-
Notifications
You must be signed in to change notification settings - Fork 385
/
Copy pathmod.rs
1609 lines (1399 loc) · 64.3 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use rustc::middle::const_val;
use rustc::hir::def_id::DefId;
use rustc::mir::mir_map::MirMap;
use rustc::mir::repr as mir;
use rustc::traits::{self, ProjectionMode};
use rustc::ty::fold::TypeFoldable;
use rustc::ty::layout::{self, Layout, Size};
use rustc::ty::subst::{self, Subst, Substs};
use rustc::ty::{self, Ty, TyCtxt, BareFnTy};
use rustc::util::nodemap::DefIdMap;
use rustc_data_structures::indexed_vec::Idx;
use std::cell::RefCell;
use std::ops::Deref;
use std::rc::Rc;
use std::{iter, mem};
use syntax::ast;
use syntax::attr;
use syntax::codemap::{self, DUMMY_SP, Span};
use error::{EvalError, EvalResult};
use memory::{Memory, Pointer, FunctionDefinition};
use primval::{self, PrimVal};
use std::collections::HashMap;
mod stepper;
pub fn step<'ecx, 'a: 'ecx, 'tcx: 'a>(ecx: &'ecx mut EvalContext<'a, 'tcx>) -> EvalResult<'tcx, bool> {
stepper::Stepper::new(ecx).step()
}
pub struct EvalContext<'a, 'tcx: 'a> {
/// The results of the type checker, from rustc.
tcx: TyCtxt<'a, 'tcx, 'tcx>,
/// A mapping from NodeIds to Mir, from rustc. Only contains MIR for crate-local items.
mir_map: &'a MirMap<'tcx>,
/// A local cache from DefIds to Mir for non-crate-local items.
mir_cache: RefCell<DefIdMap<Rc<mir::Mir<'tcx>>>>,
/// The virtual memory system.
memory: Memory<'tcx>,
/// Precomputed statics, constants and promoteds.
statics: HashMap<ConstantId<'tcx>, Pointer>,
/// The virtual call stack.
stack: Vec<Frame<'a, 'tcx>>,
}
/// A stack frame.
pub struct Frame<'a, 'tcx: 'a> {
////////////////////////////////////////////////////////////////////////////////
// Function and callsite information
////////////////////////////////////////////////////////////////////////////////
/// The MIR for the function called on this frame.
pub mir: CachedMir<'a, 'tcx>,
/// The def_id of the current function.
pub def_id: DefId,
/// type substitutions for the current function invocation.
pub substs: &'tcx Substs<'tcx>,
/// The span of the call site.
pub span: codemap::Span,
////////////////////////////////////////////////////////////////////////////////
// Return pointer and local allocations
////////////////////////////////////////////////////////////////////////////////
/// A pointer for writing the return value of the current call if it's not a diverging call.
pub return_ptr: Option<Pointer>,
/// The list of locals for the current function, stored in order as
/// `[arguments..., variables..., temporaries...]`. The variables begin at `self.var_offset`
/// and the temporaries at `self.temp_offset`.
pub locals: Vec<Pointer>,
/// The offset of the first variable in `self.locals`.
pub var_offset: usize,
/// The offset of the first temporary in `self.locals`.
pub temp_offset: usize,
////////////////////////////////////////////////////////////////////////////////
// Current position within the function
////////////////////////////////////////////////////////////////////////////////
/// The block that is currently executed (or will be executed after the above call stacks
/// return).
pub block: mir::BasicBlock,
/// The index of the currently evaluated statment.
pub stmt: usize,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
struct Lvalue {
ptr: Pointer,
extra: LvalueExtra,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum LvalueExtra {
None,
Length(u64),
// TODO(solson): Vtable(memory::AllocId),
DowncastVariant(usize),
}
#[derive(Clone)]
pub enum CachedMir<'mir, 'tcx: 'mir> {
Ref(&'mir mir::Mir<'tcx>),
Owned(Rc<mir::Mir<'tcx>>)
}
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
/// Uniquely identifies a specific constant or static
struct ConstantId<'tcx> {
/// the def id of the constant/static or in case of promoteds, the def id of the function they belong to
def_id: DefId,
/// In case of statics and constants this is `Substs::empty()`, so only promoteds and associated
/// constants actually have something useful here. We could special case statics and constants,
/// but that would only require more branching when working with constants, and not bring any
/// real benefits.
