This set of tutorials and educational materials is being developed in the numpy-tutorials repository, and is not a part of the NumPy source tree. The goal of this repository is to provide high-quality resources by the NumPy project, both for self-learning and for teaching classes with. If you're interested in adding your own content, check the Contributing section.
To open a live version of the content, click the launch Binder button above.
To open each of the .md
files, right click and select "Open with -> Notebook".
You can also launch individual tutorials on Binder by clicking on the rocket
icon that appears in the upper-right corner of each tutorial. To download a
local copy of the .ipynb
files, you can either
clone this repository
or use the download icon in the upper-right corner of each tutorial.
---
hidden: true
---
features
applications
contributing
{doc}`content/tutorial-svd`
^^^^^^^^^^^^^^^^^^^^^^^^^^^
```{glue:} thumb_svd
```
+++
{badge}`numpy.linalg, badge-primary`
---
{doc}`content/tutorial-ma`
^^^^^^^^^^^^^^^^^^^^^^^^^^
```{glue:} thumb_ma
```
+++
{badge}`numpy.ma, badge-primary`
{badge}`numpy.polynomial, badge-primary`
---
{doc}`content/save-load-arrays`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

+++
{badge}`I/O, badge-primary`
{doc}`content/mooreslaw-tutorial`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```{glue:} thumb_mooreslaw
```
---
{doc}`content/tutorial-deep-learning-on-mnist`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```{glue:} thumb_mnist
```
---
{doc}`content/tutorial-deep-reinforcement-learning-with-pong-from-pixels`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

---
{doc}`content/tutorial-nlp-from-scratch`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

---
{doc}`content/tutorial-x-ray-image-processing`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```{glue:} thumb_xray
```
---
{doc}`content/tutorial-static_equilibrium`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```{glue:} thumb_static_eq
```
---
{doc}`content/tutorial-plotting-fractals`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

---
{doc}`content/tutorial-air-quality-analysis`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The following links may be useful:
- NumPy Code of Conduct
- Main NumPy documentation
- NumPy documentation team meeting notes
- NEP 44 - Restructuring the NumPy documentation
- Blog post - Documentation as a way to build Community
Note that regular documentation issues for NumPy can be found in the main NumPy
repository (see the Documentation
labels there).