|
579 | 579 |
|
580 | 580 | # L2 regularization hyperparameter
|
581 | 581 | __C.SOLVER.WEIGHT_DECAY = 0.0005
|
| 582 | +# L2 regularization hyperparameter for GroupNorm's parameters |
| 583 | +__C.SOLVER.WEIGHT_DECAY_GN = 0.0 |
582 | 584 |
|
583 | 585 | # Whether to double the learning rate for bias
|
584 | 586 | __C.SOLVER.BIAS_DOUBLE_LR = True
|
|
621 | 623 | # Hidden layer dimension when using an MLP for the RoI box head
|
622 | 624 | __C.FAST_RCNN.MLP_HEAD_DIM = 1024
|
623 | 625 |
|
| 626 | +# Hidden Conv layer dimension when using Convs for the RoI box head |
| 627 | +__C.FAST_RCNN.CONV_HEAD_DIM = 256 |
| 628 | +# Number of stacked Conv layers in the RoI box head |
| 629 | +__C.FAST_RCNN.NUM_STACKED_CONVS = 4 |
| 630 | + |
624 | 631 | # RoI transformation function (e.g., RoIPool or RoIAlign)
|
625 | 632 | # (RoIPoolF is the same as RoIPool; ignore the trailing 'F')
|
626 | 633 | __C.FAST_RCNN.ROI_XFORM_METHOD = 'RoIPoolF'
|
|
716 | 723 | __C.FPN.RPN_COLLECT_SCALE = 1
|
717 | 724 | # Use extra FPN levels, as done in the RetinaNet paper
|
718 | 725 | __C.FPN.EXTRA_CONV_LEVELS = False
|
| 726 | +# Use GroupNorm in the FPN-specific layers (lateral, etc.) |
| 727 | +__C.FPN.USE_GN = False |
719 | 728 |
|
720 | 729 |
|
721 | 730 | # ---------------------------------------------------------------------------- #
|
|
873 | 882 |
|
874 | 883 | # Residual transformation function
|
875 | 884 | __C.RESNETS.TRANS_FUNC = 'bottleneck_transformation'
|
| 885 | +# ResNet's stem function (conv1 and pool1) |
| 886 | +__C.RESNETS.STEM_FUNC = 'basic_bn_stem' |
| 887 | +# ResNet's shortcut function |
| 888 | +__C.RESNETS.SHORTCUT_FUNC = 'basic_bn_shortcut' |
876 | 889 |
|
877 | 890 | # Apply dilation in stage "res5"
|
878 | 891 | __C.RESNETS.RES5_DILATION = 1
|
|
887 | 900 | # Otherwise, treat as a relative path to __C.ROOT_DIR
|
888 | 901 | __C.RESNETS.IMAGENET_PRETRAINED_WEIGHTS = ''
|
889 | 902 |
|
| 903 | +# Use GroupNorm instead of BatchNorm |
| 904 | +__C.RESNETS.USE_GN = False |
| 905 | + |
| 906 | + |
| 907 | +# ---------------------------------------------------------------------------- # |
| 908 | +# GroupNorm options |
| 909 | +# ---------------------------------------------------------------------------- # |
| 910 | +__C.GROUP_NORM = AttrDict() |
| 911 | +# Number of dimensions per group in GroupNorm (-1 if using NUM_GROUPS) |
| 912 | +__C.GROUP_NORM.DIM_PER_GP = -1 |
| 913 | +# Number of groups in GroupNorm (-1 if using DIM_PER_GP) |
| 914 | +__C.GROUP_NORM.NUM_GROUPS = 32 |
| 915 | +# GroupNorm's small constant in the denominator |
| 916 | +__C.GROUP_NORM.EPSILON = 1e-5 |
| 917 | + |
890 | 918 |
|
891 | 919 | # ---------------------------------------------------------------------------- #
|
892 | 920 | # MISC options
|
|
0 commit comments