substs: &'tcx Substs<'tcx>,
kind: ConstantKind,
}
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
enum ConstantKind {
Promoted(mir::Promoted),
/// Statics, constants and associated constants
Global,
}
impl<'a, 'tcx> EvalContext<'a, 'tcx> {
pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>, mir_map: &'a MirMap<'tcx>) -> Self {
EvalContext {
tcx: tcx,
mir_map: mir_map,
mir_cache: RefCell::new(DefIdMap()),
memory: Memory::new(tcx.sess
.target
.uint_type
.bit_width()
.expect("Session::target::uint_type was usize")/8),
statics: HashMap::new(),
stack: Vec::new(),
}
}
pub fn alloc_ret_ptr(&mut self, output_ty: ty::FnOutput<'tcx>, substs: &'tcx Substs<'tcx>) -> Option<Pointer> {
match output_ty {
ty::FnConverging(ty) => {
let size = self.type_size_with_substs(ty, substs);
Some(self.memory.allocate(size))
}
ty::FnDiverging => None,
}
}
pub fn memory(&self) -> &Memory {
&self.memory
}
pub fn memory_mut(&mut self) -> &mut Memory<'tcx> {
&mut self.memory
}
pub fn stack(&self) -> &[Frame] {
&self.stack
}
// TODO(solson): Try making const_to_primval instead.
fn const_to_ptr(&mut self, const_val: &const_val::ConstVal) -> EvalResult<'tcx, Pointer> {
use rustc::middle::const_val::ConstVal::*;
match *const_val {
Float(_f) => unimplemented!(),
Integral(int) => {
// TODO(solson): Check int constant type.
let ptr = self.memory.allocate(8);
self.memory.write_uint(ptr, int.to_u64_unchecked(), 8)?;
Ok(ptr)
}
Str(ref s) => {
let psize = self.memory.pointer_size;
let static_ptr = self.memory.allocate(s.len());
let ptr = self.memory.allocate(psize * 2);
self.memory.write_bytes(static_ptr, s.as_bytes())?;
self.memory.write_ptr(ptr, static_ptr)?;
self.memory.write_usize(ptr.offset(psize as isize), s.len() as u64)?;
Ok(ptr)
}
ByteStr(ref bs) => {
let psize = self.memory.pointer_size;
let static_ptr = self.memory.allocate(bs.len());
let ptr = self.memory.allocate(psize);
self.memory.write_bytes(static_ptr, bs)?;
self.memory.write_ptr(ptr, static_ptr)?;
Ok(ptr)
}
Bool(b) => {
let ptr = self.memory.allocate(1);
self.memory.write_bool(ptr, b)?;
Ok(ptr)
}
Char(c) => {
let ptr = self.memory.allocate(4);
self.memory.write_uint(ptr, c as u64, 4)?;
Ok(ptr)
},
Struct(_node_id) => unimplemented!(),
Tuple(_node_id) => unimplemented!(),
Function(_def_id) => unimplemented!(),
Array(_, _) => unimplemented!(),
Repeat(_, _) => unimplemented!(),
Dummy => unimplemented!(),
}
}
fn type_needs_drop(&self, ty: Ty<'tcx>) -> bool {
self.tcx.type_needs_drop_given_env(ty, &self.tcx.empty_parameter_environment())
}
fn type_is_sized(&self, ty: Ty<'tcx>) -> bool {
ty.is_sized(self.tcx, &self.tcx.empty_parameter_environment(), DUMMY_SP)
}
fn fulfill_obligation(&self, trait_ref: ty::PolyTraitRef<'tcx>) -> traits::Vtable<'tcx, ()> {
// Do the initial selection for the obligation. This yields the shallow result we are
// looking for -- that is, what specific impl.
self.tcx.normalizing_infer_ctxt(ProjectionMode::Any).enter(|infcx| {
let mut selcx = traits::SelectionContext::new(&infcx);
let obligation = traits::Obligation::new(
traits::ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID),
trait_ref.to_poly_trait_predicate(),
);
let selection = selcx.select(&obligation).unwrap().unwrap();
// Currently, we use a fulfillment context to completely resolve all nested obligations.
