-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathobject_safety.rs
373 lines (330 loc) · 13.7 KB
/
object_safety.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! "Object safety" refers to the ability for a trait to be converted
//! to an object. In general, traits may only be converted to an
//! object if all of their methods meet certain criteria. In particular,
//! they must:
//!
//! - have a suitable receiver from which we can extract a vtable;
//! - not reference the erased type `Self` except for in this receiver;
//! - not have generic type parameters
use super::supertraits;
use super::elaborate_predicates;
use middle::subst::{self, SelfSpace, TypeSpace};
use middle::traits;
use middle::ty::{self, ToPolyTraitRef, Ty};
use std::rc::Rc;
use syntax::ast;
use util::ppaux::Repr;
pub enum ObjectSafetyViolation<'tcx> {
/// Self : Sized declared on the trait
SizedSelf,
/// Supertrait reference references `Self` an in illegal location
/// (e.g. `trait Foo : Bar<Self>`)
SupertraitSelf,
/// Method has something illegal
Method(Rc<ty::Method<'tcx>>, MethodViolationCode),
}
/// Reasons a method might not be object-safe.
#[derive(Copy,Clone,Debug)]
pub enum MethodViolationCode {
/// e.g., `fn foo()`
StaticMethod,
/// e.g., `fn foo(&self, x: Self)` or `fn foo(&self) -> Self`
ReferencesSelf,
/// e.g., `fn foo<A>()`
Generic,
}
pub fn is_object_safe<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId)
-> bool
{
// Because we query yes/no results frequently, we keep a cache:
let def = ty::lookup_trait_def(tcx, trait_def_id);
let result = def.object_safety().unwrap_or_else(|| {
let result = object_safety_violations(tcx, trait_def_id).is_empty();
// Record just a yes/no result in the cache; this is what is
// queried most frequently. Note that this may overwrite a
// previous result, but always with the same thing.
def.set_object_safety(result);
result
});
debug!("is_object_safe({}) = {}", trait_def_id.repr(tcx), result);
result
}
pub fn object_safety_violations<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId)
-> Vec<ObjectSafetyViolation<'tcx>>
{
traits::supertrait_def_ids(tcx, trait_def_id)
.flat_map(|def_id| object_safety_violations_for_trait(tcx, def_id).into_iter())
.collect()
}
fn object_safety_violations_for_trait<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId)
-> Vec<ObjectSafetyViolation<'tcx>>
{
// Check methods for violations.
let mut violations: Vec<_> =
ty::trait_items(tcx, trait_def_id).iter()
.flat_map(|item| {
match *item {
ty::MethodTraitItem(ref m) => {
object_safety_violation_for_method(tcx, trait_def_id, &**m)
.map(|code| ObjectSafetyViolation::Method(m.clone(), code))
.into_iter()
}
_ => None.into_iter(),
}
})
.collect();
// Check the trait itself.
if trait_has_sized_self(tcx, trait_def_id) {
violations.push(ObjectSafetyViolation::SizedSelf);
}
if supertraits_reference_self(tcx, trait_def_id) {
violations.push(ObjectSafetyViolation::SupertraitSelf);
}
debug!("object_safety_violations_for_trait(trait_def_id={}) = {}",
trait_def_id.repr(tcx),
violations.repr(tcx));
violations
}
fn supertraits_reference_self<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId)
-> bool
{
let trait_def = ty::lookup_trait_def(tcx, trait_def_id);
let trait_ref = trait_def.trait_ref.clone();
let trait_ref = trait_ref.to_poly_trait_ref();
let predicates = ty::lookup_super_predicates(tcx, trait_def_id);
predicates
.predicates
.into_iter()
.map(|predicate| predicate.subst_supertrait(tcx, &trait_ref))
.any(|predicate| {
match predicate {
ty::Predicate::Trait(ref data) => {
// In the case of a trait predicate, we can skip the "self" type.
data.0.trait_ref.substs.types.get_slice(TypeSpace)
.iter()
.cloned()
.any(is_self)
}
ty::Predicate::Projection(..) |
ty::Predicate::TypeOutlives(..) |
ty::Predicate::RegionOutlives(..) |
ty::Predicate::Equate(..) => {
false
}
}
})
}
fn trait_has_sized_self<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId)
-> bool
{
let trait_def = ty::lookup_trait_def(tcx, trait_def_id);
let trait_predicates = ty::lookup_predicates(tcx, trait_def_id);
generics_require_sized_self(tcx, &trait_def.generics, &trait_predicates)
}
fn generics_require_sized_self<'tcx>(tcx: &ty::ctxt<'tcx>,
generics: &ty::Generics<'tcx>,
predicates: &ty::GenericPredicates<'tcx>)
-> bool
{
let sized_def_id = match tcx.lang_items.sized_trait() {
Some(def_id) => def_id,
None => { return false; /* No Sized trait, can't require it! */ }
};
// Search for a predicate like `Self : Sized` amongst the trait bounds.
let free_substs = ty::construct_free_substs(tcx, generics, ast::DUMMY_NODE_ID);
let predicates = predicates.instantiate(tcx, &free_substs).predicates.into_vec();
elaborate_predicates(tcx, predicates)
.any(|predicate| {
match predicate {
ty::Predicate::Trait(ref trait_pred) if trait_pred.def_id() == sized_def_id => {
is_self(trait_pred.0.self_ty())
}
ty::Predicate::Projection(..) |
ty::Predicate::Trait(..) |
ty::Predicate::Equate(..) |
ty::Predicate::RegionOutlives(..) |
ty::Predicate::TypeOutlives(..) => {
false
}
}
})
}
/// Returns `Some(_)` if this method makes the containing trait not object safe.
