
| 263 | + # coverage: ignore |
| 264 | + raise ValueError( |
| 265 | + f"We found more than {max_placements} placements. Please use a " |
| 266 | + f"more constraining `big_graph` or a more constrained `small_graph`." |
| 267 | + ) |
| 268 | + |
| 269 | + small_to_bigs = [] |
| 270 | + for big in sorted(dedupe.keys()): |
| 271 | + big_to_small_map = dedupe[big] |
| 272 | + small_to_big_map = {v: k for k, v in big_to_small_map.items()} |
| 273 | + small_to_bigs.append(small_to_big_map) |
| 274 | + return small_to_bigs |
| 275 | + |
| 276 | + |
| 277 | +def draw_placements( |
| 278 | + big_graph: nx.Graph, |
| 279 | + small_graph: nx.Graph, |
| 280 | + small_to_big_mappings, |
| 281 | + max_plots=20, |
| 282 | + axes: Sequence[plt.Axes] = None, |
| 283 | +): |
| 284 | + """Draw a visualization of placements from small_graph onto big_graph using Matplotlib. |
| 285 | +
|
| 286 | + The entire `big_graph` will be drawn with default blue colored nodes. `small_graph` nodes |
| 287 | + and edges will be highlighted with a red color. |
| 288 | + """ |
| 289 | + if len(small_to_big_mappings) > max_plots: |
| 290 | + # coverage: ignore |
| 291 | + warnings.warn(f"You've provided a lot of mappings. Only plotting the first {max_plots}") |
| 292 | + small_to_big_mappings = small_to_big_mappings[:max_plots] |
| 293 | + |
| 294 | + call_show = False |
| 295 | + if axes is None: |
| 296 | + # coverage: ignore |
| 297 | + call_show = True |
| 298 | + |
| 299 | + for i, small_to_big_map in enumerate(small_to_big_mappings): |
| 300 | + if axes is not None: |
| 301 | + ax = axes[i] |
| 302 | + else: |
| 303 | + # coverage: ignore |
| 304 | + ax = plt.gca() |
| 305 | + |
| 306 | + small_mapped = nx.relabel_nodes(small_graph, small_to_big_map) |
| 307 | + draw_gridlike(big_graph, ax=ax) |
| 308 | + draw_gridlike( |
| 309 | + small_mapped, node_color='red', edge_color='red', width=2, with_labels=False, ax=ax |
| 310 | + ) |
| 311 | + ax.axis('equal') |
| 312 | + if call_show: |
| 313 | + # coverage: ignore |
| 314 | + # poor man's multi-axis figure: call plt.show() after each plot |
| 315 | + # and jupyter will put the plots one after another. |
| 316 | + plt.show() |
0 commit comments