// This is because they can inform the inference of the impl's type parameters.
let mut fulfill_cx = traits::FulfillmentContext::new();
let vtable = selection.map(|predicate| {
fulfill_cx.register_predicate_obligation(&infcx, predicate);
});
infcx.drain_fulfillment_cx_or_panic(DUMMY_SP, &mut fulfill_cx, &vtable)
})
}
/// Trait method, which has to be resolved to an impl method.
pub fn trait_method(
&self,
def_id: DefId,
substs: &'tcx Substs<'tcx>
) -> (DefId, &'tcx Substs<'tcx>) {
let method_item = self.tcx.impl_or_trait_item(def_id);
let trait_id = method_item.container().id();
let trait_ref = ty::Binder(substs.to_trait_ref(self.tcx, trait_id));
match self.fulfill_obligation(trait_ref) {
traits::VtableImpl(vtable_impl) => {
let impl_did = vtable_impl.impl_def_id;
let mname = self.tcx.item_name(def_id);
// Create a concatenated set of substitutions which includes those from the impl
// and those from the method:
let impl_substs = vtable_impl.substs.with_method_from(substs);
let substs = self.tcx.mk_substs(impl_substs);
let mth = get_impl_method(self.tcx, impl_did, substs, mname);
(mth.method.def_id, mth.substs)
}
traits::VtableClosure(vtable_closure) =>
(vtable_closure.closure_def_id, vtable_closure.substs.func_substs),
traits::VtableFnPointer(_fn_ty) => {
let _trait_closure_kind = self.tcx.lang_items.fn_trait_kind(trait_id).unwrap();
unimplemented!()
// let llfn = trans_fn_pointer_shim(ccx, trait_closure_kind, fn_ty);
// let method_ty = def_ty(tcx, def_id, substs);
// let fn_ptr_ty = match method_ty.sty {
// ty::TyFnDef(_, _, fty) => tcx.mk_ty(ty::TyFnPtr(fty)),
// _ => unreachable!("expected fn item type, found {}",
// method_ty)
// };
// Callee::ptr(immediate_rvalue(llfn, fn_ptr_ty))
}
traits::VtableObject(ref _data) => {
unimplemented!()
// Callee {
// data: Virtual(traits::get_vtable_index_of_object_method(
// tcx, data, def_id)),
// ty: def_ty(tcx, def_id, substs)
// }
}
vtable => unreachable!("resolved vtable bad vtable {:?} in trans", vtable),
}
}
fn load_mir(&self, def_id: DefId) -> CachedMir<'a, 'tcx> {
use rustc_trans::back::symbol_names::def_id_to_string;
match self.tcx.map.as_local_node_id(def_id) {
Some(node_id) => CachedMir::Ref(self.mir_map.map.get(&node_id).unwrap()),
None => {
let mut mir_cache = self.mir_cache.borrow_mut();
if let Some(mir) = mir_cache.get(&def_id) {
return CachedMir::Owned(mir.clone());
}
let cs = &self.tcx.sess.cstore;
let mir = cs.maybe_get_item_mir(self.tcx, def_id).unwrap_or_else(|| {
panic!("no mir for `{}`", def_id_to_string(self.tcx, def_id));
});
let cached = Rc::new(mir);
mir_cache.insert(def_id, cached.clone());
CachedMir::Owned(cached)
}
}
}
fn monomorphize(&self, ty: Ty<'tcx>, substs: &'tcx Substs<'tcx>) -> Ty<'tcx> {
let substituted = ty.subst(self.tcx, substs);
self.tcx.normalize_associated_type(&substituted)
}
fn type_size(&self, ty: Ty<'tcx>) -> usize {
self.type_size_with_substs(ty, self.substs())
}
fn type_size_with_substs(&self, ty: Ty<'tcx>, substs: &'tcx Substs<'tcx>) -> usize {
self.type_layout_with_substs(ty, substs).size(&self.tcx.data_layout).bytes() as usize
}
fn type_layout(&self, ty: Ty<'tcx>) -> &'tcx Layout {
self.type_layout_with_substs(ty, self.substs())
}
fn type_layout_with_substs(&self, ty: Ty<'tcx>, substs: &'tcx Substs<'tcx>) -> &'tcx Layout {
// TODO(solson): Is this inefficient? Needs investigation.
let ty = self.monomorphize(ty, substs);
self.tcx.normalizing_infer_ctxt(ProjectionMode::Any).enter(|infcx| {
// TODO(solson): Report this error properly.
