generated from roboflow/template-python
-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathtest_match_pattern.py
135 lines (121 loc) Β· 3.38 KB
/
test_match_pattern.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import pytest
from supervision import Detections, MatchPattern
@pytest.mark.parametrize(
"constraints",
[
(
[
(1, ["Box1.class_id"]),
(0.1, ["Box1.confidence"]),
([0, 0, 15, 15], ["Box2.xyxy"]),
]
), # Test constraints with values
(
[
(lambda id: id == 1, ["Box1.class_id"]),
(lambda score: score == 0.1, ["Box1.confidence"]),
(lambda xyxy: xyxy[3] == 15, ["Box2.xyxy"]),
]
), # Test constraints with functions
(
[
(lambda id: id == 1, ["Box1.class_id"]),
(lambda xyxy1, xyxy2: xyxy1[0] == xyxy2[0], ["Box1.xyxy", "Box2.xyxy"]),
]
), # Test constraints with multiple arguments
],
)
def test_match_pattern(constraints):
detections = Detections(
xyxy=np.array(
[
[0, 0, 10, 10],
[0, 0, 15, 15],
[5, 5, 20, 20],
]
),
confidence=np.array([0.1, 0.2, 0.3]),
class_id=np.array([1, 2, 3]),
)
expected_result = [
Detections(
xyxy=np.array(
[
[0, 0, 10, 10],
[0, 0, 15, 15],
]
),
confidence=np.array([0.1, 0.2]),
class_id=np.array([1, 2]),
data={"match_name": np.array(["Box1", "Box2"])},
)
]
matches = MatchPattern(constraints).match(detections)
assert matches == expected_result
def test_match_pattern_with_2_results():
detections = Detections(
xyxy=np.array(
[
[0, 0, 10, 10],
[0, 0, 15, 15],
[5, 5, 20, 20],
]
),
confidence=np.array([0.1, 0.2, 0.3]),
class_id=np.array([1, 2, 3]),
)
expected_result = [
Detections(
xyxy=np.array(
[
[0, 0, 10, 10],
]
),
confidence=np.array([0.1]),
class_id=np.array([1]),
data={"match_name": np.array(["Box1"])},
),
Detections(
xyxy=np.array(
[
[0, 0, 15, 15],
]
),
confidence=np.array([0.2]),
class_id=np.array([2]),
data={"match_name": np.array(["Box1"])},
),
]
matches = MatchPattern([[lambda xyxy: xyxy[0] == 0, ["Box1.xyxy"]]]).match(
detections
)
assert matches == expected_result
def test_add_constraint():
detections = Detections(
xyxy=np.array(
[
[0, 0, 10, 10],
[0, 0, 15, 15],
[5, 5, 20, 20],
]
),
confidence=np.array([0.1, 0.2, 0.3]),
class_id=np.array([1, 2, 3]),
)
expected_result = [
Detections(
xyxy=np.array(
[
[0, 0, 10, 10],
]
),
confidence=np.array([0.1]),
class_id=np.array([1]),
data={"match_name": np.array(["Box1"])},
)
]
pattern = MatchPattern([])
pattern.add_constraint(lambda id: id == 1, ["Box1.class_id"])
matches = pattern.match(detections)
assert matches == expected_result