-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathdropck_outlives.rs
245 lines (221 loc) · 8.41 KB
/
dropck_outlives.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
use crate::infer::at::At;
use crate::infer::InferOk;
use crate::infer::canonical::OriginalQueryValues;
use std::iter::FromIterator;
use syntax::source_map::Span;
use crate::ty::subst::Kind;
use crate::ty::{self, Ty, TyCtxt};
impl<'cx, 'tcx> At<'cx, 'tcx> {
/// Given a type `ty` of some value being dropped, computes a set
/// of "kinds" (types, regions) that must be outlive the execution
/// of the destructor. These basically correspond to data that the
/// destructor might access. This is used during regionck to
/// impose "outlives" constraints on any lifetimes referenced
/// within.
///
/// The rules here are given by the "dropck" RFCs, notably [#1238]
/// and [#1327]. This is a fixed-point computation, where we
/// explore all the data that will be dropped (transitively) when
/// a value of type `ty` is dropped. For each type T that will be
/// dropped and which has a destructor, we must assume that all
/// the types/regions of T are live during the destructor, unless
/// they are marked with a special attribute (`#[may_dangle]`).
///
/// [#1238]: https://github.com/rust-lang/rfcs/blob/master/text/1238-nonparametric-dropck.md
/// [#1327]: https://github.com/rust-lang/rfcs/blob/master/text/1327-dropck-param-eyepatch.md
pub fn dropck_outlives(&self, ty: Ty<'tcx>) -> InferOk<'tcx, Vec<Kind<'tcx>>> {
debug!(
"dropck_outlives(ty={:?}, param_env={:?})",
ty, self.param_env,
);
// Quick check: there are a number of cases that we know do not require
// any destructor.
let tcx = self.infcx.tcx;
if trivial_dropck_outlives(tcx, ty) {
return InferOk {
value: vec![],
obligations: vec![],
};
}
let gcx = tcx.global_tcx();
let mut orig_values = OriginalQueryValues::default();
let c_ty = self.infcx.canonicalize_query(&self.param_env.and(ty), &mut orig_values);
let span = self.cause.span;
debug!("c_ty = {:?}", c_ty);
if let Ok(result) = &gcx.dropck_outlives(c_ty) {
if result.is_proven() {
if let Ok(InferOk { value, obligations }) =
self.infcx.instantiate_query_response_and_region_obligations(
self.cause,
self.param_env,
&orig_values,
result)
{
let ty = self.infcx.resolve_vars_if_possible(&ty);
let kinds = value.into_kinds_reporting_overflows(tcx, span, ty);
return InferOk {
value: kinds,
obligations,
};
}
}
}
// Errors and ambiuity in dropck occur in two cases:
// - unresolved inference variables at the end of typeck
// - non well-formed types where projections cannot be resolved
// Either of these should have created an error before.
tcx.sess
.delay_span_bug(span, "dtorck encountered internal error");
InferOk {
value: vec![],
obligations: vec![],
}
}
}
#[derive(Clone, Debug, Default)]
pub struct DropckOutlivesResult<'tcx> {
pub kinds: Vec<Kind<'tcx>>,
pub overflows: Vec<Ty<'tcx>>,
}
impl<'tcx> DropckOutlivesResult<'tcx> {
pub fn report_overflows(&self, tcx: TyCtxt<'tcx>, span: Span, ty: Ty<'tcx>) {
if let Some(overflow_ty) = self.overflows.iter().next() {
let mut err = struct_span_err!(
tcx.sess,
span,
E0320,
"overflow while adding drop-check rules for {}",
ty,
);
err.note(&format!("overflowed on {}", overflow_ty));
err.emit();
}
}
pub fn into_kinds_reporting_overflows(
self,
tcx: TyCtxt<'tcx>,
span: Span,
ty: Ty<'tcx>,
) -> Vec<Kind<'tcx>> {
self.report_overflows(tcx, span, ty);
let DropckOutlivesResult { kinds, overflows: _ } = self;
kinds
}
}
/// A set of constraints that need to be satisfied in order for
/// a type to be valid for destruction.