ty.layout(&infcx).unwrap()
})
}
pub fn push_stack_frame(&mut self, def_id: DefId, span: codemap::Span, mir: CachedMir<'a, 'tcx>, substs: &'tcx Substs<'tcx>,
return_ptr: Option<Pointer>)
{
let arg_tys = mir.arg_decls.iter().map(|a| a.ty);
let var_tys = mir.var_decls.iter().map(|v| v.ty);
let temp_tys = mir.temp_decls.iter().map(|t| t.ty);
let num_args = mir.arg_decls.len();
let num_vars = mir.var_decls.len();
::log_settings::settings().indentation += 1;
let locals: Vec<Pointer> = arg_tys.chain(var_tys).chain(temp_tys).map(|ty| {
let size = self.type_size_with_substs(ty, substs);
self.memory.allocate(size)
}).collect();
self.stack.push(Frame {
mir: mir.clone(),
block: mir::START_BLOCK,
return_ptr: return_ptr,
locals: locals,
var_offset: num_args,
temp_offset: num_args + num_vars,
span: span,
def_id: def_id,
substs: substs,
stmt: 0,
});
}
fn pop_stack_frame(&mut self) {
::log_settings::settings().indentation -= 1;
let _frame = self.stack.pop().expect("tried to pop a stack frame, but there were none");
// TODO(solson): Deallocate local variables.
}
fn eval_terminator(&mut self, terminator: &mir::Terminator<'tcx>)
-> EvalResult<'tcx, ()> {
use rustc::mir::repr::TerminatorKind::*;
match terminator.kind {
Return => self.pop_stack_frame(),
Goto { target } => {
self.frame_mut().block = target;
},
If { ref cond, targets: (then_target, else_target) } => {
let cond_ptr = self.eval_operand(cond)?;
let cond_val = self.memory.read_bool(cond_ptr)?;
self.frame_mut().block = if cond_val { then_target } else { else_target };
}
SwitchInt { ref discr, ref values, ref targets, .. } => {
let discr_ptr = self.eval_lvalue(discr)?.to_ptr();
let discr_ty = self.lvalue_ty(discr);
let discr_size = self
.type_layout(discr_ty)
.size(&self.tcx.data_layout)
.bytes() as usize;
let discr_val = self.memory.read_uint(discr_ptr, discr_size)?;
if let ty::TyChar = discr_ty.sty {
if ::std::char::from_u32(discr_val as u32).is_none() {
return Err(EvalError::InvalidChar(discr_val as u32));
}
}
// Branch to the `otherwise` case by default, if no match is found.
let mut target_block = targets[targets.len() - 1];
for (index, val_const) in values.iter().enumerate() {
let ptr = self.const_to_ptr(val_const)?;
let val = self.memory.read_uint(ptr, discr_size)?;
if discr_val == val {
target_block = targets[index];
break;
}
}
self.frame_mut().block = target_block;
}
Switch { ref discr, ref targets, adt_def } => {
let adt_ptr = self.eval_lvalue(discr)?.to_ptr();
let adt_ty = self.lvalue_ty(discr);
let discr_val = self.read_discriminant_value(adt_ptr, adt_ty)?;
let matching = adt_def.variants.iter()
.position(|v| discr_val == v.disr_val.to_u64_unchecked());
match matching {
Some(i) => {
self.frame_mut().block = targets[i];
},
None => return Err(EvalError::InvalidDiscriminant),
}
}
Call { ref func, ref args, ref destination, .. } => {
let mut return_ptr = None;
if let Some((ref lv, target)) = *destination {
self.frame_mut().block = target;
return_ptr = Some(self.eval_lvalue(lv)?.to_ptr());
}
let func_ty = self.operand_ty(func);
match func_ty.sty {
ty::TyFnPtr(bare_fn_ty) => {
let ptr = self.eval_operand(func)?;
assert_eq!(ptr.offset, 0);
let fn_ptr = self.memory.read_ptr(ptr)?;
let FunctionDefinition { def_id, substs, fn_ty } = self.memory.get_fn(fn_ptr.alloc_id)?;
if fn_ty != bare_fn_ty {
return Err(EvalError::FunctionPointerTyMismatch(fn_ty, bare_fn_ty));
}
self.eval_fn_call(def_id, substs, bare_fn_ty, return_ptr, args,
terminator.source_info.span)?
},
ty::TyFnDef(def_id, substs, fn_ty) => {
self.eval_fn_call(def_id, substs, fn_ty, return_ptr, args,
terminator.source_info.span)?
