-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathdep_node.rs
231 lines (217 loc) · 8.63 KB
/
dep_node.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::fmt::Debug;
macro_rules! try_opt {
($e:expr) => (
match $e {
Some(r) => r,
None => return None,
}
)
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum DepNode<D: Clone + Debug> {
// The `D` type is "how definitions are identified".
// During compilation, it is always `DefId`, but when serializing
// it is mapped to `DefPath`.
// Represents the `Krate` as a whole (the `hir::Krate` value) (as
// distinct from the krate module). This is basically a hash of
// the entire krate, so if you read from `Krate` (e.g., by calling
// `tcx.map.krate()`), we will have to assume that any change
// means that you need to be recompiled. This is because the
// `Krate` value gives you access to all other items. To avoid
// this fate, do not call `tcx.map.krate()`; instead, prefer
// wrappers like `tcx.visit_all_items_in_krate()`. If there is no
// suitable wrapper, you can use `tcx.dep_graph.ignore()` to gain
// access to the krate, but you must remember to add suitable
// edges yourself for the individual items that you read.
Krate,
// Represents the HIR node with the given node-id
Hir(D),
// Represents the metadata for a given HIR node, typically found
// in an extern crate.
MetaData(D),
// Represents different phases in the compiler.
CrateReader,
CollectLanguageItems,
CheckStaticRecursion,
ResolveLifetimes,
RegionResolveCrate,
CheckLoops,
PluginRegistrar,
StabilityIndex,
CollectItem(D),
Coherence,
EffectCheck,
Liveness,
Resolve,
EntryPoint,
CheckEntryFn,
CoherenceCheckImpl(D),
CoherenceOverlapCheck(D),
CoherenceOverlapCheckSpecial(D),
CoherenceOverlapInherentCheck(D),
CoherenceOrphanCheck(D),
Variance,
WfCheck(D),
TypeckItemType(D),
TypeckItemBody(D),
Dropck,
DropckImpl(D),
UnusedTraitCheck,
CheckConst(D),
Privacy,
IntrinsicCheck(D),
MatchCheck(D),
MirMapConstruction(D),
MirPass(D),
MirTypeck(D),
BorrowCheck(D),
RvalueCheck(D),
Reachability,
DeadCheck,
StabilityCheck,
LateLintCheck,
TransCrate,
TransCrateItem(D),
TransInlinedItem(D),
TransWriteMetadata,
LinkBinary,
// Nodes representing bits of computed IR in the tcx. Each shared
// table in the tcx (or elsewhere) maps to one of these
// nodes. Often we map multiple tables to the same node if there
// is no point in distinguishing them (e.g., both the type and
// predicates for an item wind up in `ItemSignature`). Other
// times, such as `ImplItems` vs `TraitItemDefIds`, tables which
// might be mergable are kept distinct because the sets of def-ids
// to which they apply are disjoint, and hence we might as well
// have distinct labels for easier debugging.
ImplOrTraitItems(D),
ItemSignature(D),
FieldTy(D),
SizedConstraint(D),
TraitItemDefIds(D),
InherentImpls(D),
ImplItems(D),
// The set of impls for a given trait. Ultimately, it would be
// nice to get more fine-grained here (e.g., to include a
// simplified type), but we can't do that until we restructure the
// HIR to distinguish the *header* of an impl from its body. This
// is because changes to the header may change the self-type of
// the impl and hence would require us to be more conservative
// than changes in the impl body.
TraitImpls(D),
// Nodes representing caches. To properly handle a true cache, we
// don't use a DepTrackingMap, but rather we push a task node.
// Otherwise the write into the map would be incorrectly
// attributed to the first task that happened to fill the cache,
// which would yield an overly conservative dep-graph.
