forked from mrdoob/three.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCurve.js
516 lines (354 loc) · 12.1 KB
/
Curve.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import { clamp } from '../../math/MathUtils.js';
import { Vector2 } from '../../math/Vector2.js';
import { Vector3 } from '../../math/Vector3.js';
import { Matrix4 } from '../../math/Matrix4.js';
/**
* An abstract base class for creating an analytic curve object that contains methods
* for interpolation.
*
* @abstract
*/
class Curve {
/**
* Constructs a new curve.
*/
constructor() {
/**
* The type property is used for detecting the object type
* in context of serialization/deserialization.
*
* @type {string}
* @readonly
*/
this.type = 'Curve';
/**
* This value determines the amount of divisions when calculating the
* cumulative segment lengths of a curve via {@link Curve#getLengths}. To ensure
* precision when using methods like {@link Curve#getSpacedPoints}, it is
* recommended to increase the value of this property if the curve is very large.
*
* @type {number}
* @default 200
*/
this.arcLengthDivisions = 200;
/**
* Must be set to `true` if the curve parameters have changed.
*
* @type {boolean}
* @default false
*/
this.needsUpdate = false;
/**
* An internal cache that holds precomputed curve length values.
*
* @private
* @type {?Array<number>}
* @default null
*/
this.cacheArcLengths = null;
}
/**
* This method returns a vector in 2D or 3D space (depending on the curve definition)
* for the given interpolation factor.
*
* @abstract
* @param {number} t - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`.
* @param {(Vector2|Vector3)} [optionalTarget] - The optional target vector the result is written to.
* @return {(Vector2|Vector3)} The position on the curve. It can be a 2D or 3D vector depending on the curve definition.
*/
getPoint( /* t, optionalTarget */ ) {
console.warn( 'THREE.Curve: .getPoint() not implemented.' );
}
/**
* This method returns a vector in 2D or 3D space (depending on the curve definition)
* for the given interpolation factor. Unlike {@link Curve#getPoint}, this method honors the length
* of the curve which equidistant samples.
*
* @param {number} u - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`.
* @param {(Vector2|Vector3)} [optionalTarget] - The optional target vector the result is written to.
* @return {(Vector2|Vector3)} The position on the curve. It can be a 2D or 3D vector depending on the curve definition.
*/
getPointAt( u, optionalTarget ) {
const t = this.getUtoTmapping( u );
return this.getPoint( t, optionalTarget );
}
/**
* This method samples the curve via {@link Curve#getPoint} and returns an array of points representing
* the curve shape.
*
* @param {number} [divisions=5] - The number of divisions.
* @return {Array<(Vector2|Vector3)>} An array holding the sampled curve values. The number of points is `divisions + 1`.
*/
getPoints( divisions = 5 ) {
const points = [];
for ( let d = 0; d <= divisions; d ++ ) {
points.push( this.getPoint( d / divisions ) );
}
return points;
}
// Get sequence of points using getPointAt( u )
/**
* This method samples the curve via {@link Curve#getPointAt} and returns an array of points representing
* the curve shape. Unlike {@link Curve#getPoints}, this method returns equi-spaced points across the entire
* curve.
*
* @param {number} [divisions=5] - The number of divisions.
* @return {Array<(Vector2|Vector3)>} An array holding the sampled curve values. The number of points is `divisions + 1`.
*/
getSpacedPoints( divisions = 5 ) {
const points = [];
for ( let d = 0; d <= divisions; d ++ ) {
points.push( this.getPointAt( d / divisions ) );
}
return points;
}
/**
* Returns the total arc length of the curve.
*
* @return {number} The length of the curve.
*/
getLength() {
const lengths = this.getLengths();
return lengths[ lengths.length - 1 ];
}
/**
* Returns an array of cumulative segment lengths of the curve.
*
* @param {number} [divisions=this.arcLengthDivisions] - The number of divisions.
* @return {Array<number>} An array holding the cumulative segment lengths.
*/
getLengths( divisions = this.arcLengthDivisions ) {
if ( this.cacheArcLengths &&
( this.cacheArcLengths.length === divisions + 1 ) &&
! this.needsUpdate ) {
return this.cacheArcLengths;
}
this.needsUpdate = false;
const cache = [];
let current, last = this.getPoint( 0 );
let sum = 0;
cache.push( 0 );
for ( let p = 1; p <= divisions; p ++ ) {
current = this.getPoint( p / divisions );
sum += current.distanceTo( last );
cache.push( sum );
last = current;
}
this.cacheArcLengths = cache;
return cache; // { sums: cache, sum: sum }; Sum is in the last element.
}
/**
* Update the cumulative segment distance cache. The method must be called
* every time curve parameters are changed. If an updated curve is part of a
* composed curve like {@link CurvePath}, this method must be called on the
* composed curve, too.
*/
updateArcLengths() {
this.needsUpdate = true;
this.getLengths();
}
/**
* Given an interpolation factor in the range `[0,1]`, this method returns an updated
* interpolation factor in the same range that can be ued to sample equidistant points
* from a curve.
*
* @param {number} u - The interpolation factor.
* @param {?number} distance - An optional distance on the curve.
* @return {number} The updated interpolation factor.
