forked from pymc-devs/pymc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompound.py
77 lines (66 loc) · 2.53 KB
/
compound.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright 2020 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Created on Mar 7, 2011
@author: johnsalvatier
"""
from collections import namedtuple
import numpy as np
class CompoundStep:
"""Step method composed of a list of several other step
methods applied in sequence."""
def __init__(self, methods):
self.methods = list(methods)
self.generates_stats = any(method.generates_stats for method in self.methods)
self.stats_dtypes = []
for method in self.methods:
if method.generates_stats:
self.stats_dtypes.extend(method.stats_dtypes)
def step(self, point):
if self.generates_stats:
states = []
for method in self.methods:
if method.generates_stats:
point, state = method.step(point)
states.extend(state)
else:
point = method.step(point)
# Model logp can only be the logp of the _last_ state, if there is
# one. Pop all others (if dict), or set to np.nan (if namedtuple).
for state in states[:-1]:
if isinstance(state, dict):
state.pop("model_logp", None)
elif isinstance(state, namedtuple):
state = state._replace(logp=np.nan)
return point, states
else:
for method in self.methods:
point = method.step(point)
return point
def warnings(self):
warns = []
for method in self.methods:
if hasattr(method, "warnings"):
warns.extend(method.warnings())
return warns
def stop_tuning(self):
for method in self.methods:
method.stop_tuning()
def reset_tuning(self):
for method in self.methods:
if hasattr(method, "reset_tuning"):
method.reset_tuning()
@property
def vars(self):
return [var for method in self.methods for var in method.vars]