@@ -514,7 +514,7 @@ def OA_8_69():
514
514
PBD = [[x for x in B if x not in oval ] for B in BIBD ]
515
515
516
516
sets_of_size_seven = [R for R in PBD if len (R ) == 7 ]
517
- others = [R for R in PBD if len (R ) != 7 ]
517
+ others = [R for R in PBD if len (R ) != 7 ]
518
518
519
519
# 68, 27, and 52 are the only elements appearing twice in the rows of
520
520
# sets_of_size_seven, and each row contains exactly one of them.
@@ -628,7 +628,7 @@ def OA_8_76():
628
628
PBD .remove ([])
629
629
630
630
sets_of_size_seven = [R for R in PBD if len (R ) == 7 ]
631
- others = [R for R in PBD if len (R ) != 7 ]
631
+ others = [R for R in PBD if len (R ) != 7 ]
632
632
633
633
# critical_points are the 10 elements appearing twice in the rows of the 10
634
634
# sets_of_size_seven, and each row contains exactly two of them
@@ -1477,11 +1477,11 @@ def OA_17_560():
1477
1477
"""
1478
1478
from sage .rings .finite_rings .finite_field_constructor import FiniteField as GF
1479
1479
alpha = 5
1480
- beta = 4
1481
- p = 2
1482
- k = 17
1483
- m = 16
1484
- n = p ** alpha
1480
+ beta = 4
1481
+ p = 2
1482
+ k = 17
1483
+ m = 16
1484
+ n = p ** alpha
1485
1485
1486
1486
G = GF ((p , alpha ), prefix = 'x' )
1487
1487
G_set = sorted (G ) # sorted by lexicographic order, G[1] = 1
@@ -3694,7 +3694,7 @@ def DM_52_6_1():
3694
3694
sage: _ = designs.difference_matrix(52,6)
3695
3695
"""
3696
3696
from sage .rings .finite_rings .finite_field_constructor import FiniteField
3697
- F4 = FiniteField (4 ,'z' )
3697
+ F4 = FiniteField (4 ,'z' )
3698
3698
G13 = FiniteField (13 )
3699
3699
G = F4 .cartesian_product (G13 )
3700
3700
z = F4 ('z' )
@@ -3805,9 +3805,9 @@ def DM_56_8_1():
3805
3805
sage: _ = designs.difference_matrix(56,8)
3806
3806
"""
3807
3807
from sage .rings .finite_rings .finite_field_constructor import FiniteField
3808
- F8 = FiniteField (8 ,'z' )
3809
- F7 = FiniteField (7 )
3810
- G = F8 .cartesian_product (F7 )
3808
+ F8 = FiniteField (8 ,'z' )
3809
+ F7 = FiniteField (7 )
3810
+ G = F8 .cartesian_product (F7 )
3811
3811
3812
3812
w = F8 .primitive_element ()
3813
3813
assert w ** 3 == w + 1
@@ -3936,7 +3936,7 @@ def DM_75_8_1():
3936
3936
3937
3937
F3 = FiniteField (3 )
3938
3938
F5 = FiniteField (5 )
3939
- G = cartesian_product ((F3 ,F5 ,F5 ))
3939
+ G = cartesian_product ((F3 ,F5 ,F5 ))
3940
3940
3941
3941
M = [
3942
3942
[(2 ,0 ,0 ), (0 ,0 ,0 ), (0 ,0 ,0 ), (1 ,0 ,0 ), (0 ,0 ,0 ), (1 ,0 ,0 ), (1 ,0 ,0 ), (0 ,0 ,0 )],
@@ -4121,7 +4121,7 @@ def RBIBD_120_8_1():
4121
4121
BIBD = new_BIBD
4122
4122
4123
4123
r = {v :i for i ,v in enumerate (x for x in range (n ) if x not in hyperoval )}
4124
- BIBD = [[r [x ] for x in B ] for B in BIBD ]
4124
+ BIBD = [[r [x ] for x in B ] for B in BIBD ]
4125
4125
equiv = [[r [x ] for x in B ] for B in equiv ]
4126
4126
4127
4127
BIBD = IncidenceStructure (range (255 ),BIBD )
@@ -5008,13 +5008,13 @@ def BIBD_56_11_2():
5008
5008
for k in sorted (EDS ))
5009
5009
5010
5010
__doc__ = __doc__ .format (
5011
- LIST_OF_OA_CONSTRUCTIONS = LIST_OF_OA_CONSTRUCTIONS ,
5011
+ LIST_OF_OA_CONSTRUCTIONS = LIST_OF_OA_CONSTRUCTIONS ,
5012
5012
LIST_OF_MOLS_CONSTRUCTIONS = LIST_OF_MOLS_CONSTRUCTIONS ,
5013
- LIST_OF_VMT_VECTORS = LIST_OF_VMT_VECTORS ,
5014
- LIST_OF_BIBD = LIST_OF_BIBD ,
5015
- LIST_OF_DF = LIST_OF_DF ,
5016
- LIST_OF_DM = LIST_OF_DM ,
5017
- LIST_OF_QDM = LIST_OF_QDM ,
5018
- LIST_OF_EDS = LIST_OF_EDS )
5013
+ LIST_OF_VMT_VECTORS = LIST_OF_VMT_VECTORS ,
5014
+ LIST_OF_BIBD = LIST_OF_BIBD ,
5015
+ LIST_OF_DF = LIST_OF_DF ,
5016
+ LIST_OF_DM = LIST_OF_DM ,
5017
+ LIST_OF_QDM = LIST_OF_QDM ,
5018
+ LIST_OF_EDS = LIST_OF_EDS )
5019
5019
del LIST_OF_OA_CONSTRUCTIONS , LIST_OF_MOLS_CONSTRUCTIONS , LIST_OF_VMT_VECTORS ,LIST_OF_DF , LIST_OF_DM , LIST_OF_QDM , LIST_OF_EDS , LIST_OF_BIBD
5020
5020
del PolynomialRing , ZZ , a ,
0 commit comments