TraitItems(D),
ReprHints(D),
TraitSelect(D, Vec<D>),
}
impl<D: Clone + Debug> DepNode<D> {
/// Used in testing
pub fn from_label_string(label: &str, data: D) -> Result<DepNode<D>, ()> {
macro_rules! check {
($($name:ident,)*) => {
match label {
$(stringify!($name) => Ok(DepNode::$name(data)),)*
_ => Err(())
}
}
}
check! {
CollectItem,
BorrowCheck,
TransCrateItem,
TypeckItemType,
TypeckItemBody,
ImplOrTraitItems,
ItemSignature,
FieldTy,
TraitItemDefIds,
InherentImpls,
ImplItems,
TraitImpls,
ReprHints,
}
}
pub fn map_def<E, OP>(&self, mut op: OP) -> Option<DepNode<E>>
where OP: FnMut(&D) -> Option<E>, E: Clone + Debug
{
use self::DepNode::*;
match *self {
Krate => Some(Krate),
CrateReader => Some(CrateReader),
CollectLanguageItems => Some(CollectLanguageItems),
CheckStaticRecursion => Some(CheckStaticRecursion),
ResolveLifetimes => Some(ResolveLifetimes),
RegionResolveCrate => Some(RegionResolveCrate),
CheckLoops => Some(CheckLoops),
PluginRegistrar => Some(PluginRegistrar),
StabilityIndex => Some(StabilityIndex),
Coherence => Some(Coherence),
EffectCheck => Some(EffectCheck),
Liveness => Some(Liveness),
Resolve => Some(Resolve),
EntryPoint => Some(EntryPoint),
CheckEntryFn => Some(CheckEntryFn),
Variance => Some(Variance),
Dropck => Some(Dropck),
UnusedTraitCheck => Some(UnusedTraitCheck),
Privacy => Some(Privacy),
Reachability => Some(Reachability),
DeadCheck => Some(DeadCheck),
StabilityCheck => Some(StabilityCheck),
LateLintCheck => Some(LateLintCheck),
TransCrate => Some(TransCrate),
TransWriteMetadata => Some(TransWriteMetadata),
LinkBinary => Some(LinkBinary),
Hir(ref d) => op(d).map(Hir),
MetaData(ref d) => op(d).map(MetaData),
CollectItem(ref d) => op(d).map(CollectItem),
CoherenceCheckImpl(ref d) => op(d).map(CoherenceCheckImpl),
CoherenceOverlapCheck(ref d) => op(d).map(CoherenceOverlapCheck),
CoherenceOverlapCheckSpecial(ref d) => op(d).map(CoherenceOverlapCheckSpecial),
CoherenceOverlapInherentCheck(ref d) => op(d).map(CoherenceOverlapInherentCheck),
CoherenceOrphanCheck(ref d) => op(d).map(CoherenceOrphanCheck),
WfCheck(ref d) => op(d).map(WfCheck),
TypeckItemType(ref d) => op(d).map(TypeckItemType),
TypeckItemBody(ref d) => op(d).map(TypeckItemBody),
DropckImpl(ref d) => op(d).map(DropckImpl),
CheckConst(ref d) => op(d).map(CheckConst),
IntrinsicCheck(ref d) => op(d).map(IntrinsicCheck),
MatchCheck(ref d) => op(d).map(MatchCheck),
MirMapConstruction(ref d) => op(d).map(MirMapConstruction),
MirPass(ref d) => op(d).map(MirPass),
MirTypeck(ref d) => op(d).map(MirTypeck),
BorrowCheck(ref d) => op(d).map(BorrowCheck),
RvalueCheck(ref d) => op(d).map(RvalueCheck),
TransCrateItem(ref d) => op(d).map(TransCrateItem),
TransInlinedItem(ref d) => op(d).map(TransInlinedItem),
ImplOrTraitItems(ref d) => op(d).map(ImplOrTraitItems),
ItemSignature(ref d) => op(d).map(ItemSignature),
FieldTy(ref d) => op(d).map(FieldTy),
SizedConstraint(ref d) => op(d).map(SizedConstraint),
TraitItemDefIds(ref d) => op(d).map(TraitItemDefIds),
InherentImpls(ref d) => op(d).map(InherentImpls),
ImplItems(ref d) => op(d).map(ImplItems),
TraitImpls(ref d) => op(d).map(TraitImpls),
TraitItems(ref d) => op(d).map(TraitItems),
ReprHints(ref d) => op(d).map(ReprHints),
TraitSelect(ref d, ref type_ds) => {
let d = try_opt!(op(d));
let type_ds = try_opt!(type_ds.iter().map(|d| op(d)).collect());
Some(TraitSelect(d, type_ds))
}
}
}
}