}
_ => return Err(EvalError::Unimplemented(format!("can't handle callee of type {:?}", func_ty))),
}
}
Drop { ref location, target, .. } => {
let ptr = self.eval_lvalue(location)?.to_ptr();
let ty = self.lvalue_ty(location);
self.drop(ptr, ty)?;
self.frame_mut().block = target;
}
Assert { ref cond, expected, ref msg, target, .. } => {
let cond_ptr = self.eval_operand(cond)?;
if expected == self.memory.read_bool(cond_ptr)? {
self.frame_mut().block = target;
} else {
return match *msg {
mir::AssertMessage::BoundsCheck { ref len, ref index } => {
let len = self.eval_operand(len).expect("can't eval len");
let len = self.memory.read_usize(len).expect("can't read len");
let index = self.eval_operand(index).expect("can't eval index");
let index = self.memory.read_usize(index).expect("can't read index");
Err(EvalError::ArrayIndexOutOfBounds(terminator.source_info.span, len, index))
},
mir::AssertMessage::Math(ref err) => Err(EvalError::Math(terminator.source_info.span, err.clone())),
}
}
},
DropAndReplace { .. } => unimplemented!(),
Resume => unimplemented!(),
Unreachable => unimplemented!(),
}
Ok(())
}
pub fn eval_fn_call(
&mut self,
def_id: DefId,
substs: &'tcx Substs<'tcx>,
fn_ty: &'tcx BareFnTy,
return_ptr: Option<Pointer>,
args: &[mir::Operand<'tcx>],
span: Span,
) -> EvalResult<'tcx, ()> {
use syntax::abi::Abi;
match fn_ty.abi {
Abi::RustIntrinsic => {
let name = self.tcx.item_name(def_id).as_str();
match fn_ty.sig.0.output {
ty::FnConverging(ty) => {
let layout = self.type_layout(ty);
let ret = return_ptr.unwrap();
self.call_intrinsic(&name, substs, args, ret, layout)
}
ty::FnDiverging => unimplemented!(),
}
}
Abi::C => {
match fn_ty.sig.0.output {
ty::FnConverging(ty) => {
let size = self.type_size(ty);
self.call_c_abi(def_id, args, return_ptr.unwrap(), size)
}
ty::FnDiverging => unimplemented!(),
}
}
Abi::Rust | Abi::RustCall => {
// TODO(solson): Adjust the first argument when calling a Fn or
// FnMut closure via FnOnce::call_once.
// Only trait methods can have a Self parameter.
let (resolved_def_id, resolved_substs) = if substs.self_ty().is_some() {
self.trait_method(def_id, substs)
} else {
(def_id, substs)
};
let mut arg_srcs = Vec::new();
for arg in args {
let src = self.eval_operand(arg)?;
let src_ty = self.operand_ty(arg);
arg_srcs.push((src, src_ty));
}
if fn_ty.abi == Abi::RustCall && !args.is_empty() {
arg_srcs.pop();
let last_arg = args.last().unwrap();
let last = self.eval_operand(last_arg)?;
let last_ty = self.operand_ty(last_arg);
let last_layout = self.type_layout(last_ty);
match (&last_ty.sty, last_layout) {
(&ty::TyTuple(fields),
&Layout::Univariant { ref variant, .. }) => {
let offsets = iter::once(0)
.chain(variant.offset_after_field.iter()
.map(|s| s.bytes()));
for (offset, ty) in offsets.zip(fields) {
let src = last.offset(offset as isize);
arg_srcs.push((src, ty));
}
}
ty => panic!("expected tuple as last argument in function with 'rust-call' ABI, got {:?}", ty),
}
}
let mir = self.load_mir(resolved_def_id);
self.push_stack_frame(def_id, span, mir, resolved_substs, return_ptr);
for (i, (src, src_ty)) in arg_srcs.into_iter().enumerate() {
let dest = self.frame().locals[i];
self.move_(src, dest, src_ty)?;
}
Ok(())
}
abi => Err(EvalError::Unimplemented(format!("can't handle function with {:?} ABI", abi))),
}
}
fn drop(&mut self, ptr: Pointer, ty: Ty<'tcx>) -> EvalResult<'tcx, ()> {
if !self.type_needs_drop(ty) {
debug!("no need to drop {:?}", ty);
return Ok(());
}
trace!("-need to drop {:?}", ty);
// TODO(solson): Call user-defined Drop::drop impls.
match ty.sty {
ty::TyBox(contents_ty) => {
match self.memory.read_ptr(ptr) {
Ok(contents_ptr) => {
self.drop(contents_ptr, contents_ty)?;
trace!("-deallocating box");
self.memory.deallocate(contents_ptr)?;
}
Err(EvalError::ReadBytesAsPointer) => {
let size = self.memory.pointer_size;
let possible_drop_fill = self.memory.read_bytes(ptr, size)?;
if possible_drop_fill.iter().all(|&b| b == mem::POST_DROP_U8) {
return Ok(());
} else {
return Err(EvalError::ReadBytesAsPointer);
}
}
Err(e) => return Err(e),
}
}
// TODO(solson): Implement drop for other relevant types (e.g. aggregates).