#[derive(Clone, Debug)]
pub struct DtorckConstraint<'tcx> {
/// Types that are required to be alive in order for this
/// type to be valid for destruction.
pub outlives: Vec<ty::subst::Kind<'tcx>>,
/// Types that could not be resolved: projections and params.
pub dtorck_types: Vec<Ty<'tcx>>,
/// If, during the computation of the dtorck constraint, we
/// overflow, that gets recorded here. The caller is expected to
/// report an error.
pub overflows: Vec<Ty<'tcx>>,
}
impl<'tcx> DtorckConstraint<'tcx> {
pub fn empty() -> DtorckConstraint<'tcx> {
DtorckConstraint {
outlives: vec![],
dtorck_types: vec![],
overflows: vec![],
}
}
}
impl<'tcx> FromIterator<DtorckConstraint<'tcx>> for DtorckConstraint<'tcx> {
fn from_iter<I: IntoIterator<Item = DtorckConstraint<'tcx>>>(iter: I) -> Self {
let mut result = Self::empty();
for DtorckConstraint { outlives, dtorck_types, overflows } in iter {
result.outlives.extend(outlives);
result.dtorck_types.extend(dtorck_types);
result.overflows.extend(overflows);
}
result
}
}
BraceStructTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for DropckOutlivesResult<'tcx> {
kinds, overflows
}
}
BraceStructLiftImpl! {
impl<'a, 'tcx> Lift<'tcx> for DropckOutlivesResult<'a> {
type Lifted = DropckOutlivesResult<'tcx>;
kinds, overflows
}
}
impl_stable_hash_for!(struct DropckOutlivesResult<'tcx> {
kinds, overflows
});
impl_stable_hash_for!(struct DtorckConstraint<'tcx> {
outlives,
dtorck_types,
overflows
});
/// This returns true if the type `ty` is "trivial" for
/// dropck-outlives -- that is, if it doesn't require any types to
/// outlive. This is similar but not *quite* the same as the
/// `needs_drop` test in the compiler already -- that is, for every
/// type T for which this function return true, needs-drop would
/// return `false`. But the reverse does not hold: in particular,
/// `needs_drop` returns false for `PhantomData`, but it is not
/// trivial for dropck-outlives.
///
/// Note also that `needs_drop` requires a "global" type (i.e., one
/// with erased regions), but this function does not.
pub fn trivial_dropck_outlives<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.sty {
// None of these types have a destructor and hence they do not
// require anything in particular to outlive the dtor's
// execution.
ty::Infer(ty::FreshIntTy(_))
| ty::Infer(ty::FreshFloatTy(_))
| ty::Bool
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Never
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::Char
| ty::GeneratorWitness(..)
| ty::RawPtr(_)
| ty::Ref(..)
| ty::Str
| ty::Foreign(..)
| ty::Error => true,
// [T; N] and [T] have same properties as T.
ty::Array(ty, _) | ty::Slice(ty) => trivial_dropck_outlives(tcx, ty),
// (T1..Tn) and closures have same properties as T1..Tn --
// check if *any* of those are trivial.
ty::Tuple(ref tys) => tys.iter().all(|t| trivial_dropck_outlives(tcx, t.expect_ty())),
ty::Closure(def_id, ref substs) => substs
.upvar_tys(def_id, tcx)
.all(|t| trivial_dropck_outlives(tcx, t)),
ty::Adt(def, _) => {
if Some(def.did) == tcx.lang_items().manually_drop() {
// `ManuallyDrop` never has a dtor.
true
} else {
// Other types might. Moreover, PhantomData doesn't
// have a dtor, but it is considered to own its
// content, so it is non-trivial. Unions can have `impl Drop`,
// and hence are non-trivial as well.
false
}
}
// The following *might* require a destructor: needs deeper inspection.
ty::Dynamic(..)
| ty::Projection(..)
| ty::Param(_)
| ty::Opaque(..)
| ty::Placeholder(..)
| ty::Infer(_)
| ty::Bound(..)
| ty::Generator(..) => false,
ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
}
}