fn object_safety_violation_for_method<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId,
method: &ty::Method<'tcx>)
-> Option<MethodViolationCode>
{
// Any method that has a `Self : Sized` requisite is otherwise
// exempt from the regulations.
if generics_require_sized_self(tcx, &method.generics, &method.predicates) {
return None;
}
virtual_call_violation_for_method(tcx, trait_def_id, method)
}
/// We say a method is *vtable safe* if it can be invoked on a trait
/// object. Note that object-safe traits can have some
/// non-vtable-safe methods, so long as they require `Self:Sized` or
/// otherwise ensure that they cannot be used when `Self=Trait`.
pub fn is_vtable_safe_method<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId,
method: &ty::Method<'tcx>)
-> bool
{
virtual_call_violation_for_method(tcx, trait_def_id, method).is_none()
}
/// Returns `Some(_)` if this method cannot be called on a trait
/// object; this does not necessarily imply that the enclosing trait
/// is not object safe, because the method might have a where clause
/// `Self:Sized`.
fn virtual_call_violation_for_method<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId,
method: &ty::Method<'tcx>)
-> Option<MethodViolationCode>
{
// The method's first parameter must be something that derefs (or
// autorefs) to `&self`. For now, we only accept `self`, `&self`
// and `Box<Self>`.
match method.explicit_self {
ty::StaticExplicitSelfCategory => {
return Some(MethodViolationCode::StaticMethod);
}
ty::ByValueExplicitSelfCategory |
ty::ByReferenceExplicitSelfCategory(..) |
ty::ByBoxExplicitSelfCategory => {
}
}
// The `Self` type is erased, so it should not appear in list of
// arguments or return type apart from the receiver.
let ref sig = method.fty.sig;
for &input_ty in &sig.0.inputs[1..] {
if contains_illegal_self_type_reference(tcx, trait_def_id, input_ty) {
return Some(MethodViolationCode::ReferencesSelf);
}
}
if let ty::FnConverging(result_type) = sig.0.output {
if contains_illegal_self_type_reference(tcx, trait_def_id, result_type) {
return Some(MethodViolationCode::ReferencesSelf);
}
}
// We can't monomorphize things like `fn foo<A>(...)`.
if !method.generics.types.is_empty_in(subst::FnSpace) {
return Some(MethodViolationCode::Generic);
}
None
}
fn contains_illegal_self_type_reference<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId,
ty: Ty<'tcx>)
-> bool
{
// This is somewhat subtle. In general, we want to forbid
// references to `Self` in the argument and return types,
// since the value of `Self` is erased. However, there is one
// exception: it is ok to reference `Self` in order to access
// an associated type of the current trait, since we retain
// the value of those associated types in the object type
// itself.
//
// ```rust
// trait SuperTrait {
// type X;
// }
//
// trait Trait : SuperTrait {
// type Y;
// fn foo(&self, x: Self) // bad
// fn foo(&self) -> Self // bad
// fn foo(&self) -> Option<Self> // bad
// fn foo(&self) -> Self::Y // OK, desugars to next example
// fn foo(&self) -> <Self as Trait>::Y // OK
// fn foo(&self) -> Self::X // OK, desugars to next example
// fn foo(&self) -> <Self as SuperTrait>::X // OK
// }
// ```
//
// However, it is not as simple as allowing `Self` in a projected
// type, because there are illegal ways to use `Self` as well:
//
// ```rust
// trait Trait : SuperTrait {
// ...
// fn foo(&self) -> <Self as SomeOtherTrait>::X;
// }
// ```
//
// Here we will not have the type of `X` recorded in the
// object type, and we cannot resolve `Self as SomeOtherTrait`
// without knowing what `Self` is.
let mut supertraits: Option<Vec<ty::PolyTraitRef<'tcx>>> = None;
let mut error = false;
ty::maybe_walk_ty(ty, |ty| {
match ty.sty {
ty::ty_param(ref param_ty) => {
if param_ty.space == SelfSpace {
error = true;
}
false // no contained types to walk
}
ty::ty_projection(ref data) => {
// This is a projected type `<Foo as SomeTrait>::X`.
// Compute supertraits of current trait lazily.
if supertraits.is_none() {
let trait_def = ty::lookup_trait_def(tcx, trait_def_id);
let trait_ref = ty::Binder(trait_def.trait_ref.clone());
supertraits = Some(traits::supertraits(tcx, trait_ref).collect());
}
// Determine whether the trait reference `Foo as
// SomeTrait` is in fact a supertrait of the
// current trait. In that case, this type is
// legal, because the type `X` will be specified
// in the object type. Note that we can just use
// direct equality here because all of these types
// are part of the formal parameter listing, and
// hence there should be no inference variables.
let projection_trait_ref = ty::Binder(data.trait_ref.clone());
let is_supertrait_of_current_trait =
supertraits.as_ref().unwrap().contains(&projection_trait_ref);
if is_supertrait_of_current_trait {
false // do not walk contained types, do not report error, do collect $200
} else {
true // DO walk contained types, POSSIBLY reporting an error
}
}
_ => true, // walk contained types, if any
}
});
error
}
impl<'tcx> Repr<'tcx> for ObjectSafetyViolation<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
match *self {
ObjectSafetyViolation::SizedSelf =>
format!("SizedSelf"),
ObjectSafetyViolation::SupertraitSelf =>
format!("SupertraitSelf"),
ObjectSafetyViolation::Method(ref m, code) =>
format!("Method({},{:?})", m.repr(tcx), code),
}
}
}
fn is_self<'tcx>(ty: Ty<'tcx>) -> bool {
match ty.sty {
ty::ty_param(ref data) => data.space == subst::SelfSpace,
_ => false,
}
}