_ => {}
}
// Filling drop.
// FIXME(solson): Trait objects (with no static size) probably get filled, too.
let size = self.type_size(ty);
self.memory.drop_fill(ptr, size)?;
Ok(())
}
fn read_discriminant_value(&self, adt_ptr: Pointer, adt_ty: Ty<'tcx>) -> EvalResult<'tcx, u64> {
use rustc::ty::layout::Layout::*;
let adt_layout = self.type_layout(adt_ty);
let discr_val = match *adt_layout {
General { discr, .. } | CEnum { discr, .. } => {
let discr_size = discr.size().bytes();
self.memory.read_uint(adt_ptr, discr_size as usize)?
}
RawNullablePointer { nndiscr, .. } => {
self.read_nonnull_discriminant_value(adt_ptr, nndiscr)?
}
StructWrappedNullablePointer { nndiscr, ref discrfield, .. } => {
let offset = self.nonnull_offset(adt_ty, nndiscr, discrfield)?;
let nonnull = adt_ptr.offset(offset.bytes() as isize);
self.read_nonnull_discriminant_value(nonnull, nndiscr)?
}
// The discriminant_value intrinsic returns 0 for non-sum types.
Array { .. } | FatPointer { .. } | Scalar { .. } | Univariant { .. } |
Vector { .. } => 0,
};
Ok(discr_val)
}
fn read_nonnull_discriminant_value(&self, ptr: Pointer, nndiscr: u64) -> EvalResult<'tcx, u64> {
let not_null = match self.memory.read_usize(ptr) {
Ok(0) => false,
Ok(_) | Err(EvalError::ReadPointerAsBytes) => true,
Err(e) => return Err(e),
};
assert!(nndiscr == 0 || nndiscr == 1);
Ok(if not_null { nndiscr } else { 1 - nndiscr })
}
/// applies the binary operation `op` to the two operands and writes a tuple of the result
/// and a boolean signifying the potential overflow to the destination
fn intrinsic_with_overflow(
&mut self,
op: mir::BinOp,
left: &mir::Operand<'tcx>,
right: &mir::Operand<'tcx>,
dest: Pointer,
dest_layout: &'tcx Layout,
) -> EvalResult<'tcx, ()> {
use rustc::ty::layout::Layout::*;
let tup_layout = match *dest_layout {
Univariant { ref variant, .. } => variant,
_ => panic!("checked bin op returns something other than a tuple"),
};
let overflowed = self.intrinsic_overflowing(op, left, right, dest)?;
let offset = tup_layout.field_offset(1).bytes() as isize;
self.memory.write_bool(dest.offset(offset), overflowed)
}
/// Applies the binary operation `op` to the arguments and writes the result to the destination.
/// Returns `true` if the operation overflowed.
fn intrinsic_overflowing(
&mut self,
op: mir::BinOp,
left: &mir::Operand<'tcx>,
right: &mir::Operand<'tcx>,
dest: Pointer,
) -> EvalResult<'tcx, bool> {
let left_ptr = self.eval_operand(left)?;
let left_ty = self.operand_ty(left);
let left_val = self.read_primval(left_ptr, left_ty)?;
let right_ptr = self.eval_operand(right)?;
let right_ty = self.operand_ty(right);
let right_val = self.read_primval(right_ptr, right_ty)?;
let (val, overflow) = primval::binary_op(op, left_val, right_val)?;
self.memory.write_primval(dest, val)?;
Ok(overflow)
}
fn call_intrinsic(
&mut self,
name: &str,
substs: &'tcx Substs<'tcx>,
args: &[mir::Operand<'tcx>],
dest: Pointer,
dest_layout: &'tcx Layout,
) -> EvalResult<'tcx, ()> {
let args_res: EvalResult<Vec<Pointer>> = args.iter()
.map(|arg| self.eval_operand(arg))
.collect();
let args_ptrs = args_res?;
let pointer_size = self.memory.pointer_size;
match name {
"add_with_overflow" => self.intrinsic_with_overflow(mir::BinOp::Add, &args[0], &args[1], dest, dest_layout)?,
"sub_with_overflow" => self.intrinsic_with_overflow(mir::BinOp::Sub, &args[0], &args[1], dest, dest_layout)?,
