-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathdropck_outlives.rs
139 lines (126 loc) · 5.65 KB
/
dropck_outlives.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
use crate::infer::at::At;
use crate::infer::canonical::OriginalQueryValues;
use crate::infer::InferOk;
use rustc_middle::ty::subst::GenericArg;
use rustc_middle::ty::{self, Ty, TyCtxt};
pub use rustc_middle::traits::query::{DropckOutlivesResult, DtorckConstraint};
pub trait AtExt<'tcx> {
fn dropck_outlives(&self, ty: Ty<'tcx>) -> InferOk<'tcx, Vec<GenericArg<'tcx>>>;
}
impl<'cx, 'tcx> AtExt<'tcx> for At<'cx, 'tcx> {
/// Given a type `ty` of some value being dropped, computes a set
/// of "kinds" (types, regions) that must be outlive the execution
/// of the destructor. These basically correspond to data that the
/// destructor might access. This is used during regionck to
/// impose "outlives" constraints on any lifetimes referenced
/// within.
///
/// The rules here are given by the "dropck" RFCs, notably [#1238]
/// and [#1327]. This is a fixed-point computation, where we
/// explore all the data that will be dropped (transitively) when
/// a value of type `ty` is dropped. For each type T that will be
/// dropped and which has a destructor, we must assume that all
/// the types/regions of T are live during the destructor, unless
/// they are marked with a special attribute (`#[may_dangle]`).
///
/// [#1238]: https://github.com/rust-lang/rfcs/blob/master/text/1238-nonparametric-dropck.md
/// [#1327]: https://github.com/rust-lang/rfcs/blob/master/text/1327-dropck-param-eyepatch.md
fn dropck_outlives(&self, ty: Ty<'tcx>) -> InferOk<'tcx, Vec<GenericArg<'tcx>>> {
debug!("dropck_outlives(ty={:?}, param_env={:?})", ty, self.param_env,);
// Quick check: there are a number of cases that we know do not require
// any destructor.
let tcx = self.infcx.tcx;
if trivial_dropck_outlives(tcx, ty) {
return InferOk { value: vec![], obligations: vec![] };
}
let mut orig_values = OriginalQueryValues::default();
let c_ty = self.infcx.canonicalize_query(&self.param_env.and(ty), &mut orig_values);
let span = self.cause.span;
debug!("c_ty = {:?}", c_ty);
if let Ok(result) = &tcx.dropck_outlives(c_ty) {
if result.is_proven() {
if let Ok(InferOk { value, obligations }) =
self.infcx.instantiate_query_response_and_region_obligations(
self.cause,
self.param_env,
&orig_values,
result,
)
{
let ty = self.infcx.resolve_vars_if_possible(&ty);
let kinds = value.into_kinds_reporting_overflows(tcx, span, ty);
return InferOk { value: kinds, obligations };
}
}
}
// Errors and ambiuity in dropck occur in two cases:
// - unresolved inference variables at the end of typeck
// - non well-formed types where projections cannot be resolved
// Either of these should have created an error before.
tcx.sess.delay_span_bug(span, "dtorck encountered internal error");
InferOk { value: vec![], obligations: vec![] }
}
}
/// This returns true if the type `ty` is "trivial" for
/// dropck-outlives -- that is, if it doesn't require any types to
/// outlive. This is similar but not *quite* the same as the
/// `needs_drop` test in the compiler already -- that is, for every
/// type T for which this function return true, needs-drop would
/// return `false`. But the reverse does not hold: in particular,
/// `needs_drop` returns false for `PhantomData`, but it is not
/// trivial for dropck-outlives.
///
/// Note also that `needs_drop` requires a "global" type (i.e., one
/// with erased regions), but this function does not.
pub fn trivial_dropck_outlives<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.kind() {
// None of these types have a destructor and hence they do not
// require anything in particular to outlive the dtor's
// execution.
ty::Infer(ty::FreshIntTy(_))
| ty::Infer(ty::FreshFloatTy(_))
| ty::Bool
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Never
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::Char
| ty::GeneratorWitness(..)
| ty::RawPtr(_)
| ty::Ref(..)
| ty::Str
| ty::Foreign(..)
| ty::Error(_) => true,
// [T; N] and [T] have same properties as T.
ty::Array(ty, _) | ty::Slice(ty) => trivial_dropck_outlives(tcx, ty),
// (T1..Tn) and closures have same properties as T1..Tn --
// check if *any* of those are trivial.
ty::Tuple(ref tys) => tys.iter().all(|t| trivial_dropck_outlives(tcx, t.expect_ty())),
ty::Closure(_, ref substs) => {
substs.as_closure().upvar_tys().all(|t| trivial_dropck_outlives(tcx, t))
}
ty::Adt(def, _) => {
if Some(def.did) == tcx.lang_items().manually_drop() {
// `ManuallyDrop` never has a dtor.
true
} else {
// Other types might. Moreover, PhantomData doesn't
// have a dtor, but it is considered to own its
// content, so it is non-trivial. Unions can have `impl Drop`,
// and hence are non-trivial as well.
false
}
}
// The following *might* require a destructor: needs deeper inspection.
ty::Dynamic(..)
| ty::Projection(..)
| ty::Param(_)
| ty::Opaque(..)
| ty::Placeholder(..)
| ty::Infer(_)
| ty::Bound(..)
| ty::Generator(..) => false,
}
}