*/
getUtoTmapping( u, distance = null ) {
const arcLengths = this.getLengths();
let i = 0;
const il = arcLengths.length;
let targetArcLength; // The targeted u distance value to get
if ( distance ) {
targetArcLength = distance;
} else {
targetArcLength = u * arcLengths[ il - 1 ];
}
// binary search for the index with largest value smaller than target u distance
let low = 0, high = il - 1, comparison;
while ( low <= high ) {
i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
comparison = arcLengths[ i ] - targetArcLength;
if ( comparison < 0 ) {
low = i + 1;
} else if ( comparison > 0 ) {
high = i - 1;
} else {
high = i;
break;
// DONE
}
}
i = high;
if ( arcLengths[ i ] === targetArcLength ) {
return i / ( il - 1 );
}
// we could get finer grain at lengths, or use simple interpolation between two points
const lengthBefore = arcLengths[ i ];
const lengthAfter = arcLengths[ i + 1 ];
const segmentLength = lengthAfter - lengthBefore;
// determine where we are between the 'before' and 'after' points
const segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
// add that fractional amount to t
const t = ( i + segmentFraction ) / ( il - 1 );
return t;
}
/**
* Returns a unit vector tangent for the given interpolation factor.
* If the derived curve does not implement its tangent derivation,
* two points a small delta apart will be used to find its gradient
* which seems to give a reasonable approximation.
*
* @param {number} t - The interpolation factor.
* @param {(Vector2|Vector3)} [optionalTarget] - The optional target vector the result is written to.
* @return {(Vector2|Vector3)} The tangent vector.
*/
getTangent( t, optionalTarget ) {
const delta = 0.0001;
let t1 = t - delta;
let t2 = t + delta;
// Capping in case of danger
if ( t1 < 0 ) t1 = 0;
if ( t2 > 1 ) t2 = 1;
const pt1 = this.getPoint( t1 );
const pt2 = this.getPoint( t2 );
const tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() );
tangent.copy( pt2 ).sub( pt1 ).normalize();
return tangent;
}
/**
* Same as {@link Curve#getTangent} but with equidistant samples.
*
* @param {number} u - The interpolation factor.
* @param {(Vector2|Vector3)} [optionalTarget] - The optional target vector the result is written to.
* @return {(Vector2|Vector3)} The tangent vector.
* @see {@link Curve#getPointAt}
*/
getTangentAt( u, optionalTarget ) {
const t = this.getUtoTmapping( u );
return this.getTangent( t, optionalTarget );
}
/**
* Generates the Frenet Frames. Requires a curve definition in 3D space. Used
* in geometries like {@link TubeGeometry} or {@link ExtrudeGeometry}.
*
* @param {number} segments - The number of segments.
* @param {boolean} [closed=false] - Whether the curve is closed or not.
* @return {{tangents: Array<Vector3>, normals: Array<Vector3>, binormals: Array<Vector3>}} The Frenet Frames.
*/
computeFrenetFrames( segments, closed = false ) {
// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
const normal = new Vector3();
const tangents = [];
const normals = [];
const binormals = [];
const vec = new Vector3();
const mat = new Matrix4();
// compute the tangent vectors for each segment on the curve
for ( let i = 0; i <= segments; i ++ ) {
const u = i / segments;
tangents[ i ] = this.getTangentAt( u, new Vector3() );
}
// select an initial normal vector perpendicular to the first tangent vector,
// and in the direction of the minimum tangent xyz component
normals[ 0 ] = new Vector3();
binormals[ 0 ] = new Vector3();
let min = Number.MAX_VALUE;
const tx = Math.abs( tangents[ 0 ].x );
const ty = Math.abs( tangents[ 0 ].y );
const tz = Math.abs( tangents[ 0 ].z );
if ( tx <= min ) {
min = tx;
normal.set( 1, 0, 0 );
}
if ( ty <= min ) {
min = ty;
normal.set( 0, 1, 0 );
}
if ( tz <= min ) {
normal.set( 0, 0, 1 );
}
vec.crossVectors( tangents[ 0 ], normal ).normalize();
normals[ 0 ].crossVectors( tangents[ 0 ], vec );
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );
// compute the slowly-varying normal and binormal vectors for each segment on the curve
for ( let i = 1; i <= segments; i ++ ) {
normals[ i ] = normals[ i - 1 ].clone();
binormals[ i ] = binormals[ i - 1 ].clone();
vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );
if ( vec.length() > Number.EPSILON ) {
vec.normalize();
const theta = Math.acos( clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors
normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );
}
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
if ( closed === true ) {
let theta = Math.acos( clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
theta /= segments;
if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {
theta = - theta;
}
for ( let i = 1; i <= segments; i ++ ) {
// twist a little...
normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
}
return {
tangents: tangents,
normals: normals,
binormals: binormals
};
}
/**
* Returns a new curve with copied values from this instance.
*
* @return {Curve} A clone of this instance.
*/
clone() {
return new this.constructor().copy( this );
}
/**
* Copies the values of the given curve to this instance.
*
* @param {Curve} source - The curve to copy.
* @return {Curve} A reference to this curve.
*/
copy( source ) {
this.arcLengthDivisions = source.arcLengthDivisions;
return this;
}
/**
* Serializes the curve into JSON.
*
* @return {Object} A JSON object representing the serialized curve.
* @see {@link ObjectLoader#parse}
*/
toJSON() {
const data = {
metadata: {
version: 4.6,
type: 'Curve',
generator: 'Curve.toJSON'
}
};
data.arcLengthDivisions = this.arcLengthDivisions;
data.type = this.type;
return data;
}
/**
* Deserializes the curve from the given JSON.
*
* @param {Object} json - The JSON holding the serialized curve.
* @return {Curve} A reference to this curve.
*/
fromJSON( json ) {
this.arcLengthDivisions = json.arcLengthDivisions;
return this;
}
}
export { Curve };