"mul_with_overflow" => self.intrinsic_with_overflow(mir::BinOp::Mul, &args[0], &args[1], dest, dest_layout)?,
// FIXME: turn into an assertion to catch wrong `assume` that would cause UB in llvm
"assume" => {}
"copy_nonoverlapping" => {
let elem_ty = *substs.types.get(subst::FnSpace, 0);
let elem_size = self.type_size(elem_ty);
let src = self.memory.read_ptr(args_ptrs[0])?;
let dest = self.memory.read_ptr(args_ptrs[1])?;
let count = self.memory.read_isize(args_ptrs[2])?;
self.memory.copy(src, dest, count as usize * elem_size)?;
}
"discriminant_value" => {
let ty = *substs.types.get(subst::FnSpace, 0);
let adt_ptr = self.memory.read_ptr(args_ptrs[0])?;
let discr_val = self.read_discriminant_value(adt_ptr, ty)?;
self.memory.write_uint(dest, discr_val, 8)?;
}
"forget" => {
let arg_ty = *substs.types.get(subst::FnSpace, 0);
let arg_size = self.type_size(arg_ty);
self.memory.drop_fill(args_ptrs[0], arg_size)?;
}
"init" => self.memory.write_repeat(dest, 0, dest_layout.size(&self.tcx.data_layout).bytes() as usize)?,
"min_align_of" => {
// FIXME: use correct value
self.memory.write_int(dest, 1, pointer_size)?;
}
"move_val_init" => {
let ty = *substs.types.get(subst::FnSpace, 0);
let ptr = self.memory.read_ptr(args_ptrs[0])?;
self.move_(args_ptrs[1], ptr, ty)?;
}
"offset" => {
let pointee_ty = *substs.types.get(subst::FnSpace, 0);
let pointee_size = self.type_size(pointee_ty) as isize;
let ptr_arg = args_ptrs[0];
let offset = self.memory.read_isize(args_ptrs[1])?;
match self.memory.read_ptr(ptr_arg) {
Ok(ptr) => {
let result_ptr = ptr.offset(offset as isize * pointee_size);
self.memory.write_ptr(dest, result_ptr)?;
}
Err(EvalError::ReadBytesAsPointer) => {
let addr = self.memory.read_isize(ptr_arg)?;
let result_addr = addr + offset * pointee_size as i64;
self.memory.write_isize(dest, result_addr)?;
}
Err(e) => return Err(e),
}
}
"overflowing_sub" => {
self.intrinsic_overflowing(mir::BinOp::Sub, &args[0], &args[1], dest)?;
}
"overflowing_mul" => {
self.intrinsic_overflowing(mir::BinOp::Mul, &args[0], &args[1], dest)?;
}
"overflowing_add" => {
self.intrinsic_overflowing(mir::BinOp::Add, &args[0], &args[1], dest)?;
}
"size_of" => {
let ty = *substs.types.get(subst::FnSpace, 0);
let size = self.type_size(ty) as u64;
self.memory.write_uint(dest, size, pointer_size)?;
}
"size_of_val" => {
let ty = *substs.types.get(subst::FnSpace, 0);
if self.type_is_sized(ty) {
let size = self.type_size(ty) as u64;
self.memory.write_uint(dest, size, pointer_size)?;
} else {
match ty.sty {
ty::TySlice(_) | ty::TyStr => {
let elem_ty = ty.sequence_element_type(self.tcx);
let elem_size = self.type_size(elem_ty) as u64;
let ptr_size = self.memory.pointer_size as isize;
let n = self.memory.read_usize(args_ptrs[0].offset(ptr_size))?;
self.memory.write_uint(dest, n * elem_size, pointer_size)?;
}
_ => return Err(EvalError::Unimplemented(format!("unimplemented: size_of_val::<{:?}>", ty))),
}
}
}
"transmute" => {
let ty = *substs.types.get(subst::FnSpace, 0);
self.move_(args_ptrs[0], dest, ty)?;
}
"uninit" => self.memory.mark_definedness(dest, dest_layout.size(&self.tcx.data_layout).bytes() as usize, false)?,
name => return Err(EvalError::Unimplemented(format!("unimplemented intrinsic: {}", name))),
}
// Since we pushed no stack frame, the main loop will act
// as if the call just completed and it's returning to the
// current frame.
Ok(())
}
fn call_c_abi(
&mut self,
def_id: DefId,
args: &[mir::Operand<'tcx>],
dest: Pointer,
dest_size: usize,
) -> EvalResult<'tcx, ()> {
let name = self.tcx.item_name(def_id);
let attrs = self.tcx.get_attrs(def_id);
let link_name = match attr::first_attr_value_str_by_name(&attrs, "link_name") {
Some(ln) => ln.clone(),
None => name.as_str(),
};
let args_res: EvalResult<Vec<Pointer>> = args.iter()
.map(|arg| self.eval_operand(arg))
.collect();
let args = args_res?;
match &link_name[..] {
"__rust_allocate" => {
let size = self.memory.read_usize(args[0])?;
let ptr = self.memory.allocate(size as usize);
self.memory.write_ptr(dest, ptr)?;
}
"__rust_reallocate" => {
let ptr = self.memory.read_ptr(args[0])?;
let size = self.memory.read_usize(args[2])?;
self.memory.reallocate(ptr, size as usize)?;
self.memory.write_ptr(dest, ptr)?;
}
"memcmp" => {
let left = self.memory.read_ptr(args[0])?;
let right = self.memory.read_ptr(args[1])?;
let n = self.memory.read_usize(args[2])? as usize;
let result = {
let left_bytes = self.memory.read_bytes(left, n)?;
let right_bytes = self.memory.read_bytes(right, n)?;
use std::cmp::Ordering::*;
match left_bytes.cmp(right_bytes) {
Less => -1,
Equal => 0,
Greater => 1,
}
};
self.memory.write_int(dest, result, dest_size)?;
}
_ => {
return Err(EvalError::Unimplemented(format!("can't call C ABI function: {}", link_name)));
}
}
// Since we pushed no stack frame, the main loop will act
// as if the call just completed and it's returning to the
// current frame.
Ok(())
}
fn assign_fields<I: IntoIterator<Item = u64>>(
&mut self,
dest: Pointer,
offsets: I,
operands: &[mir::Operand<'tcx>],
) -> EvalResult<'tcx, ()> {
for (offset, operand) in offsets.into_iter().zip(operands) {
let src = self.eval_operand(operand)?;
let src_ty = self.operand_ty(operand);
let field_dest = dest.offset(offset as isize);
self.move_(src, field_dest, src_ty)?;
}
Ok(())
}
fn eval_assignment(&mut self, lvalue: &mir::Lvalue<'tcx>, rvalue: &mir::Rvalue<'tcx>)
-> EvalResult<'tcx, ()>
{
let dest = self.eval_lvalue(lvalue)?.to_ptr();
let dest_ty = self.lvalue_ty(lvalue);
let dest_layout = self.type_layout(dest_ty);
use rustc::mir::repr::Rvalue::*;
match *rvalue {
Use(ref operand) => {
let src = self.eval_operand(operand)?;
self.move_(src, dest, dest_ty)?;
}
BinaryOp(bin_op, ref left, ref right) => {
// ignore overflow bit, rustc inserts check branches for us
self.intrinsic_overflowing(bin_op, left, right, dest)?;
}
CheckedBinaryOp(bin_op, ref left, ref right) => {
self.intrinsic_with_overflow(bin_op, left, right, dest, dest_layout)?;
}
UnaryOp(un_op, ref operand) => {
let ptr = self.eval_operand(operand)?;
let ty = self.operand_ty(operand);
let val = self.read_primval(ptr, ty)?;
self.memory.write_primval(dest, primval::unary_op(un_op, val)?)?;
}
Aggregate(ref kind, ref operands) => {
use rustc::ty::layout::Layout::*;
match *dest_layout {
Univariant { ref variant, .. } => {
let offsets = iter::once(0)
.chain(variant.offset_after_field.iter().map(|s| s.bytes()));
self.assign_fields(dest, offsets, operands)?;
}
Array { .. } => {
let elem_size = match dest_ty.sty {
ty::TyArray(elem_ty, _) => self.type_size(elem_ty) as u64,
_ => panic!("tried to assign {:?} to non-array type {:?}",
kind, dest_ty),
};
let offsets = (0..).map(|i| i * elem_size);
self.assign_fields(dest, offsets, operands)?;
}
General { discr, ref variants, .. } => {
if let mir::AggregateKind::Adt(adt_def, variant, _) = *kind {
let discr_val = adt_def.variants[variant].disr_val.to_u64_unchecked();
let discr_size = discr.size().bytes() as usize;
self.memory.write_uint(dest, discr_val, discr_size)?;
let offsets = variants[variant].offset_after_field.iter()
.map(|s| s.bytes());
self.assign_fields(dest, offsets, operands)?;
} else {
panic!("tried to assign {:?} to Layout::General", kind);
}
}
RawNullablePointer { nndiscr, .. } => {
if let mir::AggregateKind::Adt(_, variant, _) = *kind {
if nndiscr == variant as u64 {
assert_eq!(operands.len(), 1);
let operand = &operands[0];
let src = self.eval_operand(operand)?;
let src_ty = self.operand_ty(operand);